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In signaling games the replicator dynamics does not almost always converge to states of perfect

communication. A significant portion of the state space converges to components of Nash equilibria that

characterize states of partial communication. Since these components consist of non-hyperbolic rest

points, the significance of this result will depend on the dynamic behavior of specific perturbations of

the replicator equations. In this paper we study selection–mutation dynamics of signaling games, which

may be considered as one plausible perturbation of the replicator dynamics. We find that the long term

behavior of the dynamics depends on the mutation rates of senders and receivers and on the relevance

of communication.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Signaling enables coordinated activity on all levels of biological
organization. Information transmission by signaling is found on
the level of cells and microorganisms (Crespi, 2001; England et al.,
1999), in animal communication (Maynard Smith and Harper,
2003) and, of course, in human language (Nowak and Krakauer,
1999). Mathematical models of signaling may help us understand
the structure of signaling interactions and possible explanations
for the emergence of successful information transmission.

Signaling poses two kinds of problems. One is concerned with
possible conflicts of interest between the sender and the receiver,
leading to the problem of honest signaling (Bergstrom and
Lachmann, 1998; Grafen, 1990; Maynard Smith and Harper,
2003; Spence, 1973). If the interests of sender and receiver are
aligned, other problems arise, which can be characterized in terms
of signaling games (Lewis, 1969). In such games, the sender and
the receiver may fail to communicate because of an uncoordi-
nated use of signals. The strategies of a signaling game can be
introduced by using the sets E and S, where jEj ¼ jSj ¼ n. E is the
set of events (states) and S is the set of signals. A (pure) strategy of
the sender can be represented as an n� n matrix P with each row
containing exactly one 1, the other entries being zero. Thus if pij ¼

1 then the sender sends signal j given that state i has occurred.
Similarly, a strategy of the receiver will be represented by an n� n

matrix Q with qij ¼ 1 for some j and qik ¼ 0 for all kaj. If qij ¼ 1
ll rights reserved.

ofbauer),

M. Huttegger).
then the receiver associates event j with signal i. It is assumed that
the sender and the receiver get the same payoff 1 if pij ¼ 1 ¼ qji

given that state i has occurred. If ðP;Q Þ is a profile of strategies,
then the overall payoff for the sender and the receiver is given by

1

n

X
i;j

pijqji ¼
1

n
trðPQ Þ (1)

(see Trapa and Nowak, 2000). Note the presumption that every
state is weighed equally for computing the payoffs. More
generally, the payoff resulting from strategy profile ðP;Q Þ is given
byX

i

wi

X
j

pijqji ¼ trðWPQ Þ, (2)

with W ¼ diagðw1; . . . ;wnÞ, where wi is the weight associated with
event i, wiX0 and

P
iwi ¼ 1 for i ¼ 1; . . . ;n. wi will in general

depend on the probability of event i and the importance attached
to communicating i.

For instance, a binary signaling game (n ¼ 2) has four
strategies for each player (see Fig. 1a for the payoff matrix):

P1 ¼ Q1 ¼
1 0

0 1

 !
; P2 ¼ Q2 ¼

0 1

1 0

 !
,

P3 ¼ Q3 ¼
1 0

1 0

 !
; P4 ¼ Q4 ¼

0 1

0 1

 !
. (3)

Signaling games have been studied extensively using the one-
population replicator dynamics where each individual can be a
sender or a receiver (Huttegger, 2007; Komarova and Niyogi,
2004; Nowak and Krakauer, 1999; Pawlowitsch, 2008; Skyrms,
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Q1 Q2 Q3 Q
4

P1 1 0 p q
P2 0 1 p q
P3 p q p q
P4 q p p q

Q1 Q2 Q3

P1 1 0 p

P2 0 1 p

Q1 Q3

P1 1 p

P2 0 p

Fig. 1. Payoffs in a binary signaling game: (a) the full game. If p ¼ q ¼ 1
2 then the

signaling game has uniform weights. If paq then the signaling game has non-

uniform weights. (b) Truncated binary signaling game. (c) Truncated game where

only one signaling system is present.
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1996). We will instead focus on the two-population replicator
dynamics

