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a b s t r a c t

We invoke the Tsallis entropy formalism, a nonextensive entropymeasure, to include some
degree of non-locality in a neural network that is used for simulation of novelword learning
in adults. A generalization of the gradient descent dynamics, realized via nonextensive cost
functions, is used as a learning rule in a simple perceptron. The model is first investigated
for general properties, and then tested against the empirical data, gathered from simple
memorization experiments involving two populations of linguistically different subjects.
Numerical solutions of the model equations corresponded to the measured performance
states of human learners. In particular, we found that the memorization tasks were
executed with rather small but population-specific amounts of nonextensivity, quantified
by the entropic index q. Our findings raise the possibility of using entropic nonextensivity as
ameans of characterizing the degree of complexity of learning in both natural and artificial
systems.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

As shown by Montemurro [1], Zipf–Mandelbrot law satisfies the first-order differential equation of the type df
ds = −λf q,

with its solutions asymptotically taking the form of pure power laws with decay exponent 1/(q − 1). Further modification
of the expression into df

ds = −µf r − (λ − µ)f q (now with a new parameter and a new exponent), allows for the presence
of two global regimes [2] characterized by the dominance of either exponent depending on the particular value of f . After
this formalism was applied to experimental datasets on re-association in heme proteins [3], within the framework of non-
extensive statistical mechanics [4,5], Tsallis suggested its potential usefulness in describing linguistic and neurocognitive
phenomena (see e.g. Refs. [1,6]).

Ever since, there has been growing interest within a variety of fields [7–9], including biomedical engineering and
computational neuroscience [10–15], in the non-extensive statistical mechanics based on Tsallis’ generalized entropy
Sq = k 1−∑

i p
q
i

q−1 (
∑

i pi = 1; q ∈ R), which in the limit of q → 1 (and k = kb) reduces to conventional Boltzmann–Gibbs
entropy.

The parameter q that underpins the generalized entropy of Tsallis is linked to the underlying dynamics of the system and
measures the amount of its non-extensivity. In statistical mechanics and thermodynamics, systems characterized by the
property of nonextensivity are systems for which the entropy of the whole is different from the sum of the entropies of the
respective parts. Such are usually the systems with interactions over long distances, with long memories of perturbations,
and with very often fractal or multi-fractal structural properties. Since Tsallis’ formalism is rooted on a non-extensive
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entropy, it appears to be a suitable candidate for describing systems with any kind of microscopic interactions (both short-
and long-ranged). In other words, the generalized entropy of the whole is greater than the sum of the generalized entropies
of the parts if q < 1 (superextensivity), whereas the generalized entropy of the system is smaller than the sum of the
generalized entropies of the parts if q > 1 (subextensivity).

As noted by Hopfield [16] and then applied to attractor networks by Amit et al. [17], neural network models have
direct analogies in statistical physics, where the investigated system consists of a large number of units each contributing
individually to the overall, global dynamic behavior of the system. The characteristics of individual units represent the
microscopic quantities that are usually not directly accessible to the observer. However, there are macroscopic quantities,
defined by parameters that are fixed from the outside, such as the temperature T = 1/β and the mean value of the total
energy 〈E〉. The main aim of statistical physics is to provide a link between the microscopic and the macroscopic levels of an
investigated system. An important development in this directionwas Boltzmann’s finding that the probability of occurrence
for a given state {x} depends on the energy E({x}) of this state through the well-known Boltzmann–Gibbs distribution
P({x}) = 1

Z exp[−βE({x})], where Z is the normalization constant Z = ∑
{x} exp[−βE({x})].

In the context of neural networks, statistical physics can be applied to study learning in the sense of a stochastic dynamical
process of synaptic modification [18]. In this case, the dynamical variables {x} represent synaptic couplings, while the error
made by the network (with respect to the learning task for a given set of values of {x}) plays the role of the energy E({x}).
The usage of gradient descent dynamics as a synaptic modification procedure leads then to a stationary Boltzmann–Gibbs
distribution for the synapses [18]. However, the gradient descent dynamics corresponds to a strictly local learning procedure,
while non local learning dynamics may lead to a synaptic couplings distribution different from the Boltzmann–Gibbs one
[19,20].

In the present study, we employ the nonextensive statistics theory of Tsallis to include some degree of non-locality in a
two-level perceptronmodel. This q-generalized artificial neural network is further used to simulate the novel word learning
process in two linguistically different populations of subjects. With respect to the computational simulations, our goal has
been to investigate whether novel word learning occurs in an extensive or nonextensive manner. The core of the model
is represented by a particular kind of non-extensive cost function that should induce a non-local learning rule in the neural
network. In this sense, it is possible to think of non-extensivity as a particular form of globality or non-locality, at least in
principle.

Alternatively, an implementation of a cost function that would induce a local learning rule, would cause the variation of
the synapse between any two neurons at a given time to depend only on the instantaneous post-synaptic potentials (PSP)
received by them, and not on the PSPs received by the rest of the neurons. It seems, therefore, more reasonable to assume
that the full specification of a given neural representation depends on a non-local, distributed pattern of activity, emerging
from the interaction of the constituents of whole neuronal ensembles, rather than from the activity in any particular, single
neuron [21].

Representing linguistic knowledge by the distributed patterns of activity in neural networks has a long tradition
in computational neuroscience [22–26]. More recently developed techniques for recording the simultaneous activity in
populations of neuronal cells [27,28] provide substantial evidence for the non-local, distributed patterns hypothesis.
Furthermore, there is growing evidence that neuronal populations distributed over distant cortical areas synchronize and
work in synergy as functional webs during language processing [29].

Through the reciprocal links with the language areas, ventral visual stream, and the hippocampal formation, the
anteroventral temporal cortex integrates a variety of aspects of letter-string information during processing such as visual,
lexical, semantic and mnestic [30]. Novel word learning, which depends upon the structures in the medial temporal lobe,
eventually becomes independent of these structures, relyingmore on other neocortical areas, such as those in temporal and
temporo-parietal regions (see e.g. Ref. [31] for a review). Thus, the representation of the lexical information does not remain
strictly limited to a particular area, but instead, it becomes distributed across different brain regions relevant for storing
different aspects of information such as word meanings (temporal lobe) and word sounds (temporoparietal regions). For
such reasons, it is necessary to investigate the effects of introducing non-local learning rules in neural network models
for language learning, especially where they outperform purely local neural dynamics and better fit psychological and
neuroscientific phenomenology.

