Iterated learning 1

Running head: ITERATED LEARNING

Language evolution by iterated learning with Bayesian agents

Thomas L. Griffiths
Department of Psychology

University of California, Berkeley

Michael L. Kalish
Institute of Cognitive Science

University of Louisiana at Lafayette

Addressfor correspondence:

Tom Griffiths

University of California, Berkeley
Department of Psychology

3210 Tolman Hall # 1650

Berkeley CA 94720-1650

E-mail: tomgri ffiths@erkel ey. edu

Phone: (510) 642 7134 Fax: (510) 642 5293



Iterated learning 2

Abstract

Languages are transmitted from person to person and generation tatgmneia a process of
iterated learning: people learn a language from other people who ompedghat language
themselves. We analyze the consequences of iterated learning for ¢ealgpdmithms based on the
principles of Bayesian inference, assuming that learners compute aigodistribution over
languages by combining a prior (representing their inductive biases) weitevidence provided by
linguistic data. We show that when learners sample languages from thisipiodistribution,
iterated learning converges to a distribution over languages that is detdremitieely by the prior.
Under these conditions, iterated learning is a form of Gibbs sampling, a widelg Markov chain
Monte Carlo algorithm. The consequences of iterated learning are mordicateg when learners
choose the language with maximum posterior probability, being affectedthytho®prior of the
learners and the amount of information transmitted between generationsioWehat in this case,
iterated learning corresponds to another statistical inference algorithemizatof the
expectation-maximization (EM) algorithm. These results clarify the role of itédatning in
explanations of linguistic universals and provide a formal connectiondstwonstraints on
language acquisition and the languages that come to be spoken, sugtiestinfprmation

transmitted via iterated learning will ultimately come to mirror the minds of the learners.
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L anguage evolution by iterated learning with Bayesian agents

1. Introduction

Languages change as they are passed from person to persorgrargeheration to
generation. A variety of explanations have been proposed for diffaspects of language change,
as part of a growing literature on language evolution (e.g. Briscoe,; Zllx#stiansen & Kirby,
2003; Hurford, Studdert-Kennedy, & Knight, 1998). The key idea watitng much of this work is
that language change can be understood as a process of cultuudilbevavith languages
themselves being subject to evolutionary forces. Accounts of langwadigien differ in the kind
of forces they see as fundamental, appealing to analogues of the ébsmsction, mutation, and
genetic drift that appear in biological evolution. For example, accountssfng on selection
consider the consequences of a language for the “fitness” of itsexpeakhat is, their tendency to
produce further speakers of that language (e.g., Komarova, Niyogipuiak, 2001; Nowak,
Komarova, & Niyogi, 2001, 2002).

While explanations of the properties of languages based on the fithessrafghakers are
intuitively appealing, it is important to take into account the possibility that thosggpties could
be produced by other processes. In biology, the prominent role afteeleén early evolutionary
theory has more recently been supplemented by the suggestion that muetvafidtion in the
genome is the consequence of mutation and genetic drift, the forces tlhdbe fidelity with
which genetic information is transmitted from one generation to the next (Kimh@&8). In the
case of language evolution, biological transmission is replaced by cuitansimission, and in
particular, learning. Each person learns a language from the utterpramuced by other people
who were once language learners themselves. The variation introdydearbing is the analogue
of mutation and genetic drift in language evolution, and it has been suggasatanany of the

properties of human languages might simply arise from this procetsrated learning(Brighton,
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2002; Briscoe, 2002; Kirby, 1999, 2001; Kirby & Hurford, 2002y, Smith, & Brighton, 2004;
Smith, Kirby, & Brighton, 2003).

In order to study the consequences of learners learning from othraetsaKirby (2001)
introduced theterated learning modelln this model, the process of language evolution is
idealized as the transmission of languages over a sequence of discretatigms, each consisting
of one or more learners. The first learner sees some linguistic dataasuacket of utterances, and
forms a hypothesis about the language that might have produced it. Usiygothesis, the
learner generates a new set of utterances, which are provided toxtteareer as data. This
process continues, with each learner seeing data, forming a hypotra$igenerating data for the
next learner, as illustrated schematically in Figure 1 (a). Formalizing thegsaxf iterated
learning in this way makes it possible to analyze its predictions for languageyeh(e.qg.,
Brighton, 2002; Kirby, 2001; Smith et al., 2003).

Accounts of language evolution have the potential to shed light not justeotytfiamics of
language change, but on the kinds of languages we might ultimately exgezptoduced by such
a process. One of the main applications of the iterated learning model haatberpting to
explain the origins of linguistic universals (e.g., Brighton, 2002; Kirb@)20mith et al., 2003).
Human languages form a subset of all logically possible communication seheiitie certain
universal properties being shared by all languages. Some of theserpes concern the
fundamental structure of language. For example, all human languagesnapositional the
elements of utterances correspond to the elements of the events theyel@sdfita, 2001). Other
linguistic universals govern subtle and surprisingly specific aspecte grdtmmar of human
languages (Comrie, 1981; Greenberg, 1963; Hawkins, 1988).

Linguistic universals have traditionally been explained by appealing to imoatgraints
imposed by a system specific to the acquisition of language that is part aintenhgenetic
endowment (e.g., Chomsky, 1965). Universals are viewed as a matidesiathese innate

constraints. Iterated learning potentially provides an alternative explanatiggesting that
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properties such as compositionality can emerge as a consequence ofenamgtipns of learners
applying general-purpose learning algorithms. In particular, explarsatibliinguistic universals
based upon iterated learning have tended to focus on the idea that therfinitateof information
that can be communicated from one speaker to another imposes a “bottlendhk transmission
of language between generations. If particular properties of languagke it easier to pass
through that bottleneck, then many generations of iterated learning mighttalb®e properties to
become universal. For example, it has been argued that the regutdustraf compositional
languages means that they can be learned from less data, and are thlikehoto pass through
the information bottleneck (Brighton, 2002; Kirby, 2001; Smith et al., 2003).

The central role of iterated learning in language evolution suggests thetiautd attempt to
develop a deeper understanding of its implications. In particular, the [iagghnat iterated
learning with general-purpose learning algorithms might explain linguisticcuseds requires
determining the consequences of iterated learning for learners withedliffiinds of inductive
biases. Previous work has explored the influence of language acqua@itianguage evolution via
a number of avenues (Briscoe, 2002), including simulation of languageeiesaKirby, 2001;
Brighton, 2002; Smith et al., 2003) and use of formal models of populatioamics (Komarova
et al., 2001; Niyogi & Berwick, 1995, 1997a, 1997b; Nowak et al., 2ED02; Nowak, Plotkin, &
Jansen, 2000). These approaches indicate that languages withcgpegérties, such as
compositionality, can be produced by iterated learning with specific leartgogthms. However,
there are no general results indicating the consequences of iteratgiddeglar arbitrary properties
of languages or broad classes of learning algorithms.

In this paper, we present a detailed analysis of iterated learning for skendzere the
learners are rational Bayesian agents. Assuming that our learneBaysg' rule allows us to
characterize their biases through a prior probability distribution overthgses. We consider two
learning algorithms based on Bayesian inference: sampling from the ipostistribution over

hypotheses, and choosing the hypothesis that has maximum posteriabititpbin both cases,
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the consequences of iterated learning are strongly influenced by thepti® learners. When
learners sample, iterated learning results in convergence of the prob#tzlity learner speaks a
particular language to the prior probability the learner assigns to that lgagilihis convergence
occurs regardless of the nature of the languages or the amount ofvdd#dke to each learner,
indicating that iterated learning can produce systematic results in the alidencaformation
bottleneck effect. The consequences of iterated learning when Ieanagimize are more
complicated, with the amount and accuracy of the data passed betweandqaaying an
important role, but are still governed by the prior distribution assumed blg#ieers. We also
show that iterated learning with sampling and maximizing each correspond tafagethat are
widely used in statistics, providing a rich source of further formal results.