_xi ¼ xiððAyÞi � x � AyÞ, (4a)

_yj ¼ yjððBxÞj � y � BxÞ, (4b)

where A is the m�m payoff matrix of the sender, m ¼ nn, and
B ¼ AT is the payoff matrix of the receiver (T denotes the transpose
of a matrix). Dynamics (4) lives on Sm � Sm, where Sm is the unit-
simplex in Rm. Studying (4) rather than the one-population model
on Sm2 has the advantage of considerably reducing the dimension
of the state space. Moreover, the dynamics of the two-population
model can be imbedded in the state space of the one-population
model, inducing trajectories on an invariant manifold which is
equivalent to the Wright manifold of two-locus genetic models
(see Section 3.4.1 of Cressman, 2003).

The most relevant results for the asymptotic properties of the
dynamics of signaling games have been established indepen-
dently by Huttegger (2007) and by Pawlowitsch (2008). The
results are formulated for the one-population model, but they
carry over to the two-population setting in a straightforward way.
The only asymptotically stable states are given by the strict Nash
equilibria of the signaling game. Strict Nash equilibria are
signaling systems (this term was introduced by Lewis, 1969).
ðP;Q Þ is a signaling system iff P is a permutation matrix and
Q ¼ PT. ðP1;Q1Þ and ðP2;Q2Þ in (3) are examples of signaling
systems. For n signals there are n! signaling systems.

Although signaling systems are asymptotically stable for (4), it
is in general not true that the set of signaling systems attracts
almost all solutions of dynamics (4) (in the sense that the set of
solutions which do not converge to a signaling system have
Lebesgue measure zero). Consider

P̄ ¼

l 1� l 0

0 0 1

0 0 1

0
B@

1
CA; Q̄ ¼

1 0 0

1 0 0

0 m 1� m

0
B@

1
CA, (5)

where 0pl;mp1. ðP̄; Q̄ Þ is a Nash equilibrium of the signaling
game for 0pl;mp1. This defines a two-dimensional linear
manifold M of rest points. Using techniques from center manifold
theory (Carr, 1981) one can show that the relative interior of M

attracts an open set of the state space while parts of the boundary
are unstable (for details see Huttegger, 2007).

This result generalizes to signaling games with more than
three signals. The average payoff on manifolds of rest points such
as M can get arbitrarily small as n grows. Consider ðP̄; Q̄ Þ as given
by

l1 l2 � � � ln�1 0

0 0 � � � 0 1

..

. ..
.

0 0 � � � 0 1

0
BBBB@

1
CCCCA;

1 0 � � � 0

1 0 � � � 0

..

. ..
.

0 m1 � � � mn�1

0
BBBB@

1
CCCCA,

with 0pli;mjp1 for all i; j. This set of profiles shares the
properties of (5) (Pawlowitsch, 2008). But trðP̄; Q̄ Þ ¼

P
ili þP

jmj ¼ 2 irrespective of n.
What is the significance of this result? The existence of a linear

manifold of rest points like M implies that the dynamics is
degenerate and not structurally stable (Guckenheimer and
Holmes, 1983). This means that if dynamics (4) is slightly
perturbed, then the qualitative behavior of the dynamics near M

will change. Some perturbations might lead to a rest point close to
M that is asymptotically stable or linearly unstable. Or the rest
points of M might disappear altogether. One way to assess the
significance of the convergence of the replicator dynamics to
manifolds like M consists in looking at plausible perturbations of
this dynamics or at other evolutionary dynamics. The second
approach was taken by Pawlowitsch (2007), who considers
signaling games under a frequency-dependent Moran process in
a finite population. Our approach stays closer to the replicator
dynamics, since we shall study signaling games under a
perturbation of the replicator equations by small mutation terms.
2. Selection–mutation dynamics

One plausible perturbation of the replicator equations is
selection–mutation dynamics. This dynamics is studied in Bürger
(2000), Hofbauer (1985), Hofbauer and Sigmund (1998). In the
context of language games (in particular, the evolution of
universal grammar) a general selection–mutation dynamics was
introduced by Nowak (2000) and Nowak et al. (2002). Eqs. (6)
below can be considered as a limiting case of the latter model (cf.
Hofbauer and Sigmund, 1998, Section 20.1). Focusing on the
limiting case (6) enhances the tractability of the problems
associated with the dynamics of signaling games considerably.