A full understanding of the neural bases of learning also requires an accurate characterization of the learning processes
as they occur in behavioral experiments. Learning is generally believed to include a gradual restructuring and strengthening
of underlying connections between neural cells [32,33], which is behaviorally manifested in the gradual decrease of error
after a series of repeated learning trials. Such asymptotic behavior is usually measured by using the learning curve, which
is a plot of the magnitude or frequency of the response accuracy (or error) as a function of the number of learning trials.
The agreement that is often found between the investigations of group-averaged learning behavior and the widely accepted
neurobiological theories of individual animal learning, has causedmanyneuroscientists to use population-averaged learning
curves for comparing the asymptotic learning behavior between differently treated groups of subjects (e.g. Refs. [34,35]).
For a brief review, and an opposite viewpoint on this issue, see Ref. [36].

In the present study, two simple memorization tasks were carried out in two groups of learners with orthographically
different native languages [37–39]. Subjects monitored 5 × 5 and 7 × 6 nonbinary letter matrices for a fixed number of
seconds. Letter sequences in the matrix rows formed novel word items with very low summated type bigram frequencies
(STBFs) and sparse orthographic neighborhoods (ONs). Learningwasmeasured following each of the 10 stimulus exposures.
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The sequences of letters were learned to a criterion of two consecutive perfect recalls. By plotting the individual error
as a function of the number of successive experimental trials and then averaging the individual data over the examined
populations, we obtained two distinct average learning curves — one for shallow (regular) and one for deep (irregular)
orthography language speakers.

After obtaining empirical learning curves with human participants, we study both human and artificial novel word
learning dynamics. To this end, we employ numerical simulations of a Langevin equation based two-level neural network
model, with a non-extensive cost function. We show that the resulting learning algorithm with a non-local q-generalized
learning rule can replicate the population-specific learning behavior to a high degree. The model further allows for the
analysis of the population-specific learning efficiency, given the number of bits of random information an agent consumes
as it proceeds in a learning task.

This paper is organized as follows. In Section 2, a neural network learning dynamics with a non-extensive cost function
is introduced as the core of our language learning model. Model assumptions, parameters, and the general properties
of the resulting dynamics are presented and then analyzed in Section 3. To test the model, we collected data from two
simplememorization experiments conducted cross-linguisticallywith humanparticipants (Section 4). The results fromboth
experiments are presented in Section 5. Numerical simulations of the experimentally obtained human learning curves are
given in Section 6. Finally, the discussion of the human and artificial neural network performance is presented in Section 7,
followed by the conclusions and further research perspectives in Section 8.

2. A neural network model for novel word learning

A simplemodel of non local learning can be derived from an artificial neural network structure known as perceptron [40].
It consists of an input layer ofN binary neurons Si = ±1, and an output layer ofN analog neurons (real variables) σiε[−1, 1].
Information is allowed to flow only from the input layer to the output layer, without backwards or lateral connections. The
activation law for the output neurons is given by:

σi
[{

Sj
}]

= tanh

[
g√
N

N∑

j=1

JijSj

]

(1)

where the gain g > 0 is an arbitrary real number and
{
Jij
}
are real valued synaptic couplings, whose values are restricted by

the normalization [41]:

N∑

i=1

J2ij = N. (2)

Let us consider the general case of learning (memorizing) a set of p binary patterns
{
ξ

µ
j
}
, with j = 1, 2, . . . ,N and

µ = 1, . . . , p, where ξ
µ
j = ±1 are independent random variables with zero mean. A learning rule then consists of an

algorithm which allows for an iterative modification of the synaptic couplings, such that these couplings evolve to a final
configuration in which the network stores the input pattern associatively. In other words, starting from a random initial
configuration of the synaptic couplings (subject to the constraint (2)), the algorithm leads to a set of final values that map
every pattern

{
ξ

µ
j
}
, as well as any other state close enough, into an analog pattern

{
σj ≈ ξ

µ
j
}
, j = 1, 2, . . . ,N , which is as

similar as possible to {ξµ
j } within the present constraints.

Every iteration step can be thought of as a discretized time step of a certain continuous-time synaptic modification
process. In that case, the learning process can be described as a continuous-time dynamics for the synaptic couplings and
modelled by a set of differential equations. Assuming that the learning process can be affected by a random environment,
this leads to a stochastic dynamics, which is described by a set of stochastic differential equations. The above learning task can
be carried out by different dynamics, the most widely used being the gradient descent method [40], ruled by the following
set of Langevin equations:

dJij
dt

= −∂V
∂ Jij

+ ηij(t) (3)

where ηij(t) are Gaussian uncorrelated random variables or white noise stochastic process, that is, they satisfy 〈ηij(t)〉 = 0
and 〈ηij(t)ηi′j′(t ′)〉 = 2 T δii′δjj′δ(t − t ′) [42]; here 〈. . .〉 stands for an average over different realizations of the stochastic
process and T is a parameter that gives the amplitude of the noise. The cost function V is some measure of the deviation of
the network’s output σj({ξµ

j }) from the desired output
{
ξ

µ
j
}
, µ = 1, . . . , p. The cost function should be minimal whenever

all the input-output pairs of patterns agree. In this way the learning process is mapped into an optimization problem.
The dynamics of Eq. (3) lead, for long times, to an equilibrium Boltzmann–Gibbs probability distribution for the synaptic
couplings [42]

p({Jij}) = 1
Z
e−βV (4)
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with

Z =
∫

dµ({Jij})e−βV ; (5)

β ≡ 1/T and dµ({Jij}) is a normalized measure in the coupling space that takes into account the constraint (2). In physical
contexts, T is the temperature of a thermal bath to which the system is exposed; we will adopt the same nomenclature
here. At low temperatures T → 0, the distribution (4) is strongly peaked at the minima of V and, in this way, the dynamics
perform the desired optimization task.

