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Ambiguity is a defining property of natural language distinguishing it from artificial languages.
It would seem to be dysfunctional, and therefore its ubiquity in language poses an evolution-
ary puzzle. This paper discusses the implications of a typical iterated learning model on the
conditions under which syntactic ambiguity emerges and stabilises in language. It contrasts
the purely nativist stance that language imperfections such as syntactic ambiguity are artifacts
arising from internal constraints of the genetically determined language faculty with the view
that they are frozen accidents persisting because they are easily learnt.

1. Introduction

Ambiguity is a striking property of natural language distinguishing it from arti-
ficial languages. The mathematically well defined case ofsyntacticambiguity is
present in sentences that can be structurally analysed in more than one way:

(1) The officer watched the spy with the telescope.

(2) The word of the Lord came to Zechariah, son of Berekiah, the prophet.

(3) The passengers who left the boat first were old men and women.

In an optimal communication system, a feature like syntactic ambiguity would
seem to be dysfunctional. Effective coding implies that one signal corresponds to
one meaning and can therefore be interpreted deterministically. Syntactic am-
biguity, one would assume, should not be found in a successful communication
system like human language. Its ubiquity thus poses an evolutionary puzzle: why
has such an apparent imperfection emerged in language?

One view of language imperfections is that they are artifacts arising fromin-
ternal constraints of the innate language faculty (Chomsky, 2002). Nativists con-
clude from the poverty of stimulus argument that language acquisition is not pri-
marily a matter of learning but rather of setting predefined, genetically determined
parameters of the innate language faculty.

This view is contrasted by an approach taken in studies of language evolution
which explain hallmarks of language by the fact that language undergoes cultural



transmission (Hurford, 2002; Brighton, Kirby, & Smith, 2005). This idea is based
on the observation that language acquisition represents a special class of learning
problem as the output of the language learning of one generation is the input to
the learning of the next generation. Properties of language are exhibited because
language itself, as opposed to its users, adapts to be learnable. Brighton (2003)
points out that in such an iterated learning framework, language imperfections
reflect residues of linguistic evolution through cultural transmission.

This paper introduces syntactic ambiguity as an example of an imperfection
of language and discusses the implications of a typical iterated learning model on
two questions raised by the evolutionary puzzle that comes with its ubiquity. Un-
der what conditions does syntactic ambiguity emerge? Despite its ubiquity, only
a sparse number of grammatical rules in human language are actually involved
in syntactic ambiguity. The second question must therefore ask why syntactic
ambiguity has been prevented from becoming more pervasive.

The remainder of this paper falls into three sections. In the first, I present a
computational model to study the emergence and transmission of syntactic ambi-
guity. The subsequent section describes observations made in our simulations and
illustrates them with three example experiments. These results are summarised
and discussed in the last section of the paper.

2. An Iterated Learning Model of Emergent Syntactic Ambiguity

Our intuitions about the behaviour of complex dynamic systems, and any verbal
theorising built on them, tend to be faulty. On the other hand, the formalisation
of analytical mathematical approaches for such systems (Nowak & Komarova,
2001) proves to be difficult. Computer simulations therefore offer a useful alter-
native to study the evolution of language (Cangelosi & Parisi, 2001). To this end,
Kirby and Hurford (2002) have developed the Iterated Learning Model (ILM).
Iterated learning models have been applied to simulate how pivotal properties of
language such as recursive syntax or compositionality can originate from cultural
transmission (Kirby, 2002). Roberts, Onnis, and Chater (2005) have presented a
simplicity-based model to explain the emergence of quasi-regular constructions.
They point out that in such a model, the transmission bottleneck is a necessary
prerequisite for the emergence of linguistic idiosyncrasies.

In the model presented here, two agents are ‘alive’ at any one time: a speaker
and a learner. Each agent is endowed with an induction algorithm to infer context-
free grammars from linguistic data it has observed, and with the ability to produce
sentences from that grammar. There is no biological evolution in the agents. The
speaker produces a certain number of sentences from its internalised grammar.
The learner uses its induction algorithm to infer a grammar on the basis of the
speaker’s output. The number of sentences the learner is exposed to constitutes
the learning bottleneck through which language is transmitted. After one iteration,
the learner becomes the new speaker, a new learner is created and the process is



started again.
The algorithm for grammar induction applied in this model is described in

detail in Kirby (2002) and ultimately based on Wolff (1982). However, apart
from minor simplifications, two noteworthy modifications have been made to the
original algorithm. First, our algorithm is not enriched with anyexplicit seman-
tics. The notion of syntactic ambiguity is intrinsically rooted in the principle of
compositionality, which says that the meaning of a complex expression is a func-
tion of the meaning of its constituents and the way they are combined. Different
syntactic structures correspond to different complex meanings. The meaning dis-
tinctions caused bysyntacticambiguity are therefore implicitly expressed in the
compositional structures assigned to a sentence, if we presuppose the principle of
compositionality for a model.