The heuristics behind selection–mutation dynamics is that the
change in the relative frequency of one type is not only given by
selection but also by a term which describes the rate of mutation
from one type to another; to be more specific, with a certain
probability an offspring is a mutant, and in this case each type is
equally likely to mutate into any other type. Then the two-
population selection–mutation dynamics is given by

_xi ¼ xiððAyÞi � x � AyÞ þ eð1�mxiÞ, (6a)

_yj ¼ yjððBxÞj � y � BxÞ þ dð1�myjÞ, (6b)

where m ¼ nn, for possibly different mutation rates e; dX0. For
e ¼ d ¼ 0 dynamics (6) reduces to the replicator equation (4). In a
biological context e and d can be interpreted as uniform mutation
rates. In a non-biological context e and d can be understood as
rates of experimentation or as the rates of mistakes. As we shall
show below, the ratio d=� plays a particularly important role in
determining the evolutionary outcome of a signaling game.

System (6) shares some properties with (4). In particular, (6) is
still a gradient system with respect to the Shahshahani metric.
The potential function for the one-population analogue of (6) has
been found by Hofbauer (1985). By an analogous argument it can
be shown that

Vðx; yÞ ¼ x � Ay þ e
Xm

i¼1

log xi þ d
Xm

j¼1

log yj (7)
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is the potential function for (6). In particular,

_V ¼
X

i

_x2
i

xi
þ
X

j

_y2
j

yj

X0. (8)

The first term of V is just the mean fitness in the sender
population and the receiver population (which must be the same
since x � Ay ¼ y � ATx ¼ y � Bx). From the logarithmic terms of V it is
clear that as xi ! 0 or yj ! 0, V !�1. This implies that there
can be no rest points on the boundary of Sm � Sm. The increase of
the potential function along solutions (8) excludes cyclic behavior
of the dynamics (6). In addition, it implies that all orbits converge
to the set of rest points of (6) (Hofbauer and Sigmund, 1998;
Bürger, 2000).

Before we turn to the special case of two signals, let us state
two simple but important facts about the location of rest points of
(6) for small mutation rates (compare the proof of Theorem 13.4.1
in Hofbauer and Sigmund, 1998). To keep things simpler, we will
assume in the following that d ¼ re, with r40 fixed, while e goes
to 0.

First, if ðpðeÞ;qðeÞÞ is a rest point of (6) then

ðAqðeÞÞi � pðeÞ � AqðeÞ �me ¼ � e
piðeÞ

o0,

ðBpðeÞÞj � qðeÞ � BpðeÞ �mre ¼ � re
qjðeÞ

o0.

This implies that as e! 0 every accumulation point ðp;qÞ of
ðpðeÞ;qðeÞÞ must satisfy

ðAqÞi � p � Aqp0 and ðBpÞj � q � Bpp0,

i.e. ðp;qÞ must be a Nash equilibrium of the signaling game. This
allows us to conclude that there are no rest points of (6) close to rest

points of (4) which are not Nash equilibria of the underlying game.
The second general fact concerns the existence, uniqueness and

asymptotic stability of perturbed signaling systems. To see this set

Fiðx; y; eÞ ¼ xiððAyÞi � x � AyÞ þ eð1�mxiÞ,

Gjðx;y; eÞ ¼ yjððBxÞj � y � BxÞ þ reð1�myjÞ.

Let ðp;qÞ be a signaling system. Let

H ¼ ðF1; . . . ; Fm;G1; . . . ;GmÞ.

H is defined on an open set containing ðp;q;0Þ and Hðp;q;0Þ ¼ 0.
The Jacobian matrix of H with respect to x and y evaluated at
ðp;q;0Þ is invertible. Hence, by the implicit function theorem,
there exists a unique smooth function f : ð�e0; e0Þ !

Rm
�Rm;fðeÞ ¼ ðpðeÞ;qðeÞÞ such that

fð0Þ ¼ ðp;qÞ and HðfðeÞ; eÞ ¼ 0.