The usual choices of V are extensive functions of the type V = ∑
j Vj(Jij) where the sum runs over the output neurons,

and Vj depends only on the synapses associated with the output neuron j. These kind of dynamics generate a local learning
rule, i.e., the updating of the coupling Jij depends only on the local field at the output neuron j:

dJij
dt

= −∂Vj

∂ Jij
+ ηij(t). (6)

In other words, the learning process at every output neuron is completely independent of the learning process at the rest of
neurons, as if it were isolated, in a context-independent way.

Non-local learning dynamics can be obtained by a generalization of this method [20], in which the cost function V is
replaced in Eq. (3) by a non-extensive function V defined by the map [19]

V = 1
β(q − 1)

ln [1 + β(q − 1)V ] (7)

where the index q is an arbitrary real number such that q ≥ 1; V is a monotonically increasing function of V , and therefore
it preserves its minima structure. Eq. (3) is then replaced by:

dJij
dt

= − 1
1 + β(q − 1)V

∂V
∂ Jij

+ ηij(t). (8)

These dynamics induce non-local learning rules (compare Eqs. (6) and (8)). Consequently, one has to consider the full set of
output neurons in the updating of every coupling, as can be inferred from the non-linear structure of Eq. (8). The parameter
q − 1 measures the degree of non-locality of the learning process. These dynamics lead, for long times, to a generalized
equilibrium probability distribution for the couplings Jij of the form [19]:

p({Jij}) = [1 − β(1 − q)V ]1/(1−q)

Zq
(9)

with

Zq =
∫

dµ({Jij}) [1 − β(1 − q)V ]1/(1−q) . (10)

The probability distribution (9) can be derived by optimizing the Tsallis entropy [4]:

Sq
[
p({Jij})

]
= 1

q − 1

{
1 −

∫
dµ({Jij})

[
p({Jij})

]q
}

(11)

with the constraint [5]:

〈V 〉q ≡
∫

dµ({Jij})
[
p({Jij})

]q V ({Jij}) = constant. (12)

Probability distributions derived from this entropy have recently been applied to a variety of statistical problems in cognitive
neuroscience and related areas [6,10–15,20,43,44].

In the limit q = 1 the standard gradient descent Eq. (3) and the Boltzmann–Gibbs probability distribution Eq. (4) are
recovered.

In order to simplify the analysis, let us first consider the case of learning a single pattern, i.e., p = 1. Let us denote ξj ≡ ξ 1
j ,

j = 1, . . . ,N . The performance of the learning dynamics can be quantified by the quadratic error function:

ε ≡ 1
4N

N∑

j=1

(
σj(-ξ) − ξj

)2
(13)

with

-Jj ≡





J1j
J2j
...
JNj



 -ξ ≡





ξ1
ξ2
...

ξN



 . (14)
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In the limit g → ∞ Eq. (13) gives the Hamming distance between the input and the output patterns, -ξ and -σ (-ξ)
respectively [20]. The relevant quantity to be compared with the experimental results is the time evolution of 〈〈ε〉〉, where
〈〈. . .〉〉 denotes a double average over the initial conditions and the realizations of the noise.

One choice for the cost function V is given by:

V =
∑

j

(
1 − λj

)2
Θ

(
1 − λj

)
, (15)

where the stability parameters λj are defined as λj ≡ ξj-Jj.-ξ/
√
N [45] and Θ(x) is the Heaviside step function, i.e., Θ(x) = 1

if x ≥ 0 and Θ(x) = 0 otherwise. Other choices of V give similar results, but this one has been shown to better reproduce
the basic features of the learning curves obtained in the kind of experiments addressed in this work [20,44].

The error function (13) can be expressed in terms of the stability parameters as

ε = 1
4N

N∑

j=1

[
1 + tanh2 (

gλj
)
− 2 tanh

(
gλj

)]
, (16)

where time evolution of the stability parameters is obtained from Eq. (8) as follows:

dλj

dt
= − 1

1 + β(q − 1)V
∂Vj

∂λj
+

√
Tη′

j(t) (17)

where

η′
j(t) ≡ 1√

TN

∑

i

ξiηij(t)

is also awhite noisewith 〈η′
j(t)〉 = 0 and 〈η′

j(t)η
′
j′(t

′)〉 = 2δjj′δ(t−t ′) and Vj =
(
1 − λj

)2
Θ

(
1 − λj

)
. Starting from different

initial random configurations for λj, 〈〈ε〉〉 can be calculated as a function of time by solving Eq. (17) numerically.
The initial probability distribution for the synaptic couplings determines the value of 〈〈ε(0)〉〉. If no a priori knowledge can

be assumed, then the initial values of the-Jj will be uniformly distributed in theN-dimensional hypersphere of radius
√
N; in

that case it is easy to see that the initial values of the λj’s are Gaussian distributed, with mean value zero and variance one.
This, in turn, implies an initial error that is 1/4 ≤ 〈〈ε(0)〉〉 ≤ 1/2 depending on the gain parameter g , where the lower bound
〈〈ε(0)〉〉 = 1/4 is obtained in the g → ∞ case. However, in previous experiments [44], it was observed thatmany individuals
memorizedmore than 50% of the information content of the displayed letteredmatrix already in the first experimental trial,
which considerably reduced the average initial error with respect to the expected one for an unbiased, randomly generated
matrix of letters. In the presentmodel, this corresponds to an initial error smaller than 1/4. Such ‘‘a priori’’ knowledge can be
introduced in the model as a positive bias in the initial probability distribution of the stability parameters (or equivalently
in the synaptic couplings) 〈λj〉 = a > 0. This new parameter a measures the degree of deviation in the average previous
knowledge with respect to a completely random pattern in the displayed stimulus. Both a and g parameters fix the initial
error. In order to reduce the number of free parameters, wewill set g = 0.999 in all the analysis (which accounts for a sharp
distinction between +1 and −1 values in the binary outputs) and use only the parameter a to fix the initial error.