The plan of the paper is as follows. Section 2 formally defines iterated |ggeannad
presents some general results characterizing its consequencesn Sectioduces the basic ideas
behind Bayesian inference, and how these ideas apply to modeling langc@gjsition. Section 4
presents our results on the consequences of iterated learning whegréesample languages from
their posterior distributions. Section 5 considers the case where leahwse the hypothesis
with greatest posterior probability. Section 6 illustrates the predictions of ¢tbmuat by
discussing an example of iterated learning in detail: the emergence of compal#iyiocSection 7
shows how this framework can be extended to characterize the consegua iterated learning in
an unbounded population of Bayesian learners. Section 8 concludeage considering the
implications of these results for understanding language evolution andsgescef cultural

transmission more generally.

2. Analyzingiterated learning

Let D denote the set of datd, that a learner might observe, akddenote the set of
hypotheseg,, that the learner might entertain about the origins of thoselatahe case of

language learning, each hypothesis H is a language, and the datae D are a set of utterances.
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Each learner haslaarning algorithmthat specifies a procedure for choosing a hypothiesigon
observing data, and aproduction algorithnthat specifies a procedure for choosing new data
given a hypothesia. Each learning algorithm, A, defines a probability distribution over
hypotheses given dat&y 4 (% | d), and each production algorithi?,A, defines a probability
distribution over data given hypothesé%; 4(d | h). In the following analyses, we will assume that
all learners use the same learning and production algorithms.

Simulations of iterated learning are typically conducted in a setting where eaehnajion
consists of a single learner who receives data produced by the |l@éatherprevious generation
(Brighton, 2002; Kirby, 2001; Smith et al., 2003). Thus, the first leasees datd,, samples a
hypothesisi; from Pr 4(hq | do), and generates new datafrom Pp4(d; | h1). These data are
provided to the second learner, and the process continues, witttrttearner sampling a
hypothesis fromPp 4 (h,, | d,,—1), and generating new data froRb 4 (d,, | h,,). This defines a
stochastic process on the variabiigsd, . .. andhy, ho, .. ., as illustrated in Figure 1 (b).

Using this formal framework, we can be precise about the questions w a@nswer by
analyzing iterated learning. To model language change, we need tcstartbthedynamicsof
iterated learning: how the distribution oviey andd,, changes as a function of time. To evaluate
the predictions that iterated learning makes about linguistic universalssegeta understand its
asymptotic behaviomwhat the distribution ork,, andd,, will be after many generations (that is, as
n becomes large). We can answer both of these questions by analyzingahassic process
defined by iterated learning using mathematical results characterizing theidredf Markov
chains. Before outlining the relevance of these results to iterated leawengill briefly
summarize the properties of Markov chains. More detailed introductionzravided by

Rosenthal (1995), Norris (1997), and Kemeny and Snell (1983).
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2.1. A brief introduction to Markov chains

A Markov chain is a sequence of random variahlg, . . . such that
P(Un|’l}0,’U1,...,Un_1) :P(Un|vn—1) (1)

meaning that,, is independent of all of its predecessors, givgn,. We will restrict our attention
to finite Markov chains, where each state of the Markov chaiis an element of a discrete 9ét
with £ members. We will index the elements of this set usinge {1,...,k}. A Markov chain is
homogeneous P(v, | v,—1) is constant for all values of. In this case, we can fully describe the

Markov chain with éransition matrixT = (¢;;), such that
tij = P(op = i|vp-1 = j) 2)

wherei and; are states of the Markov chain. SinBév,, = i | v,—1 = j) is a probability
distribution, % ;= 1.

The dynamics of a finite Markov chain can be characterized using linearalgLet
pPo = (po;) be a vector encoding our knowledge about the initial state of the Markain clvith

poj = P(vo = j). Then we can write

P(vy=i|po) = > P(vr=i|vo=7)P(vo=7j]|po) 3)
1

= > tiypo; (4)
j=1

whereP(v; = i | pp) is shorthand for the probability that = ¢ given thatp, encodes the
distribution ofvy. If we usep; to denote the distributio®(v; = i | pg), we can write the result in

matrix form, with
p1 = Tpg (5)

being the product of the matrik and the vectopy. Similarly, we can write

pn = T"pg (6)
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multiplying by T each time we add a new variable.

One way of understanding the asymptotic behavior of a Markov chain is kdfteahe
equivalent of “fixed points”. Thetationary distributiorof a Markov chain with transition matrix
T is a distributionm such that

w=Tm (7)

meaning that the probability distribution over states at poirstthe same as the distribution over
states at point — 1. This distribution is “stationary” because once it has been reached, the
probability of a variable being in a particular state will remain constant. Drasmiinear algebra
once again, Equation 7 identifiasas aneigenvectoof the matrixT with aneigenvalueof 1. The
requirement thaEf:1 t;; = 1 means thaf is a stochastic matrix, so its largest (or “first”)
eigenvalue)\, is 1, makingn the first eigenvector dI'. A standard result in the theory of Markov
chains indicates that the asymptotic distribution over states of the chain witlagpthe stationary

distribution asn» becomes large, regardless of the initial state of the chain. More formally,

lim T'pg=m (8)

n—0o0

for any pg, implying thatlim,,_,., P(v,|vg) = 7(v,) for anyvy. The rate of convergence depends
on the magnitude of the second eigenvalug decreasing as\s| increases towards(a simple
proof is provided by Rosenthal, 1995).

Equation 8 makes it straightforward to determine the asymptotic behavior ofleoMa
chain: we need only find the first eigenvector of the transition matrix, whachbe done using a
variety of analytic and numerical methods (e.g., Stewart, 1994). Howiéeze is one caveat on
this convergence result: the Markov chain needs terjedic Markov chains with finite state
spaces are ergodic if they satisfy two conditions, béireglucibleandaperiodic A Markov chain
is irreducible if every state has a non-zero probability of ever reachiagy @ther state after some
finite number of iterations. It is aperiodic if the greatest common divisor ofitines at which it is

possible for a state to return to itselfligor all states.
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The most common way in which ergodicity is violated is through the existenceris's—
states (or sets of states) that the chain enters but never leaves (in viofati@ducibility). A
chain with multiple sinks will eventually become stuck in one of them. The probabfligntering
a particular sink will depend on the initial state, so the asymptotic independaptied by
Equation 8 does not hold. However, it is easy to check whether any firdtkdv chain is ergodic
by finding the eigenvalues of the transition matrix: a Markov chain is ergodiedfonly if it has
just one eigenvalue of unit magnitude (see Rosenthal, 1995). Even ihtleglying chains are not
ergodic, predictions can still be made about the asymptotic probability ofeliffstates, although
they require using more sophisticated tools for the analysis of Markov(@ig. Kemeny &

Snell, 1983).
2.2. Markov chains on hypotheses and data

If we can reduce a stochastic process to a Markov chain, we haveagong way towards
understanding its properties: its dynamics are specified by Equation @sasymptotic behavior
is characterized by Equation 8. We now return to the stochastic procéssdiey iterated
learning, showing that we can obtain answers to our questions aboutrtkeqriences of iterated
learning by reducing it to two Markov chains: a Markov chain on hypabkeand a Markov chain
on data.