This establishes the existence of unique equilibria fðeÞ 2 Sm � Sm

for small e40. Since fð�Þ is close to a signaling system of the
signaling game, we will call it a perturbed signaling system.

This argument works more generally for regular Nash
equilibria of a game; compare the proof of Theorem 13.4.1 in
Hofbauer and Sigmund (1998), or Section 2.2 in Bürger and
Hofbauer (1994). However, since regular equilibria are isolated,
the only regular equilibria in signaling games are signaling
systems.

The asymptotic stability of perturbed signaling systems
follows from the fact that the entries of the Jacobian matrix for
(6) are continuous in e. Therefore, each of the n! perturbed
signaling systems is a local maximizer of the potential func-
tion (7).

There are no similar general statements about perturbations of
equilibria other than signaling systems. But we can use degree
theory and Morse index arguments to infer the existence of
further rest points of (6). We will use these tools for the case of
two signals. The case of three or more signals needs more space
and will be treated elsewhere. We would like to emphasize,
however, that an analysis of the case of two signals is somewhat
more important than an analysis of more general signaling games.
Binary signaling games represent the most basic kind of signaling;
we expect communication to evolve in binary signaling games
given that it evolves at all.

Binary signaling games may be considered in their own right
for other reasons as well. There are examples of binary signaling
systems in living organisms (e.g. female fruit flies, Drosophila

subobscura, send signals to approaching males when they have
already mated, Maynard Smith and Harper, 2003). And third, as
we shall see, the behavior of selection–mutation dynamics close
to manifolds such as M can to some extent already be studied for
n ¼ 2.
3. Results

3.1. Uniform weights

The case w1 ¼ w2 ¼
1
2 has been numerically analyzed by

Huttegger et al. (2008). Here, we present a full analytical
treatment for illustrative purposes, since the emergence of
communication in this kind of signaling game poses no problem
to the replicator dynamics (see Huttegger, 2007, Theorem 9).

Consider the signaling game with strategies as given by (3) and
payoff function (1). Let xi be the relative frequency of Pi and yj be
the relative frequency of Qj. The Nash equilibria are given by the
two signaling systems ðPi;QiÞ, i ¼ 1;2 and a component of Nash
equilibria given by

l 1� l
l 1� l

� �
;

m 1� m
m 1� m

 !
. (9)

That these matrices describe Nash equilibria follows from
Theorem 5.1 of Trapa and Nowak (2000). The matrix pair (9)
defines a four-dimensional component of Nash equilibria given by
the condition x1 ¼ x2 and y1 ¼ y2. Let us denote this component
by N.

To see that there are no other Nash equilibria, suppose first
that P (or Q) has a zero column. Then ðP;Q Þ is a Nash equilibrium
only if Q (or P) is of form (9) for some 0pmp1 (or some 0plp1).
If P (and Q) has no zero column and if it is not one-to-one, then by
Theorem 5.1 of Trapa and Nowak (2000) ðP;Q Þmust be of form (9)
in order to be a Nash equilibrium.

The second general fact for the dynamics of signaling games
implies that, for small e, there are two perturbed and asympto-
tically stable signaling systems for (6). The average payoff along N

is 1
2. The second and third terms of the potential function V attain

their unique maximum at the barycenter b. Hence if e40 the
component N collapses into b. Since there cannot be any other
rest points of the perturbed dynamics, b must be linearly unstable
having one positive eigenvalue. This follows from the Morse
inequalities (Milnor, 1963): a gradient system with two asympto-
tically stable rest points must have at least one rest point having
one positive eigenvalue. An illustration of the dynamics is
shown in Fig. 2. (This is the dynamics of the truncated game of
Fig. 1b.)