The second major modification of Kirby’s original algorithm is that gram-
mar induction in our model is not necessarily deterministic. Multiple hypothetical
grammars can arise in a learner where rule subsumption can be carried out in more
than one way. This will be illustrated in section 3. The induction algorithm also
produces permutations of the original order in which the linguistic data was pre-
sented to the learner and induces alternative grammar hypotheses from these. In
multi-generation simulations, hypothetical grammars are either selected for sim-
plicity or for maximal expressivity.

The notion of expressivity adopted in the model corresponds to the number
of structurally distinct sentences a grammar can produce. Counting distinct syn-
tactic structures, rather than distinct strings, entails that each interpretation of an
ambiguous sentence contributes to the expressivity of its grammar separately. A
different syntactic structure also yields a different compound meaning according
to the principle of compositionality.

Simplicity as included in the model is based on a non-probabilistic notion of
the Minimum Description Length (MDL) principle (Rissanen & Ristad, 1994).
The MDL of context-free grammars is calculated according to the methods set up
for regular grammars in Teal and Taylor (2000). In its MDL condition, the model
is thus very similar to the one presented in Zuidema (2003).

Our model of the learner does not acquire vocabulary or induce lexical cate-
gories. We take them to be already learnt. Terminal symbols in the examples of
the following section are therefore to be thought of as lexical (or basic syntactic)
categories rather than individual words.

3. Example Experiments

This section describes the behaviour observed in the simulations. I will first dis-
cusssingle learningsimulations, which were carried out to study the conditions
under which structural ambiguityemergesin a typical model like ours. In a second
step, we will analyse thestabilisationof ambiguous grammars initerated learning
simulations, where language is transmitted through a bottleneck over generations.



3.1. Emergence of Syntactic Ambiguity in a Single Learning Model

Single learning simulations have shown that a range of factors influence the emer-
gence of structural ambiguity during grammar induction. I will use a simple exam-
ple language to visualise the behaviour of these simulations. The initial example
input consists of the databa, bca, bab, bac. After the encounter of the first two
stringsba, bca, the learner has incorporated the rulesS→ ba andS→ bca to its
grammar. These rules can be compressed by subsumption in two different ways,
and hence induction yields two different hypothetical grammars at this stage of
the learning process:

S→ Xa S→ bX
X→ b X→ a
X→ bc X→ ca

We track the further development of the left-hand side hypothesis grammar.
The next stringbab is generalised by replacing the substringb with the already
established non-terminal symbolX. The new ruleS→ XaX is incorporated and
compressed by subsumption with the existing rule forS:

S→ XY
Y→ a
Y→ aX
X→ b
X→ bc

When encountered, the last stringbac is generalised toS→ XYc. It is this
generalisation and the subsequent rule subsumption which introduce ambiguity to
the grammar:

S→ XZ
Z→ Y
Z→ Yc
Y→ a
Y→ aX
X→ b
X→ bc

This final grammar can generate 12 structurally different sentences. The am-
biguous stringsbabc and bcabcare produced in two different ways where the
substringabc is either structured as(a(bc))or as((ab)c). Such a grammar can ac-
count for ambiguous constructions like the ones in the English example sentences
(1)–(3), if we replace its symbols with appropriate phrasal and lexical categories.
If we track the right-hand side hypothesis above, we obtain an unambiguous gram-
mar with a 6 sentences expressivity.

Running such experiments, we have been able to identify conditions under
which syntactic ambiguity occurs in a model like the one presented. There is one



necessary prerequisite for the emergence of syntactic ambiguity: generalisation
during grammar induction. No ambiguous grammar emerges without generalisa-
tion during the process of its acquisition. But in a typical iterated learning model,
learners have to apply generalisation because of the transmission bottleneck. In
such a model, syntactic ambiguity is thus one possible implication of the cultural
transmission of language.

The likelihood that an ambiguous grammar will be induced is dependent on
an interaction of (1) theproperties of the input stringsand (2) theproperties of the
induction algorithm. Structural ambiguity is the result of several coinciding rules
induced from the data, rather than something a single learning event would elicit.

We observe that in cases where the hypotheses for a set of linguistic data
comprise ambiguous as well as unambiguous grammars, the ambiguous grammars
are more expressive than the unambiguous grammars. Similarly, more expressive
grammars are more likely to be ambiguous than their less expressive counterparts.
Cursorily viewed, this could lead to the assumption that ambiguity would increase
over generations in an iterated learning model in which hypothesis grammars are
selected for maximal expressivity. We will see below that this is not the case.

3.2. Stabilisation of Syntactic Ambiguity in an Iterated Learning Model

The described learner is placed in an iterated learning simulation to analyse the
stabilisation of syntactic ambiguity over generations. The number of sentences
heard by each generation has proven to be critical in all simulations. For the
simulations described here, the bottleneck size was chosen such that the exam-
ple language is stable if the learners select their hypothesis grammar for MDL.
Since the induced ambiguous hypothesis grammars are usually of higher MDL
than their unambiguous counterparts, the grammars evolved under such condi-
tions are mostly unambiguous.