A standard way to analyze probabilistic models is to consider the consesueihsumming
out a subset of the random variables in the model. The iterated learnind outliteed above
defines a joint probability distribution on both the data seen by learners afypiotheses they
infer, P(dy, h1,ds1, he, ...). Summing over all possible values for the data seen by each learner
defines a probability distribution on hypotheses aldh@1, hs, .. .). The dependencies among
these variables are shown in Figure 1 (c), taking the form of a Markainciihe state space of

this Markov chain is, and its transition matrix i€ = (¢;;), whose elements give the probability
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that a learner chooses hypotheisidter seeing data generated from hypothgsis

Gij = Prapa(hn =ilhn1=35)=> Pra(hn =i|d)Ppa(d|hn1 = j), ©)
deD

wherePp 4(hy, = i|d) andPp(d|h,—1 = j) are determined by the learning and production
algorithms respectively, as specified above. This Markov chain hati@nsta distribution
0 = (6;) satisfying

0=Qo (10)

or, departing from vector notation for a momeft= Zj qi;0;.

We can use a similar approach to derive a Markov chain on the data tghbyethe
learners. Summing over the hypotheses entertained by each learnéataiveaoprobability
distribution P(dy, d1, . . .) with the dependency structure shown in Figure 1 (d), being a Markov
chain ondy, d1, . . .. The state space of this Markov chairfisand the transition matriR has
elements;; indicating the probability that a learner produces d&ta- i given that they saw data
dn—1=7J,

rij = Prapa(dn =i|dn1=35) = Ppa(dn=i|h)Pra(h|dn-1 = j). (11)
heH

The stationary distribution of this Markov chaings= (p;) such thaip = Rp.

The Markov chains on hypotheses and data induced by iterated leaaminmpaised to
answer questions about its dynamics and asymptotic behavior. The poddasguage change can
be predicted using the transition matri@@sandR.. The properties of the languages produced by
iterated learning are indicated in the stationary distributasdp, providing the underlying
Markov chains are ergodic. The conditions for ergodicity have intuititerpretations in the
context of iterated learning. For example, the Markov chain on hypatheseld not be ergodic if
there existed more than one language such that once a learner had tttad$enguage every

subsequent learner would also select that language (i.e., the langiiags a sink).
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2.3. An example: Two languages

To provide a concrete illustration of the ideas introduced in the previoti®sewe will
work through a simple example of iterated learning. Following a strategy adibgtiiyogi and
Berwick (1995, 1997a, 1997b), we will consider the case wheredesare faced with a choice

between two languages; andLs. In this case, the transition maty has four elements

Q- q11 412 (12)
q21 422

whereg;; is defined in Equation 9, with = i being the hypothesis that the languagéisq;; and
g22 represent the probability that each language is faithfully transmitted freeamner to the
next, whileqs; andgq; 2 indicate failures of transmission, being the probability that a learner
acquiresL, from data produced fromh; and the probability that a learner acquitesfrom data
produced fromLs respectively.

With just two languages, it is easy to find the stationary distribution of the Meazkain.

will be a distribution over just two languages, withbeing the probability that = 1 andf, being

the probability that = 2. By the definition of the stationary distribution, we have

01 = q1101 + q1202 (13)
from which we obtain
q12
0 = —=— 14
! q12 + g21 (14)

by exploiting the fact thago; = 1 — ¢11, 12 = 1 — g22, andfy = 1 — 6. Thus, the stationary
probability of each of the two languages is determined by the relative fidelityw¥itbh those
languages are transmitted.

Finally, we can compute the eigenvalued®fSinceQ is a2 x 2 matrix, it has two (not
necessarily unique) eigenvalues. The first eigenvalugds 1, sinceQ is the transition matrix of a

Markov chain, and corresponds to the eigenvector defined by Equatiofhe second eigenvalue
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is given by

A=1-qi2—q2 (15)

and corresponds to the eigenvedtor—1)7. The second eigenvalue thus gets closerésg;

andgo; get closer to zero, slowing convergence of the Markov chain to its stayiaketribution,
because it becomes difficult to move between states. Whesa ¢o; = 0 there is no movement
between languages across generations, and both languages actkad heslanguage spoken by
thenth generation is thus completely determined by the language spoken by thesfingr. The
Markov chain is thus not ergodic, and this is reflected in the fact'that 1. This simple example
can also be used to illustrate the other way in which ergodicity can be violdted.+ ¢2; = 1,

then every generation speaks a different language from that wreckeged it. In this case, the
language spoken by theh learner is completely determined by the language spoken by the first
learner and the parity of. Applying Equation 15 giveas = —1, so the magnitude of the second

eigenvalue is)\o| = 1, consistent with the fact that the Markov chain is not ergodic.

2.4. Summary

Formalizing iterated learning makes analyzing its consequences straigintfioriihe
reduction of iterated learning to a Markov chain allows us to determine its dysamiat
asymptotic behavior by computing a transition matrix and finding its first eigéovdeor
example, in the case of the Markov chain on hypotheses, we want thiitnansatrix Q and the
probability distributiond that satisfies Equation 7. The first eigenve@aan be computed
numerically for any choice of learning and production algorithms, proviledtate spacéy, is
small or the transition matrixQ, is sparse. Stronger assumptions about the learning and
production algorithms make it possible to go beyond these general resdilidtin analytic
expressions fof. In previous work, this has been done for two simple learning algorithnmes: on
that memorizes the data, and one that has no memory at all (Komarova e0Dal. Nefwak et al.,

2001, 2002; Komarova & Nowak, 2003). However, these previoatyaas assumed that all
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languages are equally similar to one another, and only allowed a veryeadaracterization of the
biases of learners via the size of the set of languages being consittetled remainder of this
paper, we derive analytic results that apply to a broad class of leargiogthms which can
incorporate a variety of biases for arbitrarily related sets of langu&y@sanalysis is based upon

the assumption that the learners are Bayesian agents.

3. Iterated learning with Bayesian agents

Bayesian agents use a principle of probability theory, called Bayes'taiefer the process
that was responsible for generating some observed data. Assume thatex leas @rior
probability distribution,P(h), that encodes that learner’s biases by specifying the probability the
learner assigns to the truth of each hypothésis’H before seeing. Bayes’ rule states that the
probability that an agent should assign to each hypothesis after seeikgown as thg@osterior

probability, P(h | d) —is
P(d|h)P(h)

P(hld) = =50

(16)
whereP(d | h) — thelikelihood— indicates how likelyl is under hypothesis, andP(d) is the
probability ofd averaged over all hypotheses,

P(d) =) P(d|h)P(h) (17)

heH

which is sometimes called theior predictive distribution

There are several arguments for exploring iterated learning with Bayagients. First,
Bayes'’ rule is a fundamental principle of rational action in statistics andaoms (e.g., Savage,
1954; Jaynes, 2003; Robert, 1994), and is used in a variety of mddalsman cognition (e.g.,
Anderson, 1990; Chater & Oaksford, 1999; Oaksford & Chate®981%enenbaum & Griffiths,
2001). Consequently, our analyses will have a direct connectionreefonodels of learning and
decision-making that are already used to explain human behavior. Setgodthms based on

Bayesian inference are widely used for learning different aspetamgtiage in computational
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linguistics (e.g., Manning & Sdlize, 1999), and previous work on iterated learning has examined
algorithms which have a direct Bayesian interpretation, such as minimumt&sctength
(Brighton, 2002; Smith et al., 2003). Finally, Bayes’ rule makes the biadesimers explicit,
encoding those biases in a prior probability distribution over hypothesssg Bayesian agents
thus provides us with a direct way to explore the influence of the biasearofles on the
consequences of iterated learning.

We can use Bayes'’ rule to model language acquisition by assuming thatygaathesis: is
a language, and the dafaare a set of utterances sampled from the target Iang%él'gle
likelihood, P(d | h), indicates the probability of observing a particular set of utteraddethe
languagéh were the target. If we assume that the learners have accurate knowfatige
production algorithm in use, the probability they should associatediitthe target language is

is simply the probability ofl under that production algorithn®p 4 (d | h). Applying Bayes’ rule,

we have
P(h|d) = W (18)
where
Ppa(d) =Y Ppa(d|h)P(h). (19)
hert

The specific values aP(h | d) will be determined by the prioé?(h). The assumption that all
learners share the same learning algorithm (made above, to guarantaer thitarkov chain is

homogeneous) requires that all learners share the same prior.