In the case of learning p > 1 patterns, for any pattern µ one must introduce a set of stability parameters {λµ
j }, with

j = 1, . . . ,N and µ = 1, . . . , p + 1. Instead of the set of N equations given by (17) we will have a set of (p + 1) N coupled
Langevin equations. However, the learning process can be implemented one pattern per time (on-line learning). In other
words, one can consider the problem of learning one single pattern, once the network has already learnt p previous ones. In
the case of uncorrelated patterns, it can be shown that for N 0 p these equations decouple and the stability parameter for
each pattern evolves independently of the others [20]. So, in such a limit we recover Eq. (17).

3. General properties of the model

We now present general properties of the numerical solutions of Eq. (17), which can be solved by standardmethods [46].
In Fig. 1 we show the typical behavior of 〈〈ε(t)〉〉 (learning curves), for different values of q and typical values of N , a and T .
We observe that learning is slower when q increases above unity, i.e., for non-local learning, as expected.

In Fig. 2 we show the influence of increasing N on the learning curves. We see that learning also becomes slower when
the number of neurons increases, as expected. Moreover, after comparing Figs. 1 and 2, it seems that the effects of q and N
are very similar. We can quantify the effect of both q and N on the learning process, by defining characteristic learning time
τ , such that for t > τ the average learning error 〈〈ε(t)〉〉 becomes smaller than 10% of the initial error (the value of 10% is
arbitrary and the results do not depend on this choice).

In Fig. 3, we show τ (N, q) vs. the product (q − 1)N in a log–log plot for different values of q. We see that the learning
time scales as τ (N, q) ∼ f ((q − 1)N), where the function f (x) behaves asymptotically as f (x) ∼ xα for large values of x.
The linear fitting of Fig. 3 for large values of (q − 1)N gives an exponent α = 1.15 ± 0.05.
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Fig. 1. Average error versus time (arbitrary units) for N = 200, T = 0.001, a = 0.5 and different values of q.

Fig. 2. Average error versus time (arbitrary units) for q = 1.0050, T = 0.001, a = 0.5 and different values of qN .

Fig. 3. Learning time τ versus (q − 1)N for different values of q (T = 0.001 and a = 0.5).

4. Method (Experiments 1 & 2)

To test the model against the empirical data, we conducted two simple memorization tasks in two orthographically
different language populations. By monitoring and simulating the evolution of learning states in linguistically different
subjects, a set of different q valuesmay be assigned to the corresponding population-averaged learning curves,whichmay be
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of valuable practical importance when classifying the varying degrees of complexity of learning found among linguistically
different populations.

4.1. Basic assumptions

The ability to repeat a nonword after only a single exposure has been shown to be a very good predictor of language
learning ability in children [47,48] and adults [49]. However, early investigations of the effects of orthographic depth
on language processing (e.g. Ref. [37]) showed that the letter-string stimuli are differently processed in orthographically
different language populations, with particularly pronounced differences between shallow and deep orthography. When
asked to read words and non-words, deep orthography language speakers took longer to begin reading each stimulus,
and were much slower when generating pronunciations for novel letter-strings, compared to shallow orthography
language speakers who were much faster in both word and nonword reading tasks [50]. The frequently found better
recognition performance in a shallow orthography is usually attributed to the simple and isomorphic grapheme-to-
phoneme connections, as opposed to ambiguous, many-to-one grapheme-to-phoneme relations in orthographically
complex languages such as English.

Similarly to previous studies (e.g. Refs. [37,39]), we assume here that behaviorally, different accuracies and learning
rates are expected for orthographically different adult linguistic populations, when novel word learning is considered, with
speakers of a shallow orthography language performing significantly better than deep orthography language speakers.
We expect a significant group-difference in the initiation of novel word representations in memory (due to different
initial biases). Furthermore, the final mastering (i.e. memorization) of novel words should generally occur later in a deep
orthography.

We attribute the expected differences between orthographies to their different abilities in establishing a system of
mappings between the letters or graphemes ofwritten novelwords and the corresponding realizable phonemes.We assume
that thesemappings are faster establishedwhen the underlying orthographic system ismore regular and consistent, ideally,
when letters and respective sounds are in a one-to-one or bijective mapping-like relationship [38,51]. Thus, the ease of
generating the pronunciation for novel words due to the faster letter-to-soundmapping ability might considerably enhance
the learnability of novel word forms.

Previous studies showed that younger learners adopt different strategies when dealing with a deep alphabetic
orthography, compared to the strategies that children usewhen learning amore transparent orthography [52]. Similarly, we
askwhether the cross-linguistic differences in orthographic depth also affect the choice of strategies employed during novel
word learning in adults. More importantly, wewere interested in knowing to what extent the observable learning strategies
can informus about themore latent aspects of learning (e.g., about the nature of native language-basedmemorization skills),
but also how the degree of efficiency of a given learning strategy can be quantified in a meaningful way. After increasing the
information amount in the stimulus, as in Exp. 2, we analyze towhat extent speakers of different language orthographies are
able to reduce the degree of nonlocality of their strategic learning behavior in order to maintain constant, and thus, faster
learning rates.

We note in passing that the aim of the present experiments was not to investigate the effects of orthographic depth
by using a conventional ANOVA design. Various cross-linguistic aspects of the roles of orthography in language processing
have already been widely investigated within such contexts (see e.g. Refs. [37–39]). Previous research assessed the effects
of orthographic depth within a variety of alphabetic and non-alphabetic languages, but mainly in the domain of reading
acquisition (see Ref. [53] and references therein). However, little is known about the influence of this variable on novel
word learning in adults. We therefore aim to test for differences in rates of memorization of novel word stimuli among
adult subjects speaking languages which vary significantly in orthographic complexity. Moreover, we aim to provide a
novel, neural network based quantification and simulation of the observed cross-linguistic differences by using the model
presented in Section 2.