Hence we see that from almost all initial conditions solutions
of (6) converge to one of the perturbed signaling systems. For
uniform weights this result is already true for the unperturbed
dynamics (4). However, as we shall see in the next section, in the
case of non-uniform weights dynamics (4) and (6) are indeed
qualitatively different.
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Fig. 2. State space and dynamics for the truncated game with p ¼ 1
2. (a) The

selection–mutation dynamics for e ¼ d ¼ 0. Black dots indicate Nash equilibria and

white dots indicate rest points which are not Nash equilibria. There is one

component of unstable Nash equilibria and two asymptotically stable signaling

system. (b) Now e; d40. The component of Nash equilibria collapses into the

barycenter, which is linearly unstable. The two signaling systems become

perturbed rest points which remain asymptotically stable.
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3.2. Non-uniform weights: truncated game

We now consider signaling games with two signals and a non-
uniform weight matrix W. Suppose without loss of generality that
w14w2 ¼ 1�w1. For a more concise notation we set w1 ¼ p

below.
The structure of the equilibrium components is different in the

case of a non-uniform weight matrix. To simplify matters we will
first look at a truncated version of the game (shown in Fig. 1b)
with pure strategies P1, P2, Q1, Q2 and Q3. Here, in the spirit of
classical game theory, we omit the strictly dominated strategy Q4,
and the strategies P3;P4 which are equivalent to mixtures of P1

and P2. We shall see in the last section that the results obtained
for the truncated game are qualitatively the same as the results for
the full game.
ðP1;Q1Þ and ðP2;Q2Þ are signaling systems. There is another

component of rest points given by

a 1� a
1� a a

� �
;

1 0

1 0

� �
; 0pap1. (10)

Not all points along this line are Nash equilibria, however. But (10)
contains a component of Nash equilibria K, given by qpapp. The
size of K relative to (10) depends on p. The average payoff along K

is p.
For the unperturbed replicator dynamics (4) the two signaling

systems are asymptotically stable. The component K is not
asymptotically stable, but the points in the relative interior of K

are Lyapunov stable. Moreover, like the points in the relative
interior of the component M (see 5), K attracts an open set of
initial conditions under (4) (a precise argument proving this
conclusion is given in Huttegger, 2007). Note that a component
like K does not exist for the uniform case according to the remarks
at the end of the previous section.

What happens under the perturbed dynamics (6) for the
truncated game? We know that, like in the uniform case, there
exist two perturbed rest points of (6) close to the signaling
systems for sufficiently small e. Both rest points are asymptoti-
cally stable. Index or degree theory (see e.g. Section 13.4 in
Hofbauer and Sigmund, 1998) tells us that there is at least one
further rest point. From the analysis above it is clear that this rest
point must be near K. By using a perturbation expansion we will
study its stability properties.

The perturbed dynamics for the truncated game is given by

_x1 ¼ x1ðy1 þ py3 � āÞ þ eð1� 2x1Þ,

_x2 ¼ x2ðy2 þ py3 � āÞ þ eð1� 2x2Þ (11a)

and

_y1 ¼ y1ðx1 � āÞ þ dð1� 3y1Þ,

_y2 ¼ y2ðx2 � āÞ þ dð1� 3y2Þ,

_y3 ¼ y3ðp� āÞ þ dð1� 3y3Þ, (11b)

where ā ¼ x1y1 þ x2y2 þ py3. We look for a symmetric rest point
satisfying x1 ¼ x2 ¼

1
2. Setting (11a) to zero shows that y1 ¼ y2, and

thus ā ¼ y1 þ py3. By (11b) a rest point of the system must
therefore satisfy

y1ð3dþ p� 1
2þ y1ð1� 2pÞÞ ¼ d.

A Taylor expansion in terms of d leads to the solution

ŷ1 ¼ ŷ2 ¼
2d

2p� 1
þ Oðd2

Þ; ŷ3 ¼ 1� 2ŷ1.

In order to study the stability properties of this rest point we
introduce two new variables x;Z:

x1 ¼
1
2þ x and Z ¼ y1 � y2.