3.1. Interpreting priors, hypotheses, and data

The standard interpretation of the priét(h), as representing the extent to which the learner
believes in a hypothesis before seeing any data is perhaps not thedydst anderstand the role
that it plays under this view of language acquisition. The prior is betteragdetermining the
amount of evidence that a learner would need to see in order to adogiicaljga language.

Thinking of the prior as expressing the amount of evidence a learnddweed in order to choose
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a particular language makes it clear how it can encode the biases ofrkearnky hypotheses with
positive prior probability will enter into consideration, and hypotheses wghéer prior
probabilities are easier to learn (requiring less evidence, and ultimatelyd&ss d

Our formal analyses will not make a commitment to the nature of the prior, thatmgges,
or the data. Consequently, they are consistent with many differentagps to modeling
language acquisition, from artificial neural network models (Rumelhartc€Mlland, 1986), in
which the hypotheses are continuous functions represented by thetsveighnetwork (MacKay,
1995; Neal, 1992), to parameter-setting models, in which hypothesesrdigurations of a small
number of discrete parameters (Gibson & Wexler, 1994; Niyogi & Berni®©06). The Bayesian
framework is not supposed to be interpreted as a statement of the mechanoistiss by which
language acquisition takes place, with learners maintaining a hypothesgsisgheir heads and
updating a distribution over those hypotheses. Rather, it@eputational levehnalysis (Matrr,
1982), as is generally emphasized in rational models of cognition (Anulet880; Chater &
Oaksford, 1999; Oaksford & Chater, 1998), focusing on the atisttanputational problem and a
method for solving that problem. So long as the actual process underlyiggdge acquisition
approximates this solution, our results will have implications for understarndingan behavior.

Finally, it is important to note that the prior distribution assumed by a learnelidhot be
interpreted as reflecting innate constraints specific to language acquiSitierqrior simply
collects together all of the factors affecting how easily a learner will comatirtin a particular
hypothesis. There are many such factors other than language-spetfie constraints: data from
other domains that is independent of the observed linguistic data givepoghiegis about the
structure of language, but nonetheless affects the beliefs that thedeatertains about that
structure; information-processing constraints, such as limitations on wamkémgory; or the
inductive bias associated with some kind of general-purpose learningthfgoEvery learning
algorithm assumes some kind of inductive bias, and this bias is essential tectss of the

algorithm (Kearns & Vazirani, 1994; Geman, Bienenstock, & Dours@21%apnik, 1995).
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3.2. Applying Bayes’ rule with just two languages

We can illustrate how Bayes'’ rule can be used to model language acquisitretuibning to
the case where learners are faced with a choice between just two l&sgag the purpose of
illustration, and in accord with previous work on iterated learning (Kirbo@@2®righton, 2002;
Smith et al., 2003), we will assume that each language is a mapping from meamingerances.
The datad consist of a set of a single input, and corresponding output, and hypotheseks are
probability distributions ovey for eachz. Thenth learner sees datd, 1 = (z,,—1,yn—1), and
then generates an outpyf in response to a new input,.

To keep the example as simple as possible, we will assume that oytparsonly take two
values, which we will denote or 1. To slightly abuse an example introduced by Quine (1960), we
might imagine that both languages contain only a single utterance — “Gavagahich is made in
response to the presence of some objegts (1), but not for othersy = 0). We will useX’ to
denote the set of objects, aggd andg, to denote the sets of values.oE X for whichy = 1 for
the language&; and L, respectively. Using to denote the subset of the valuescain which the
two languages agree, we haSe= (G; N G2) U (G1 N Go). The relationship among these sets is
illustrated in Figure 2.

Applying Bayes’ rule (Equation 18) requires us to specify the produetigarithm and
prior. We assume that the production of(any) pair involves two stages: an objecis sampled
from the world according to some distributid®(x) that is constant across the two languages, and
a learner then produces the appropriate valugwith probability1 — ¢, wheree is small (and

definitely less thaf.5).3 Consequently, we have

Px)(1—¢) ify=I(xeq)
Ppa(d= (z,y)|h=1) = (20)
P(x)e otherwise
wherel () takes the valué when its argument is true, afidbtherwise. As a prior, we will assume
thatP(h = 1) = aandP(h =2) =1 — o, where0.5 < a < 1 (i.e., both hypotheses have

positive prior probability, buf, is favored by the prior).
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The posterior distribution over hypotheses given an obsemveg) pair breaks down into
three cases. The first case is where S, and both languages make the same prediction about the
value ofy. ConsequentlyPp 4(d | k) is constant, and the posterior probability that 1 is simply
the prior probabilityr. The second case is wheres (G, — G2) andy = 1, orz € (G2 — G;) and

y = 0. The posterior probability thdt = 1 is then

(1—-¢€a
(1—ea+el—a)

P(h=1|d) = (21)

which will favor L; over L,. The third case is when the valuesyoére reversed (that is, if
x € (G1 —Go) andy = 0, orzx € (Go — Gp) andy = 1). The posterior probability thdt = 1 is then

ca+(1—¢€)(l—a)

P(h=1|d) = (22)

which will favor Ly only if e > 1 — a.

This example illustrates how the prior probability of a language can be intedgoas the
amount of evidence that needs to be seen for a learner to choose thatdan According to
Bayes’ rule (Equation 16), the posterior probability of a language is simplptinmalized product
of the likelihood and prior. If we see a set of utteranéesich thatP(d | h = 2) > P(d|h = 1),
thend provides evidence fok, over L. This is exactly the third case mentioned in the previous
paragraph, where the valuegfor the observed is consistent withl., but notL;. However, the
posterior distribution will only favor., over L, if P(d|h = 2)P(h = 2) >
P(d|h =1)P(h = 1). Thus, if the prior strongly favorg, over Ly, we need to see evidence that
is strongly in favor ofL, to even consider it a possibility. Hence the conditiorenthe observed
data have to be sufficiently unlikely under the hypothesis that the targetdgeds’Z, to

overwhelm the prior.
3.3. Summary

Bayesian inference allows us to characterize how learners shoulteupda beliefs about

hypotheses in the light of data, and makes the inductive biases of leaxpdist through the use
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of a prior distribution. However, the idea that learners use Bayes’ nds dot directly identify a
learning algorithm of the form required for our analysis of iterated legrridy our definition, a
learning algorithm has to specify the probability with which a learner selegtpatlhesis after
observing datd. In the remainder of the paper, we will analyze iterated learning using two
learning algorithms based on Bayesian inference: sampling from the ipostistribution over

hypotheses, and choosing the hypothesis with greatest posteriobitgba

4. Sampling from the posterior distribution

The simplest way to translate a posterior distribution over hypotheses inttankga
algorithm is to assume that learners sample hypotheses according to theirqugsobability.
That is,

Piamp(h|d) = P(h|d) (23)

whereP(h | d) is defined in Equation 18. This approach postulates that learners eingaf@m

of “probability matching”, with their choices directly reflecting their posterimtabution.
Probability matching is a robust phenomenon observed in human learnig(seare provided by
Myers, 1976 and Vulkan, 2000), and is commonly assumed in cognitivelmgdBResponse
probabilities are often taken as directly corresponding to posterior bililes in Bayesian models
of cognition (e.g., Anderson, 1990; Steyvers, Tenenbaum, Wagemnsm&kBlum, 2003), and a
similar assumption appears in a variety of models of categorization and ctediegibr in the
guise of Luce’s (1959) choice rule (Ashby, 1992; Ashby & Maddi893; Ashby &
Alfonso-Reese, 1995; Kruschke, 1992; Nosofsky, 1986, 1987)