With exception of only a few proto-attempts [54,55], this orthographically-based variation has not yet been submitted to
a detailed computational investigation (see Ref. [39] for details). The present studymakes further experimental comparison
with an elaborated computational analysis in the domain of adult nonword learning, but now between the two writing
systems placed more extremely on the dimension of orthographic depth, namely, a highly transparent, regular script
(Croatian) and a deeply opaque, irregular English script.

4.2. Participants

A total of 103 students at theUniversity of Graz participated in the experiments (7 participantswere excluded due to their
failure in following the exact procedural requirements). In the remaining sample, N = 48 were native speakers of English
(as a deep orthography language), and the rest of N = 48 participants were native speakers of Croatian (as a shallow
orthography language). All observers reported having normal or corrected-to-normal vision and never suffered from any
type of a language-specific impairment according to self-report.
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Table 1
Nonwords used in Exp. 1.

Stimuli Neighbors STBFs

GLNVS 0 962 (GL LN NV VS)
SLGNG 2 4271 (SL LG GN NG)
CRMST 2 5824 (CR RM MS ST)
BLMNK 2 2265 (BL LM MN NK)
STRLT 2 6871 (ST TR RL LT)
SLANG 3 10713 (SL LA AN NG)
START 4 11704 (ST TA AR RT)

Table 2
Nonwords used in Exp. 2.

Stimuli Neighbors STBFs

KVISRT 0 5728 (KV VI IS SR RT)
LPTRIM 0 6716 (LP PT TR RI IM)
SMNVKI 0 1405 (SMMN NV VK KI)
RDSPOB 0 3965 (RD DS SP PO OB)
KGHABI 0 4565 (KG GH HA AB BI)
OBGRAB 0 6237 (OB BG GR RA AB)
VKNABS 0 3396 (VK KN NA AB BS)

4.3. Apparatus & stimuli

Visual stimuli were presented on a 17’’ CRT gamma-corrected color monitor (SRR 85 Hz) and controlled by a MATLAB
programbased on PSYCHTOOLBOX [56] using a PC (AMDAthlon 1.6 GHz) as the host computer. All letters in the displaywere
black on a white background and were viewed binocularly in a darkened room at a normal viewing distance. For the 5 × 5
matrix type used in Exp. 1, the stimulus set consisted of uppercase consonant letters chosen randomly and independently
from a total of 19 letters. The resulting information amount in the matrix was 106.2 bits. Vowels were omitted in order to
minimize the possibility of observers interpreting the letter-strings aswords. To illustrate the difference between the stimuli
used in Exp. 1 and the real, existing English words and their properties, Table 1 shows nonword stimuli used in Exp. 1 and
in addition, it lists two orthographic neighbors of the experimental stimuli SLGNG and STRLT, namely, SLANG and START.
These words are characterized by the clearly larger neighborhood size and higher summated type bigram frequencies when
compared to the nonword stimuli used in the experiment.

In the 7 × 6 matrix (Exp. 2), the number of alternative letters was 22 (vowels A, I, and O were added), so that the
corresponding information amount was 42 ∗ log2(22) = 187.3 bits. The three added vowels were used to enhance the
pronounceability of now longer strings of letters (6 per row). Some letters were not only excluded for reasons of information
amount reduction, but this exclusion had additional psychological plausibility — all participants were told that O, when it
occurred, was the letter ‘‘O’’ and was not considered a number (zero); Q was excluded from all trials because it is confusable
with O, just as X is confusable with K or Y. Similarly, the letters F and W were excluded due to their feature overlaps with
the letters E and V. On the other hand, X and Y do not exist as letters in some shallow orthography languages (for instance
in Croatian).

WordGen 1.0 software [57] was used for stimulus generation and analysis. Tables 1 and 2 display (sub)lexical properties
of the nonword stimuli used in Exps. 1 and 2 (the number of neighbors and the summated type bigram frequency, STBF, in
English). The absolute STBF of the stimuli across languages is of course different, as expected by their different orthographic
and phonological structures.

4.4. Procedure

All participants were tested individually. Before engaging in the tests, they were given a brief introduction on purposes
of the study. They were familiarized with experimental items and the procedure until they felt that the protocol had been
mastered. In Exp. 1, a 5 × 5 matrix of letters was presented during a fixed number of seconds (8 s). Then the screen
became uniformly grey, to avoid masking effects that might have impaired the processing of the stimuli in the display.
The participants were then required to reproduce the letters in an empty grid but were not allowed to exceed a total of 60 s
in Exp.1 and 80 s in Exp. 2 for their reproductions. After a rest interval of 10 s following the written reproduction of items,
the 5 × 5 matrix was shown again with the same stimulus parameters. The same procedure was repeated until all stimuli
were reproduced correctly in two successive exhibitions. However, thematrix was never shownmore than 10 times. In Exp.
2, the same basic experimental procedure was used as in Exp. 1, but now with 7 × 6 letter matrices and longer stimulus
exposure times (10 s). Finally, following the last stimulus presentation, participants were asked to briefly describe how they
proceeded to memorize and reproduce the presented stimuli.



740 T. Hadzibeganovic, S.A. Cannas / Physica A 388 (2009) 732–746

Fig. 4. Average error versus time (N of trials) for shallow (a) and deep (b) orthography observers associated with the learning of the 5× 5 matrix (Exp. 1).

Fig. 5. Average error versus time (N of trials) for shallow (a) and deep (b) orthography observers associated with the learning of the 7× 6 matrix (Exp. 2).

5. Results (Exps. 1 & 2)

Fig. 4 shows the average error associated with the learning of the 5× 5matrix of letters (Exp. 1), as a function of number
of successive trials for both shallow (a) and deep orthography (b) observers.

In Exp. 1, the item recall improved with each successive stimulus presentation from 33.8% at 1st trial, to 53.6% at 3rd
trial, and to 89.9% at 6th trial (shallow orthography), and from 14.5% at 1st trial, to 31.7% at 3rd trial, and to 77% at 6th trial
(deep orthography).