Then (11) can be written as

_x ¼ ð14� x2
ÞZ� 2ex,

_Z ¼ xð1� y3Þ � Zð3dþ ðp� 1
2Þy3Þ � xZ2,

_y3 ¼ ðp�
1
2Þy3ð1� y3Þ � y3xZþ dð1� 3y3Þ. (12)

Linearizing (12) at the rest point x ¼ Z ¼ 0; y3 ¼ ŷ3 yields

_x ¼ 1
4Z� 2ex,

_Z ¼ xð1� ŷ3Þ � Zð3dþ ðp� 1
2Þŷ3Þ, (13)

where we can ignore the third equation, since _y3 contains no
linear terms in x;Z. The Jacobian matrix of (13) at the rest point is
given by

J ¼
�2e 1=4

4d=ð2p� 1Þ �d� ðp� 1=2Þ

 !
,

up to higher order terms in e and d. Then

detðJÞ ¼ eð2p� 1Þ �
d

2p� 1
.

This is less than zero if and only if

d
e4ð2p� 1Þ2. (14)

In this case (which includes d ¼ e), the rest point close to K is a
saddle. If, on the other hand, the inequality sign in (14) is reversed,
then the rest point with x1 ¼ x2 ¼

1
2 will be a sink since the trace of

J is negative. Index theory implies that there must be at least two
further rest points, each one having one positive eigenvalue.
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Fig. 4. State space and perturbed dynamics with e; d40 for the truncated game

with p41
2. Black dots indicate sinks and white dots indicate saddles. (a) If e; d40

2
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A perturbation expansion shows that one solution is approxi-
mately given by qox̄1ox̄2op and

ȳ1 ¼
d

p� x̄1
þ Oðd2

Þ; ȳ2 ¼
d

p� x̄2
þ Oðd2

Þ,

where ðx̄1; x̄2Þ � ð0;0;1Þ is the limit of perturbed equilibria as
e! 0. The second solution is obtained by letting qox̄2ox̄1op.

Eq. (12) implies the following conditions for rest points close to
K:

Z ¼ 8ex
1� 4x2

,

x ¼
Zð3dþ ðp� 1=2Þy3Þ

1� y3 � Z2
.

Inserting ȳ3 ¼ 1� ȳ1 � ȳ2 and the expression for Z into the second
equation leads to the result that there exists no rest point other
than the one for x ¼ 0 close to K whenever d=eXð2p� 1Þ2.
Therefore, if d=eXð2p� 1Þ2, then dynamics (6) converges to a

signaling system from almost all initial conditions.
It is instructive to look at the boundary face which is spanned

by P1, P2, Q1 and Q3 (cf. the payoff matrix in Fig. 1c). The
selection–mutation dynamics of this 2� 2 game can be written as

_x1 ¼ x1ðy1 þ py3 � āÞ þ eð1� 2x1Þ,

_x2 ¼ x2ðpy3 � āÞ þ eð1� 2x2Þ (15a)

and

_y1 ¼ y1ðx1 � āÞ þ dð1� 2y1Þ,

_y3 ¼ y3ðp� āÞ þ dð1� 2y3Þ, (15b)

where ā ¼ x1y1 þ py3. The unperturbed dynamics of (15) with
e; d ¼ 0 is illustrated in Fig. 3b. This truncated game has a
Fig. 3. State space and replicator dynamics (4) of the truncated game with p41
2.

Black dots indicate Nash equilibria and white dots indicate rest points which are

not Nash equilibria. (a) A component of rest points attracts a set of positive

measure. (b) The replicator dynamics restricted to the game where only P1, P2, Q1

and Q3 are present.

and d=e4ð2p� 1Þ , then there exists one rest point close to K which is linearly

unstable. (b) If d=eoð2p� 1Þ2, then there exist three rest points close to K. One of

them is asymptotically stable while the other two are linearly unstable.
component of Nash equilibria given by 0px1pp and y1 ¼ 0
which attracts an open set of initial conditions, but is not stable.
A straightforward calculation shows that for small e; d40, a
pair of rest points (a sink and a saddle) exists near this component
if

d
eo1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
. (16)

If the inequality sign in (16) is reversed then there are no
perturbed equilibria near this component. Then all orbits
converge to the perturbed signaling system.