Analyzing sampling from the posterior distribution can also be motivated frem th
perspective of Bayesian statistics. The posterior distribution encodesedgal of information,
which can be lost by selecting only a single hypothesis. The best way toawakeate predictions
is to use all of this information, averaging over hypotheses (e.g., Hoetiadigdn, Raftery, &

Volinsky, 1999). Thus, a learner who has seen data and wants to predict datg, should
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compute

d |dn 1 ZPCZ |h h|dn71) (24)
heH

whered,, andd,,_; are taken to be independent conditionedhof his strategy of hypothesis
averaging is widely used in Bayesian models of cognition (e.g., Ander880, Shepard, 1987,
Tenenbaum & Griffiths, 2001). While we generally assume that eachelesetects a single
hypothesis, our analysis of the Markov chain on data that results froasthenption that learners
sample from the posterior distribution also applies to the case where leaueeage over
hypotheses, since the definition of the transition maRiim Equation 11 remains the same

whetherh is sampled or summed out analytically.

4.1. The evolution of hypotheses and data

We can now formally analyze the consequences of iterated learninglataiguhe
transition matrices and stationary distributions for the Markov chains onthgpes and data. We
will consider these two cases in turn.

For the Markov chain on hypotheses, with transition mafjidefined in Equation 9, taking
0; = P(h = 1) satisfies the definition of the stationary distribution given in Equation 10, with

0 = Q#0. Specifically, we have

P(hn=1) = Y Pamppalhn=i|hn1=§)P(hn-1 = j) (25)
J
= Zzpsamp(hn:Z|d)PPA(d|hnfl :J)P(hnfl :]) (26)
j deD
= Z-Psamp n—Z|d ZPPAC”hn 1_j)P(h :]) (27)
deD J
= Z Psamp(hn =1 | d)PPA(d) (28)
deD
= Ppa(d| hy = 1)P(hy = i)
- 5 e Ppa(d) (29)
= P(hn=1)Y_ Ppa(d|h, =), (30)

deD
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where Equation 28 uses Equation 19 and Equation 29 uses Equationd 28.&8ince
Ppy(d|h, = 1) is a probability distribution oved for any production algorithn® A, the sum in
the last line evaluates tq providing our result.

The stationary distribution of the Markov chain on hypotheses is thus thedistoibution.
Using the results on the convergence of Markov chains summarized ini$2ctichis gives a
simple characterization of the asymptotic behavior of iterated learning: thalpifiy that a
learner entertains a particular hypothédsigill converge to the prior probability of that hypothesis,
P(h), as the number of learners in the chain increases. Thus, in the casgudidgnevolution, the
probability that a learner speaks a particular language will converge firittrgprobability of that
language, and the distribution over languages will directly reflect the tivéugiases of the
learners.

An analogous result can be obtained for the Markov chain on data. &trathsition matrix
R defined in Equation 11, taking = Pp4(d = i), the prior predictive distribution specified in
Equation 19, satisfies = Rp. Specifically, we have

Ppa(dn =) = Y Pamppa(dy =i|dn1 = j)Ppa(dn1 = ) (31)
J

= 23" Praldy =i [h)Panp(h | dns = )Praldia =j)  (32)
Jj heH

_ oy Praldas = | h)P(h) i
= ;};Ppmn—wh) Pl =gy Traldii=5) (39)

= > > Ppaldy =i|h)Ppa(dn_1 =j|h)P(h) (34)
Jj heH
= > Pra(da=i|h)P(h)Y_ Ppa(dn—1=j|h) (35)
heH J
= Y Ppa(dn =i|h)P(h), (36)
heH
where Equation 33 uses Equations 23 and 18 and Equation 35 usest tthetf&y 4 (d,—1 = j | h)

sums tol over alld,,—;. The result is the definition aP(d,, = ¢) from Equation 19.
This analysis of the behavior of the Markov chain on data complements alys#nof the

Markov chain on hypotheses, indicating that the stationary distribution isrithiegpedictive
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distribution. Consequently, the probability that a learner producesidaiaverges to the

probability thatd would be produced by sampling a hypothesis from the prior and then sampling
data according to that hypothesis. In the case of language evolution, thisiet the distribution
over utterances produced by a learner will ultimately be the distribution wédvexpect if

learners were simply sampling languages according to their prior.

The stationary distributions of these two Markov chains indicate that itereadeuire
converges to the prior when learners sample from their posterior distrisut#fm intuitive
explanation for this result is that the inference made by each learnedpscanother opportunity
for the prior to affect the distribution over hypotheses. The data sedmelfirst learner or the
hypothesis they entertain will affect the conclusions drawn by the nextefarners, but is
ultimately only a single piece of information, while the prior asserts its effectch &eration.
Thus, the distribution over hypotheses should move closer to the priormbritegation. Since the
only distribution over hypotheses that is invariant under this influence isrtbeitself
(demonstrated formally through the fact that the prior is the stationary distribior the Markov
chain on hypotheses), we should expect that iterated learning will remiiatalistribution once it

has been reached.

4.2. Iterated learning by sampling and the Gibbs sampler

A deeper formal explanation for the consequences of iterated learainigecobtained by
noting a correspondence between iterated learning and a class ohodedgorithms used in
Bayesian statistics. This requires considering another way of redu@rgjdbhastic process that
iterated learning defines on both hypotheses and data to a Markov dhaachoose to group the
hypothesis inferred by a learner and the data generated by that ledgmaisingle variable, we
obtain the dependency structure shown in Figure 1 (e), which is a Mahain on hypothesis-data
pairs. The state space of this Markov chain is the Cartesian prod@#ttaofiD, and the transition

matrix has elements correspondingRoh,,, d,, | hp—1,dn—1) = Pra(hy | dp—1)Ppa(dy | hy).
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Again, this Markov chain will converge to a stationary distribution, providledtisfies the
conditions for ergodicity. Determining the stationary distribution is straightodwas this Markov
chain takes a form commonly encountered in Markov chain Monte Carlo.

Bayesian statistics often requires working with complex probability distributiwhgh can
be hard to compute analytically. A standard solution to this problem is to apply tmeeMCarlo
principle, drawing a set of samples from a distribution and performing lzions with those
samples rather than the distribution itself (excellent tutorials on Monte Carlo oeedre provided
by Mackay, 2003, and Neal, 1993). However, sometimes even sampdimgafidistribution can be
difficult, particularly if the distribution is defined over a large state spaces fds led to the
development of a variety of algorithms for generating samples from pild@atistributions using
Markov chains, which are known as Markov chain Monte Carlo (MCM@pathms (an
introduction to MCMC, as well as several applications, are given in Gilich&dson, &
Spiegelhalter, 1996).

The basic idea behind MCMC is to construct a Markov chain that has théxdigdn from
which one wants to sample as its stationary distribution. Thus, for a targebdigin on a
variablev with £ componentsy = (vy,vs, ..., vx), we would define a Markov chain with a state
space corresponding to the different values @nd a transition matrix designed to produce the
target distibutionP(v) as its stationary distribution. The MCMC algorithm then samples a
succession of states from this Markov chain, each being a set of faluesOnce this has been
done sufficiently many times for the Markov chain to converge to its stationajbdion, the
subsequent samples can be treated like samples/om (although the fact that these samples
are drawn from a Markov chain means that they will be correlated, makagftactive sample
size smaller than the total number of samples).