On average, items were less well recalled in a deep orthography, than were in a shallow orthography group. A matched
pairs t-test showed that the 4.83 letters (SD = 2.42) mean group-difference in the initial trial was significant, t(47) =
13.80; p < .001, yielding the better average performance of shallow orthography language speakers. Thus, the learning
curve associated with the performance of shallow orthography observers is shifted with respect to the other group (deep
orthography) in the initial trial by 20.5 bits in the 48 participants data of Fig. 4. This difference between orthographies
remained significant in all subsequent trials for the 5 × 5 matrix of Exp. 1. Detailed trial-by-trial comparisons further
indicated that the learning generally progressed slower in a deep, relative to a shallow, orthography.

Fig. 5 shows the average error associated with learning the 7 × 6 matrix of letters (Exp. 2), as a function of number of
trials, again for both orthographies.

In Exp. 2 (7×6matrix of letters), the initial errorwasmuch larger (relative to Exp. 1) for both groups, as expected. Another
matched pairs t-test revealed that the average initial error group-difference of 3.06 letters (SD = 3.39) was significant,
t(31) = 5.09; p < .001, with shallow orthography observers again performing significantly better than deep orthography
observers. The learning curve associated with the performance of shallow orthography observers is shifted with respect
to the other group (deep orthography) for the initial trial by 13.6 bits in the 32 participants data of Fig. 5. The average
difference in performance between the two groups considerably increased after the first trial and remained significant in
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Fig. 6. Mean error versus rescaled time tm . Shallow (a) and deep (b) orthography data fittings, Exp. 1.

Fig. 7. Mean error versus rescaled time tm . Shallow (a) and deep (b) orthography data fittings, Exp. 2.

the subsequent trials. The highest mean error group-difference of 11.90 letters (SD = 6.19) was observed in the seventh
trial, t(31) = 10.86; p < .001. Learning was again found to be generally slower in the deep orthography group.

It was further observed that, as the information amount increased in Exp. 2, the measured average error after the initial
trial decreased almost linearly with the learning time, i.e., with an increasing number of stimulus presentations, and this
was found in both groups.

6. Numerical Simulations

Figs. 6 and 7 compare the rescaled empirical findings (from Exps. 1 & 2 for both groups of observers) with the theoretical
learning curves 〈〈ε〉〉 versus t/tm for different values of a, T , and q, and for the cost function V = ∑

j
(
1 − λj

)2
Θ

(
1 − λj

)
.

Dots and triangles in the plots correspond to the experimental data, i.e., averaging over 32 and 48 individuals. Since the
microscopic time scale of the experiment is not accessible, we needed to rescale the time appropriately for both the
experimental and the neural network data, in order to make them comparable. We therefore defined, for every learning
curve, a characteristic time tm, as the time forwhich themean error decays e.g. to half of itsmaximumvalue. This is expressed
as 〈〈ε〉〉(tm) = 1

2 〈〈ε〉〉(0) and we use tm as the time unit.
Both a and g parameters fix the initial error. In order to reduce the number of free parameters, we set g = 0.999

throughout the analysis (which accounts for a sharp distinction between +1 and −1 values in the binary outputs) and
use only the parameter a to fix the initial error. The values of T can be bounded by noting that the learning curves decay
monotonically with t . Hence, the minimum value of the experimental curve can be taken as an upper bound for the
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Fig. 8. Comparison between individual performances (left column; the abscissa is the number of learning trials) and perceptron performances (right
column; the abscissa is the number of iterations) for different initial conditions and sequences of the random noise. The parameters of the perceptron were
chosen as those that closely match the particular individual performance.

asymptotic value of 〈〈ε〉〉 at t → ∞. This value can be calculated numerically as a function of T , from the equilibrium
distribution (9).

The best fitting learning curve for the shallow orthography observers’ data (Exp. 1) was obtainedwith the gain parameter
g = 0.999, a = 0.65, T = 0.00001, and q = 1.0001. The performance of deep orthography observers in Exp. 1 was best
fitted by the model with the following parameter values: g = 0.999, a = 0.45, T = 0.001, and q = 1.01.

The empirical learning curve obtained from Exp. 2 with shallow orthography observers was best fitted by the model
with the parameter values: g = 0.999, a = 0.72, T = 0.00001, and q = 1.0001. The corresponding learning curve for
deep orthography observers’ performance in Exp. 2 was best characterized by the following parameter values in the model:
g = 0.999, a = 0.5, T = 0.001, and q = 1.01.

The smaller value of the a parameter (initial bias) in the English observers’ case accounts for a larger initial error (due to
smaller pre-knowledge); in mathematical terms, that means a smaller bias in the initial distribution of the synapses (more
randomness). The larger value of T accounts for a larger relative error at the end of the tail, and the larger value of q accounts
for a larger degree of non-locality (less efficient).

Finally, in Fig. 8 we show that not only the experimental average learning error, but also individual performances are
qualitatively well reproduced by the perceptron model.
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7. Discussion

Learning a list of n items usually takes a time t(n), which increases more than proportionately with n. This was one of the
first scientific observations made in studies of human memory. Consistently with that, our simulation results provide some
insight into how learning strategies can contribute to modify the effective learning time. That is, our model predicts that the
learning time scales as τ (N, q) ∼ f ((q − 1)N), where the function f (x) behaves asymptotically as f (x) ∼ xα for large values
of x. With the linear fitting presented in Fig. 3 for large values of (q − 1)N we obtained an exponent α = 1.15 ± 0.05. This
dependency of the learning time on q and N through the product (q − 1)N can be easily interpreted: to maintain the same
learning rate with an increasing information amount (or number of bits) N in the learning task, the degree of non-locality
of the learning behavior must be reduced by the same proportion.

Furthermore, similar effects of q and N on learning were observed. The learning curves exhibited, for all values of q, an
exponential decay for long times. For short times, the qualitative behavior changed drastically when q departed from unity,
showing a slow decay for q > 1, even for values near to one. Moreover, for q = 1, the learning curve was a convex function
(positive curvature) for all t while, for q > 1, the curves were concave at short t , changing their curvature at intermediate
times.