The same conditions were then applied to simulations in which the learners
select their hypothesis grammars for maximal expressivity. Fig. 1 charts the emer-
gence and stabilisation of syntactic ambiguity in three such simulations, based on
the initial example input databa, bca, bab, bac. The grammars evolved under
these conditions stabilise in either minimally ambiguous or unambiguous form.

If expressivity was the only pressure to have an impact on language evolution,
the given conditions would lead to highly productive and ambiguous languages.
Undoubtedly, such languages would be positively dysfunctional and impose in-
surmountable problems on communication. But, as Brighton et al. (2005) ob-
serve, a language is stable if it is expressiveand learnable. Remember that in our
model the pressure for expressivity is realised by the selection of the most expres-
sive grammars. Learnability on the other hand is implemented by the bottleneck
through which languages are transmitted.

The example simulations in Fig. 1 illustrate the observation that languages
stabilise at a relatively low level of expressivity. Highly expressive languages
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Figure 1. Emergence and stabilisation of syntactic ambiguity in three example simulations, relative
to the expressivity and simplicity (MDL) of the evolved grammars. The dotted line denotes ambiguity,
the dashed line MDL and the solid line expressivity. The y-dimensions of the lines are relative to
each other and therefore not indicated in absolute values where they are> 0. Hypothetical grammars
are selected for maximal expressivity in each generation. Due to the learning bottleneck, the evolved
grammars stabilise on a low level of expressivity within the first 20 generations of 1000 in total.
They are either minimally ambiguous or unambiguous. (a) The evolved stable grammar is minimally
ambiguous. (b) The evolved stable grammar is unambiguous. (c) A minimally ambiguous stable
grammar evolves from unambiguous unstable grammars.

cannot pass the learning bottleneck successfully and do not reach a stable state.
We witness the impact of two competing pressures on the evolution of language:
expressivity and learnability.

We can distinguish three types of behaviour in the simulations. The exam-
ple case in Fig. 1(a) shows how a stableminimally ambiguousgrammar emerges
within the first 20 of 1000 generations of the simulation. The stable grammar
emerges after a significant decrease in expressivity and ambiguity. This behaviour
can also be observed in the example experiment in Fig. 1(b), where a stableun-
ambiguousgrammar evolves under the same conditions. We conclude from the
equal distribution of these two types of behaviour that minimal syntactic ambigu-
ity does not constitute an impediment to the successful transmission of a language.
In cases represented by Fig. 1(c), a stable minimally ambiguous grammar evolves
from unstable unambiguous grammars. Expressivity is slightly lowered at the mo-
ment of the introduction of ambiguity in generation 9. We have seen before that



ambiguity tends to occur in more expressive hypothetical grammars induced from
thesamedata. However, in this example it is introduced during the transmission of
language from one generation to the next. Syntactic ambiguity occurs in a gram-
mar that is less expressive than the one of the previous generation. This increases
the learnability of the example language and stabilises it.

4. Discussion and Conclusion

We have found evidence thatin a typical iterated learning model, the same phe-
nomenon, the learning bottleneck, is responsible for the two evolutionary puzzles
set out in the introduction of this paper. Given its dysfunctionality, why has syn-
tactic ambiguity emerged? And given its persistence in human language, what has
prevented syntactic ambiguity from becoming more pervasive? Our simulations
suggest that the answer to both questions is the bottleneck through which language
is transmitted in such a model.

In oursingle learning simulationsillustrated by example experiments, syntac-
tic ambiguity emerges during grammar induction due to coinciding properties of
the data and the learning algorithm. The necessary precondition for its emergence
is the process of generalisation. Learners need to generalise during language ac-
quisition because they are only exposed to a limited set of linguistic data. The
presented type of grammar induction thus implies that syntactic ambiguity re-
flects a residue of an accidental but not improbable coincidence in the evolution
of language through iterated learning.

Does our model therefore oppose the nativist view of language imperfections?
It seems that, like any iterated learning model, it takes an intermediate stance. It
is potentially nativist in the explanatory emphasis it puts on the specifics of the
learning algorithm. But at the same time, it adds a complementary explanatory
process, cultural evolution through iterated learning.

The observations made initerated learning simulationssuggest that against a
pressure for expressivity, the transmission bottleneck ensures that syntactic am-
biguity does not become too pervasive in a language once it has emerged. The
stable ambiguous grammars emerging from the simulations only exhibit sparse
ambiguity. The evolutionary pressure on language to be learnable prevents it from
becoming too productive and therefore also constrains ambiguity. Strikingly, the
learning bottleneck seems to enable us to explain why syntactic ambiguity is not
more pervasive despite its persistence in language. Under the presented assump-
tions, we can thus disregard such notions as ease of disambiguation or commu-
nicative dysfunctionality. The example experiments in this paper illustrate how
the stabilisation of ambiguity can be subject to the fluctuation caused by two com-
peting pressures on the evolution of language, learnability and expressivity. In a
typical iterated learning model, both pressures are exhibited due to the learning
bottleneck through which language is transmitted.
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