One of the most common methods that is used to construct Markov chainstivatge to a
particular stationary distribution iSibbs samplindGeman & Geman, 1984). The Gibbs sampler

for a target distributior?(v) is the Markov chain defined by drawing each component fsbm
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its distribution conditioned on the current values of all other variables, wyitieing drawn from
P(vi|v1,...,vi—1,vi+1,...,0%). There are a number of variants on this procedure, but one
standard method is to cycle through the variables in turn (this is called a “sy&testan” Gibbs
sampler). Thus, we would initialize the Markov chain by settingus, . . . , v, to some arbitrary
initial values, and then draw from its distribution conditioned on the current values of

vo,v3, .. ., Uk, thenuvy conditioned on the current valuesaf, vs, . . . , v (including the newly
assigned value af;), and so forth. Each complete sweep through the variables constitutes one
iteration of the Markov chain, and this procedure is repeated until thedvantkain has converged
to its stationary distribution and the desired number of samples have beem draw

To return to iterated learning, consider the Gibbs sampler for the targebdisin
P(d,h) = Ppa(d|h)P(h). The variable of interest is the hypothesis-data paih), having
componentg andh, and the sampler would alternate between drawitegnditioned on the
current value ofl andd conditioned on the current value bf The corresponding conditional
distributions areP,m, (k| d) andPp4(d | h) respectively. Alternating between drawing from these
conditional distributions is exactly the procedure followed in iterated learmith the Markov
chain defined by Gibbs sampling being that shown in Figure 1 (e). Coestigithe convergence
results for the Gibbs sampler apply to iterated learning, with the distributionhyypathesis-data
pairs converging t@p 4 (d, h). This relationship can also be used to derive the results for the
stationary distribution of the Markov chains on hypotheses and datanpeese Section 4.1.

This demonstration that iterated learning is a Gibbs sampler is, to our knowtbddgest
instance of a connection between Markov chain Monte Carlo and humaitioog In addition to
offering insight into why iterated learning converges to the prior, it presid source of further
formal results about the dynamics of iterated learning, thus helping toatker® the process of
language change. The rate of convergence of Markov chains iddiyc&ibbs sampling has been
extensively analyzed by statisticians (Geman & Geman, 1984; Liu, Wongmr&gK1995;

Schervish & Carlin, 1992; Tanner & Wong, 1987). These analysesdtalthat the distance
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between the distribution over the state space aftiezrations and the target distribution decreases
geometrically withn, using some standard measures of the distance between probability
distributions. The same result carries over to iterated learning, indicatihgabh learner will

bring us ever closer to the prior. The analysis of MCMC algorithms is still @yoimy project in
statistics, and any further results characterizing the properties of Gibfyslisg will likewise have

implications for iterated learning.
4.3. Sampling from the posterior with two languages

We can illustrate some of the results outlined above by returning to our exariplgist
two languages. In this case, the probability with which a learner choosasieutar hypothesis,
defined in Equation 23, is given by the posterior distribution derived iti@e8.2. This
distribution was specified for three cases, corresponding to diffkieas of data a learner can see.
We can also compute the probability of generating data that match each oftiteseases. For
either language, the probability of generating(any) pair such that: € S is simply
s = .cs P(z). The probability that we generate an y) pair that corresponds to the second
caseig1 —s)(1 —¢) for h,—; = 1 and(1 — s)e for h,,_; = 2. Finally, the probability that we
generate afiz, y) pair that corresponds to the third cas¢lis- s)e for h,,_; = 1 and
(1 —=s)(1—c¢)forh,—; =2.

Putting the results in the previous paragraph together with those from S8Qigives us
the transition probabilities for the Markov chain on hypotheses, as sgkiifiequation 9.

Summing over the three cases gives

(1-e€a €Q

C e (s v ey L/l oy g ey

= « s+(1—s)(1—6)6< L ! )} (37)

at+e—20e 1—a—e+2me

1-5)1-9
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and

(1-¢-0o)
(I1—€e)(l—a)+ep

el —a)
(I—a)+(1—¢

~ (-a) 8—|—(1—s)(1—6)6< LR ! ﬂ (38)

a+e—20e 1 —a—e+2wa€

g1 = (l—a)s+ (1—3)€+€ )a(l—s)(l—e)

These two values specify the transition matgixsincegss = 1 — g2 andgy; = 1 — goy.

Knowing the transition matrix allows us to characterize the dynamics and asymptotic
behavior of iterated learning. We can use Equation 6 to compute the prob#iality learner
acquiresL; at each iteration given that the first learner spoke a particular langpegicing the
results shown in Figure 3. We can compute the stationary distribution of thikoMahain using
Equation 14. The bracketed term in Equations 37 and 38 is constans élcedsvo expressions, so
the stationary distribution has = « (unlesss = 0 ande = 0). Thus, as indicated by the results
outlined above and illustrated in Figure 3, the probability that a learner chdosel converges to

its prior probability,o.. From Equation 15, we find that the second eigenvalue is

A=1— |54+ (1—=5)(1—¢)e (a+61 s T1T 4 1e+2ae>] (39)
which is less than unlesss = 0 ande = 0. Consequently, the Markov chain will be ergodic if
there is any agreement between the languages or any noise in prodsictgaithis makes it
possible to move between languages. When0 ande = 0 there is no agreement and no noise,
so it is impossible for a speaker of one language to generate data thaharstent with the other
language. In this case, both languages act as sinks and the Markovschat ergodic. Figure 3

shows that the rate of convergence increasesrageases, since this makes it easier to move

between languages, and this is reflected in the effecbaf)s.
4.4, Summary

When learners sample from their posterior distribution over hypothesesptisequences of
iterated learning are determined entirely by the biases of the learnersrdiyabpity that a learner

entertains a particular hypothesis will converge to the prior probability efiyyaothesis, and the
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probability that a learner produces particular data will converge to tHeapility distribution over
data produced by choosing a hypothesis from the prior, and thenajigrgedata from that
hypothesis. The asymptotic outcome of iterated learning thus does nottdepdéme amount or
structure of the data seen by the learners, or the properties of the bgpstthose learners
consider, except insofar as those factors influence the prior gtitlestassumed by the learners.
Before considering further conclusions we might draw from this caseyill examine the
consequences of what seems like a small change to our assumptiondedogsvhat happens

when learners choose the hypothesis that has maximum posterior probaltiidy than sampling.

5. Choosing hypotheses with maximum posterior probability

While it may be the simplest, sampling from the posterior distribution is not the onhtava
define a learning algorithm based on Bayesian inference. An alterimatyassume that learners
select the hypothesis with the maximum posterior probability (knownasmum a posterioer

MAP estimation). If we le?{*(d) denote the set of hypotheskssuch that
h* = arg max P(h|d) = arg max Ppa(d|h)P(h) (40)

for some dataset, this learning algorithm is associated with the probability distribution

1/|H*(d)| h e H*(d
Pyap(h|d) = [rE@l e He (41)

0 otherwise

where|H*(d)| is the size of the set of hypotheses with maximum posterior probability.
The strategy of selecting the hypothesis with the greatest posterior flitybzdn be
justified from the perspective of Bayesian decision theory, as it maximiegw thbability of
selecting the hypothesis from which the data were generated (e.g., Rid#4}, Thus, MAP
estimation is the scheme with the greatest fidelity of transmission of hypothesss ac
generations. It is also consistent with the approach taken in previolksomadterated learning.

Some of this work has explicitly approached language acquisition as a probBayesian
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inference (Kirby et al., 2004), while other work has considered algosthased on minimum
description length (Brighton, 2002; Smith et al., 2003). The principle of makigithe posterior
probability is equivalent to minimizing the length of the representation of a layajimea particular
encoding scheme (this idea is explored in detail in Chater, 1996, and Li &yjtd997). Other
learning algorithms, such as gradient descent algorithms for artificishheetworks, can also be
interpreted as a form of MAP estimation (MacKay, 1995; Neal, 1992).