Thus, we found that learning was slower when q increased above unity, i.e., for non-local learning, as expected. These
effects can easily be understood by looking at Eq. (8). For short times, the mean value of the cost function V is relatively
high, and the non-local factor [1 + β(q − 1)V ]−1 diminishes (for q 2= 1) the driven effect of the gradient term. As the
system evolves V → 0 and 1 + β(q − 1)V → 1; therefore, for long times, the dynamics becomes the gradient descent one
and 〈〈ε〉〉 presents the q = 1 exponential decay.

To test the model introduced in Section 2, we employed two simple memorization tasks, showing that briefly displayed,
novel letter-strings, are differently well recalled by English native speakers compared with students who learned Croatian
as a first language. The results of Exps. 1 and 2 supported the assumed difference in the letter-string memorization ability
between the investigated groups. Learning was thus found to progress considerably slower in a deep relative to a shallow
orthography, and this slower learning dynamicwas additionally characterized (quantified) in themodeling part of our study,
by the higher values of the entropic index q, that were necessary for fitting the English learners’ data.

Our results showed that, at short times, the learning dynamics induced by an extensive cost function (local learning
rules) is very different from that induced by a nonextensive cost function (non-local learning rules). The excellent agreement
with the experimental data is quite remarkable, especially if we consider the fact that the theoretical learning curves were
reproduced with an extremely simplified model (a simple, two-level perceptron with a nonextensive cost function), far
removed from the complexity of a multi-level non-linear dynamic system such as a human brain.

However, we showed that for the same range of tasks, humans performed similarly to non-extensive two-level
perceptrons. It seems therefore that some aspects of the learning dynamics in biological systems could be independent of the
detailed microscopic structure of the neural network, depending more on some overall properties. In this sense, some kind
of universality probably exists in these processes, similarly to that appearing in critical phenomena, where the asymptotic
behavior ofmost relevant variables can essentially be determined by a fewmacroscopic parameters [58]. Our results indicate
that the non-locality of learning rules might represent one such universal property necessary for understanding learning
processes in biological systems.

In the experiments with human subjects, the process of novel letter-string memorization was found to be of a different
order of duration for orthographically dissimilar languages, and carried out with different degrees of nonextensivity. We
attributed these expected differences in processing between orthographies to their different abilities in establishing a
system of mappings between the letters of written novel words and the corresponding, realizable phoneme sequences.
According to self-reports after both experiments, shallow orthography speakers could easily generate pronunciations for
most letter-strings, quite differently fromdeep orthography learnerswho experienced difficultieswhen trying to pronounce
the displayed stimuli, and to memorize them as whole word-like units.

In both populations, parallel to letter-string memorization, most individuals also gradually updated their strategic
behavior. Thus, subjects learned both the strategy and the stimulus itemswithin a given strategy. In fact, it is rather difficult,
if not impossible, to differentiate between the processes of letter-string memorization and strategy acquisition. Indeed,
on several occasions, it was observed that the error in later trials was larger than the error in the earlier trials, thereby
contradicting the asymptotic behavior of the learning curve. As we could infer from individual self-reports, such rather
unexpected behavior occurred whenever subjects tried to dedicate a considerable amount of time to the selection of a
proper memorization strategy, rather than to the stimulus memorization process itself.

Reducing the number of bits of random information a learner consumes in the learning process while meaningfully
extracting (classifying and/or clustering) the input information is the first sign of a strategic learning behavior. For instance,
by means of chunking, many subjects decreased the total number of items held in memory by increasing the size of each
single item. However, relying solely on one type of strategy, especially when information amount in the stimulus increases,
is usually inefficient. The application of non-local learning strategies (which are generally less efficient) might then become
necessary. In such cases, larger letter matrices need to be decomposed into several different subpart units on the basis of
more global and non-linguistic factors.

As we learned from individual self-reports following the experiments, a variety of elementary shapes that could be
extracted from the visual stimulus were considered for a non-local visual strategy development (e.g., extraction of letters
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in different locations forming a T or L, same letters aligned, columns forming visually better global shapes than rows, etc.).
Thus, subjects had to look more for global patterns in the stimulus, because a local strategy did not pay off as the stimulus
size increased.

We showed that less efficient and more global strategic behavior, as inferred from English learner’s data, was
characterized by considerably higher values of the non-extensive entropic index q. As q departed only slightly above unity, as
in the case of Croatian shallow orthography learners, it corresponded to somewhat slower learning dynamics but also higher
ability for devising efficient, particularly language-based, memorization strategies. Such slightly global learning behavior,
characterized by only small departures of q fromunity, seems to allow for introducing errors in some neurons in the network
in the hope of decreasing the overall error. On the other hand, greater than just ‘slight’ departures of q from unity (as in the
case of English learners), correlated with much slower learning dynamics but also with lower ability for devising efficient
memorization strategies.

Our modeling results related to the Exp. 2 data in both orthographies, showed that the average errors corresponding to
the first experimental trial performance were not successfully fitted by the model. We also noticed that this deviation of
the simulated curve from the empirical one for the first trial was more pronounced in the deep orthography data than in
the data obtained with shallow orthography observers. This difference between the first (not fitted) and the second (and
subsequent) trial performance (well fitted) in Exp. 2, can be viewed as a state transition from a more local to a more global
learning, which becomes necessary as the information amount in the stimulus increases, as was the case in Exp. 2. When
facing larger letter matrices, individuals were able to remember only a few items in the first trial (the large initial error
is systematic), which was most likely caused by memorizing individual letters in a local, letter-by-letter fashion. After the
second trial, participants enter into a different regime, with a background of memorized letters and an initiation of a more
global learning strategy.

It seems that this transition is characterized by an intellectual effort of a learner to analyze the lettered matrix in detail,
find out what is peculiar to it, detect privileged letter sequences/rows, determine the relative positioning of the different
parts or whole rows of letters in the display, etc. This state transition is also the period when the resources of long-term
memory are mobilized, when particular criteria are provided with which the randomly generated matrix of letters can be
characterized. With the successive increase of trials, the number of readily available criteria increases and the problem
becomes one of selecting the strategy among a number of different available learning strategies.