This truncated 2� 2 game is strategically equivalent to the
Chain–Store game and the ultimatum minigame studied by Gale
et al. (1995) and Binmore and Samuelson (1999). Their results on
perturbed game dynamics also emphasize the role of the ratio d=e
in determining what happens close to the component of Nash
equilibria (see Fig. 4).
3.3. Non-uniform weights: full game

We now consider the full game of Fig. 1a. The selection–muta-
tion dynamics of this game is given by

_x1 ¼ x1ðy1 þ py3 þ qy4 � āÞ þ eð1� 4x1Þ,

_x2 ¼ x2ðy2 þ py3 þ qy4 � āÞ þ eð1� 4x2Þ,

_x3 ¼ x3ðpðy1 þ y3Þ þ qðy2 þ y4Þ � āÞ þ eð1� 4x3Þ,

_x4 ¼ x4ðpðy2 þ y3Þ þ qðy1 þ y4Þ � āÞ þ eð1� 4x4Þ (17a)
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and

_y1 ¼ y1ðx1 þ px3 þ qx4 � āÞ þ dð1� 4y1Þ,

_y2 ¼ y2ðx2 þ qx3 þ px4 � āÞ þ dð1� 4y2Þ,

_y3 ¼ y3ðp� āÞ þ dð1� 4y3Þ,

_y4 ¼ y4ðq� āÞ þ dð1� 4y4Þ, (17b)

where p4q and

ā ¼ x1y1 þ x2y2 þ x3ðpy1 þ qy2Þ þ x4ðqy1 þ py2Þ þ py3 þ qy4.

Using a perturbation expansion we find a symmetric perturbed
equilibrium p with xi ¼

1
4 for i ¼ 1; . . . ;4,

ŷ1 ¼ ŷ2 ¼
2d

2p� 1
þ Oðd2

Þ; ŷ4 ¼
d

p� q
þ Oðd2

Þ

and ŷ3 ¼ 1� 2ŷ1 � ŷ4. We now use a computer algebra system to
compute the Jacobian matrix of (17) at p and find that p is a sink
for small e; d40 if

d
eo2

ð1� 2pÞ2

1� 2pþ 2p2
. (18)

A calculation of the principal minors of the Jacobian matrix
shows that in this case all eigenvalues are negative. Index theory
again implies the existence of two more equilibria which are
saddles. If the inequality in (18) is reversed then p is a saddle
(with one positive eigenvalue). Numerical simulations suggest
that no further equilibria exist in this case and hence almost all
orbits converge to the perturbed signaling systems. Hence,
qualitatively, we obtain the same results as for the truncated
game. However, the region of stability is different. For example,
for d ¼ e, (18) holds for some p whereas in the truncated game,
(14) holds. Compare the graphs corresponding to (14) and (18) in
Fig. 5.
4. Conclusion

We have shown that whether communication emerges in
binary signaling games depends on the ratio d=� and the payoff
parameter p. After some thought, these results appear to be quite
intuitive. If the receiver experiments much less frequently than
the sender (small d=e), the players might end up not commu-
nicating. As an example, one may think of two species where the
receiver species has a much longer generation time than the
sender species. This model might also be interpreted as a two-
locus genetics model with possibly differing mutation rates. In all
these cases, condition (14) or (18) relates p to the ratio d=�. For
given p, if d=� is too small, then the receiver population is not
responsive enough to the experimentation of the sender popula-
tion.

The payoff parameter p measures the relevance of commu-
nication (see Nowak et al., 2002, Box 2). If p is close to 1

2,
communicating the event that has occurred is most important. As
p goes to 1 (or to 0), communication becomes less important. In
the limit p ¼ 1, the ratio d=� has to be large (at least 2) in order to
get communication in the full binary signaling game. Thus, the
range of d=� that guarantees convergence to a perturbed signaling
system reflects the relevance of communication.

As to the broader aspects of the theory of signaling games, our
analysis shows that there is no clear-cut answer to the question
whether selection–mutation dynamics is a mechanism for the
evolution of optimality in sender–receiver games. The answer to
this question depends on the parameters d, � and p. The relations
of these parameters as expressed by (14) and (18) determines the
outcome of the evolutionary dynamics. Moreover, these relations
have a clear interpretation in terms of responsiveness of receivers
relative to the rate of experimentation of senders (d=�) and
relevance of communication (p). Thus, perfect communication is
likely to evolve if communication is relevant and if receiver
experimentation is responsive with respect to sender experimen-
tation.
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