Unfortunately, iterated learning by MAP estimation is more difficult to analyze ifesated
leaning by sampling from the posterior. However, as with sampling, it cardugced to an
inference algorithm that is used in statistics, and for which some analytitsesist. We will
establish this correspondence and summarize the relevant results, amgrthi® a more detailed
analysis of the case of iterated learning with just two languages that waubadehroughout the
paper. This example helps to highlight the differences between MAP estinaattbsampling, and

provides some intuitions about the consequences of iterated learning Byelgtimation.

5.1. Iterated learning by MAP estimation and the stochastic EM algorithm

The correspondence between iterated learning by sampling and the @ibpkessuggests
that we might be able to analyze other cases of iterated learning by identifyiresponding
algorithms used in statistics. This strategy provides us with a way to analyzeddsarning by
MAP estimation, which corresponds to a variant on the expectation-maximiZ&tdpalgorithm
(Dempster, Laird, & Rubin, 1977), which is widely used in modern statistidswachine learning.
An introduction to the EM algorithm is given by Bilmes (1997), and a more det#&iédadment
appears in McLachlan and Krishnan (1997).

The EM algorithm is typically used to obtain the maximum-likelihood estimate of the
parameters of a model that contalagent variables- variables that are involved in generating
data, but are not themselves observed. A classic example is a clusterinigpr where we

observe the locations of a set of points, but do not know the clustars\iftich those points were
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generated or the parameters that characterize each cluster. The ENhaigoakes it possible to
estimate the cluster parameters even though we do not know the clustensssignlt alternates
between two steps: an expectation (E) step, in which the probability distribaxeErcluster
assignments is computed, and a maximization (M) step in which the parametershistees are
updated based on the probabilities with which the different points are askigithose clusters.
More formally, assume we have observed datlatent variableg, and we usé to
represent a hypothesis about the parameters of the fiddehe clustering problem mentioned in
the previous paragrapi,is the location of the pointg, the cluster assignments, ahdhe cluster
parameters. Our goal is to obtain a maximum-likelihood estimate ofioosing the hypothesis
that maximizesP(x|h) (or, equivalently, the log-likelihootbg P(x|h)). However, this is made
complicated by the involvement of the latent variables, since typically it is feeto find the
parameters that maximize(x, z|h) than P(x|h). If we knew the values of the latent variables, we
could findh easily, and if we knewr, we could work out the distribution on the latent variables.
The EM algorithm exploits this by alternating between adjusting the distributioneolatént
variables and the values of the parameters. On iteratioithe algorithm, the E step involves
computing the posterior distribution ovegivenx and the previous choice &f P(z|x, h,_1),
and then taking the expectationlog P(x, z|h,,) with respect to this distribution for each

hypothesigi,,, to give
Ep(z1x,hn_1) [log P(x,2|hy)] = Z P(z|x, hy,—1)log P(x,z|hy,). (42)

In the M step, we choose the value/gf that maximizes this expectation. This procedure is
guaranteed to produce a series of estimatés,dbr which P(x|h,,) is non-decreasing (Dempster
etal., 1977; Neal & Hinton, 1998). If the set of hypotheses undesidernation is continuous, the
EM algorithm converges to a local maximum (or saddle-point? Gt |h). With discrete
hypothesis spaces, the maximume-likelihood solution is one fixed point, but ttvéthig can also

converge on other, suboptimal, hypotheses (Friedman, 1998).
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Performing the expectation in Equation 42 can be difficult, leading to the dewelat of
approximate EM algorithms. In Monte Carlo EM (Wei & Tanner, 1990), theeetation is

approximated using samples fraftiz|x, h,,—1), with
1 &
Ep(z)x,hn_1) l0g P(x,z|hy)] = . Zlog P(x, z(f)]hn) (43)
" =1

wherem,, is the number of samples on iteratianandz(®) is the/th sample of the latent variables
z. The number of samplesy,,, typically increases with, producing similar convergence
guarantees to those of the standard EM algorithm (Fort & Moulines, Z8&;man, Ho, & Dalal,
1999). However, some authors have also advocated algorithms in whicbmains constant. The
case wheren,, = 1 for all n is calledstochastic EMCeleux & Diebolt, 1985; Diebolt & Ip, 1996).

The additional variability introduced by sampling in stochastic EM means that gss le
likely to get stuck in sub-optimal solutions, although the output of the algorittadistribution
over hypotheses rather than a single hypothesis. The sequenceottfiésgs produced by
stochastic EM form a homogeneous Markov chain, and conditions forgjoelieity of this chain
have been established (Diebolt & Ip, 1996; Ip, 1994, 2002; Nieldg®)R Empirical and
theoretical results indicate that the stationary distribution over hypothesésqed by this
Markov chain is approximately centered on the maximum-likelihood solution, witlriance that
increases as a function of the rate at which the hypotheses changs gerations (Celeux &
Diebolt, 1985, 1988; Celeux, Chauveau, & Diebolt, 1995; Diebolt & §94; Ip, 1994; Nielsen,
2000). A more precise characterization of the consequences of stiodB® can be given in
special cases, such as estimating parameters for the kind of clusteringnpiobroduced above
(Diebolt & Celeux, 1993; Nielsen, 2000), but there are no explicititestaracterizing the
asymptotic behavior of stochastic EM when the set of hypotheses is discrete

The EM algorithm and its variants can also be used to perform MAP estimatiotydayp
replacinglog P(x, z|hy,) with log P(x, z|h,,) P(hy) in Equation 42 or 43. The resulting algorithm

converges to a local maximum of the joint probabilityx|~) P (k) rather than the likelihood
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P(x]|h). Since the posterior distributiaR(h|x) is directly proportional taP(x|h) P(h), this is a
MAP solution. The stochastic EM algorithm for MAP estimation with) = 1 would thus take,
to be the value ok that maximizes”(x, z|h) P(h) whenz is drawn from the distribution

P(z|x, h,—1), and converge to a stationary distribution approximately centered at the nrayofu
P(h|x).

With this background in place, the correspondence between iteratethipgnMAP
estimation and stochastic EM can be stated: iterated learning correspotashtastic EM in a
model where the data passed from one generation to thed)gtays the role of the latent
variable,z, and there are no observations,In this case, the stochastic EM algorithm reduces to
taking i, to be the hypothesis that maximizs 4 (d|h,,) P(h,) whend is drawn from the
distribution Pp 4 (d|hy,—1). This is exactly the procedure followed in iterated learning using MAP
estimation. Consequently, results characterizing the behavior of stocB&sapply to this form
of iterated learning. Since this correspondence applies to the casetivberare no observations,
x, the MAP solution is simply the maximum of the prior (with rothe joint distribution ofx and
his just P(h)). Thus, the stationary distribution over hypotheses produced by itdestedng by
MAP estimation should be approximately centered on the maximum of the prior, wétiance
that increases as a function of the rate at which hypotheses changs generations.