Our findings support the orthographic depth hypothesis [37,39,53], and additionally address all of the three critical
components of a theory of language acquisition [59]: We have analyzed the relevance of the initial state of knowledge
(i.e., initial linguistic bias), the character of the strategic mechanisms responsible for the dynamics of novel word
memorization, and the role of the novel input in the initiation of the learning process. We have seen that different initial
biases lead to clearly different initial representations. Most importantly, we found that the adult novel word learning was
highly influenced by prior linguistic experience. It seems that adult, linguistically well experienced learners, tend to detect
and extract from the input stimulus what the structure of their native language tells them is the most relevant aspect of the
randomly generated, novel linguistic pattern. In this sense, our results fit well with the Neural Commitment Theory [59–61]
according to which any future language learning remains affected and directed by the initially acquired native-language
information. As a consequence, previously established and frequently activated neural representations start to work as
perceptual magnets [62] or attractors [63]. Thus, a priori linguistic knowledge alters a learner’s perception of language [64],
and we showed that this particular bias can enhance the learnability of novel, randomly generated letter-strings after only
a few exposures.

8. Conclusions

In the present study, we proposed a Tsallis’ statistics-based generalization of the gradient descent dynamics as a learning
rule in a simple perceptron. The resulting model’s equations were solved numerically for different values of an index q and
for a particular cost function. We have demonstrated that even such a simple artificial device can learn unfamiliar novel
words on the basis of a particular nonextensive dynamical equation, and that this device can mimic human and, moreover,
population-specific learning behavior to a high degree.

When applied to experiments inwhich shallow and deep orthography language speaking adults were asked tomemorize
unfamiliar letter-strings, the model was able to account for many aspects of the experimental results, including the time-
course and outcome of the learning, but also how it varies as a function of language orthography, andmoreover, as a function
of the initial linguistic knowledge of tested subjects.

The differences in strategic development found in our study can be understood in terms of structural differences in
the relationship between orthographic and phonological information between the two analyzed languages. For instance,
the relationships between graphemes and phonemes in a shallow orthography are more or less isomorphic, so that one
grapheme is always connected to one phoneme, and vice versa. On the other hand, in a deep orthography like English,
one grapheme may be linked to several phonemic alternatives and a cluster of phonemes may be connected to several
orthographic clusters. Consequentially, when a pronunciation needs to be generated for a given novel word in English,
several phonemic alternatives may compete for activation causing processing delays that might result in generally slower
learning dynamics. Thus, we argue that the interlanguage differences we found in the two memorization tasks are most
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likely attributable to their different efficiencies in establishing a system of grapheme-to-phoneme mappings, differences
that derive from their orthographic depth.

The work presented here, in its conception, was inspired by the study of Tsallis et al. [6], but now conducted with more
complex, nonbinary stimuli and in another, linguistic domain, with different presentation times, including two linguistically
different populations of tested subjects and a more sensitive way of measuring and evaluating the amount of acquired
information.

We showed that the optimality of learning across languages indeed varies as a function of language regular-
ity/consistency [65]. Thus, the more regular a given language, the faster the acquisition of novel, randomly generated
letter-string items. This phenomenology could be highly important for further studies of e.g., second, third or bilingual and
multilingual language development [66].We further demonstrated that for a specific novelword learning task, human learn-
ers tend to perform similarly to very simple, but slightly ’non-extensive’ neural networks. In other words, the experimental
learning curves were best fitted by the non-extensive q > 1 model instead of the more efficient q = 1 extensive one (see
Figs. 6 and 7).

The experiments presented here are still open to further interpretations. One can still proposemany possible hypotheses
about what is happening to cause the shape of the learning curve in the process of novel word learning and ask whether
nonextensivity generally plays a universal role in language learning. However, our study is a first step towards a more
complete work on this topic. The simulations with the nonextensive neural networkmodel demonstrate that a considerable
plurality of language learning processes can result from a very few and simple interactivemechanisms depending upon only
several macroscopic parameters.

With regard to the future modeling, it would be interesting to try studying the much more difficult problem of a
multilayer perceptron with a noisy local dynamics and observe whether it can lead to similar learning curves. Moreover, it
remains a challenge for future research to simulate the novel word learning processes with our model in other shallow and
deep orthography languages. It is also important to compare the results from the linguistic domain with those due to other
effects and fromother learning domains, especiallywhen non-visual or non-auditory sensorymodalities are involved during
the learning process. Besides the declarative learning of novel words, we also need to check whether our model generalizes
to other types of language learning such as implicit, procedural learning of the mental grammar.

Although we restricted the present study to the investigation of two specific languages, our neural network model is
not intended to be dedicated to any particular artificial or natural language to which we believe our conclusions are most
relevant. On the contrary, we wanted to demonstrate that the non-locality in learning arises naturally from the internal
dynamics of a learning system and its interaction with the external stimulus, but independently of the particularities of its
neural architecture.

Taken together, we have seen that our q-generalized neural network shows high sensitivity to different and, moreover,
population-specific degrees of globality of learning. Such findings raise the possibility of using entropic nonextensivity
as a means of characterizing the degree of complexity of learning in both natural and artificial systems [67–69]. As a
good indicator of learning efficiency, specified by the entropic index q, the model may be useful in developing diagnostic
monitoring tools that could be applied in a variety of learning domains.

Finally,we argue that the results and advantages of the presentedmodel span beyond learning applications, andmay help
in studying other problems in neuroscience such as neurological impairments. More specifically, our q-generalized neural
network could be used for diagnosing the degree of language impairment in dyslexic patients, with greater sensitivity and
accuracy than with many currently available methods. When compared with healthy readers, dyslexics are typically slower
and more inaccurate at translating letters into the sounds they stand for. This, however, becomes much more difficult to
measure and compare between the speakers of differently transparent language orthographies who show an equal degree
of neural impairment, but varying letter-to-sound conversion abilities [70,71]. Thus, it is a challenge for the present model
to provide a method of easily and accurately diagnosing and classifying the cross-linguistically different degrees of dyslexia
found under the same or similar brain impairment conditions.
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