The relationship between iterated learning by MAP estimation and stochasticdfidigs a
rough characterization of the consequences of iterated learning:ahahplity that a learner
acquires a particular language will converge to a distribution that empkdaizguages with high
prior probability. Unlike sampling, this distribution will be affected by the pmbies of the
languages involved and the amount of information transmitted between Iganiirthese factors
determining the amount of variation around the high probability languagésiexhby the
stationary distribution. As with our previous observation about the reldtiphetween iterated
learning by sampling and the Gibbs sampler, this correspondence establishge by which

results in statistics can be used to gain a deeper understanding of thega®oélanguage
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evolution.
5.2. MAP estimation with two languages

Identifying iterated learning by MAP estimation with the stochastic EM algorithraiges
an abstract characterization of its behavior. To obtain a deeper tewidirey of this process, we
will return to the example of iterated learning with two languages introduced itoB8ex:3 and
embellished on in Sections 3.2 and 4.3. In this simple case we can determine sequemces of
iterated learning by MAP estimation directly, and give analytic results for thiestay
distribution and the rate of convergence that provide some valuable intuitions

We established the fundamentals of Bayesian iterated learning with just twaalgesin
Section 3.2. We need only change the learning algorithm that is used to teahglgosterior
distribution into the choice of a hypothesis, replacing sampling with maximizing saime three
cases are relevant. Whene S the posterior probability thdt = 1 is simply the prior probability,
«. By assumptiong > 0.5, so the MAP hypothesis i = 1. Thus, we should seleat= 1 with
probability 1. In the second casé,= 1 is likewise dominant, as > 0.5 ande < 0.5. However, in
the third case, which hypothesis has highest posterior probability dejerithe relative values of

« ande. We can write the transition probabilities as

ea+ (1—¢€)(1—a)

G2 = 5+(1—3)6+R< >(1—5)(1—e)

and

21 = R<6(1_i5)1;g)_6)a>(1_5)(1_6)

whereR(+) is a rounding function, taking the valdewvhen its argument is greater theus, 0 when

its argument is less thans, and0.5 when its argument is exactiy5.
Table 1 gives the values ¢f», ¢21, 1, and s under different conditions on the relationship
betweery ande. L, is almost always favored ovér,, with the stationary probability that = 1,

01, being greater tha®.5 for anys > 0 becausd.; is always chosen whene S. When
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e > 1 — «, there is so much uncertainty th&f is also able to dominate, being selected on every
iteration after the first (henck, = 0, indicating the fastest rate of convergence possible). More
interesting results are obtained wher 1 — «. In this case, the preference fbg gradually
decreases asincreases, as higher valuescahake it more likely that we will observe data that are
consistent withl, being generated by speakersiqgf. In fact,6; is completely independent of
so long as < 1 — a, implying that a broad range of inductive biases will result in exactly the same
stationary distribution. The relationship betwesgm, andf; is shown in Figure 4, under the
assumption that < 1 — «. The second eigenvalug;, also decreases asncreases, indicating
that convergence to the stationary distribution becomes faster in the peesamore noise.

The differences between the results for MAP estimation outlined in this secttbthe
results for sampling presented in Section 4.3 are instructive. When leaam@iple from their
posterior distributions, the stationary probability that 1 is simply the prior probabilityg, for
almost any amount of overlap between languaggeand production noise, The consequences of
iterated learning are thus determined entirely by the prior. When learreAB estimation, the
stationary probability that = 1 is stable over a large range of valuesxoffor 0.5 < a < 1 —¢),
but depends directly onande. The consequences of iterated learning are thus the same for many

priors, being determined by the overlap between languages and the ashpuoduction noise.

5.3. Summary

While iterated learning by MAP estimation is harder to analyze than sampling frem th
prior, we can obtain some insight into its consequences by observingespondence with the
stochastic EM algorithm and by analyzing specific cases. The resultssef dmalyses indicate
that iterated learning by MAP estimation still favors languages with higher prajyability, but
the stationary distribution depends on the nature of the hypotheses andahataf noise. The
correspondence with stochastic EM provides a rough characterizdtioa stationary distribution

of iterated learning by MAP estimation, indicating that this distribution should peoapmately
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centered on the hypotheses with greatest prior probability, but will extabiince around these
hypotheses. Analyzing the case of just two languages provides an filoistod these general
trends: the stationary distribution favors the language with greatest pabability, L, but the
extent to which this is the case depends on the amount of noise in the dapresented by.
Whene is higher, it is easier to move between hypotheses, and it is easier to getatiathat

result in the acquisition of..

6. An example: The emergence of compositionality

The results presented in the last two sections provide a characterizatt@agnsequences
of iterated learning when Bayesian learners either sample from their jpostistribution or select
the hypothesis with the greatest posterior probability. In order to explergrthlications of these
results for language evolution, we chose to examine their predictions in gggbtins closer to
that used in previous work on iterated learning. To this end, we simulatetkildemarning in a
simplified version of a scenario that has been used in several pajptosieg the emergence of
compositionality (Brighton, 2002; Kirby, 2001; Smith et al., 2003).

As in our two-language example, we model language acquisition as learmag@ing
between meanings and utterances. The datnsist of a set ofn inputs,x = {z1,...,z,,}, and
m corresponding outputs, = {y1, ..., ym }, and hypotheses are probability distributions over
for eachz. Thenth learner sees datéx,, 1, y.—1), and then generates outpwyts in response to
new inputsx,,. Meanings and utterances each vary along two binary dimensions. This gie
total of four meanings and four utterances, each corresponding tettfi@0s01, 10, 11}.

In acompositionalanguage, the mapping between meanings and utterances depends upon
their parts: the two dimensions of meanings are mapped onto the two dimensidgterafices (for
simplicity, we assumed that the order is preserved), and the only unceitaintyhich values
map to one another. There &%= 4 such languages. Inllisticlanguage, the mapping between

meanings and utterances is arbitrary, and a single word is chosen teaepeach meaning
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without any constraints. There até = 256 such languages$ thus contain€60 hypotheses, each
a mapping between meanings and utterances. Forfeachk, we define the probability

distribution over outputg given the input: to be

1—€e xmapstoyinh
P(y|z,h) = (44)

s otherwise
wheree is the error rate of production, as in our example with just two languagespfidr

probability of each hypothesis is

¢ hrefers to a compositional Ianguaqe 45)
12%“ h refers to a holistic language

This is ahierarchical prior, allocating a probability of. to the set of compositional languages and

1 — « to the set of holistic languages, and then spreading this probability uniforrahtioe

hypotheses within those sets.

Since every language is simply a mapping from meanings to utterakidas|udes four
holistic languages that each give the same mapping as one of the four ¢iomabtanguages.
These languages make the same predictions about inputs and outputsyiaénge by Equation
44, and thus cannot be discriminated by any data. Any advantage ofrtigosidional languages
over their holistic counterparts results from the prior defined in Equatiotf 46mpositional and
holistic languages are equally probable a prieri 0.5), then the relatively small number of
compositional languages means that any particular compositional languagesiprobable than
any particular holistic language. Consequently, it would be very unlikelgéoasholistic language
that just happened to produce a compositional mappingx Becomes smaller, it becomes less
likely that one would see a compositional language at all, and a holistic laagbagjust
happened to produce a compositional mapping becomes more plausible.

The transition matrix for the Markov chain on hypotheg@sfor each algorithm can be

obtained by summing over atk, y) pairs. Since there ar@222)™ such pairs, this is intractable

for largem. Consequently, matrices fat > 4 were computed approximately using Monte Carlo,
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with 1000 samples for each hypothesis. We computed transition matrices¢of0.01,0.5},
e € {0.01,0.05}, andm € {1,2,...,10} for both sampling and MAP. We will discuss the results

for the two algorithms in turn.

6.1. Results for sampling from the posterior

The first column of Figure 5 shows a portion of some of the transition matrioeiped by
sampling from the posterior. The second column shows 1000 iterationsufioMarkov chains
(initialized by choosingq; uniformly at random), while the third and fourth columns (labeled
“Chain” and “Prior”) show the distribution over hypotheses from a sisglaple of 1270000
iterations from those chains and the pridfh) respectively. Our theoretical results predict that the
asymptotic probability that a learner infers a particular language depahdsmits prior
probability, and not on other properties of the language. This was owediby our simulations, as
can be seen by comparing Figure 5 (b) and (d). The Markov chainrshrolsigure 5 (b) used
a = 0.5, and compositional languages appear with high frequency. The Mahaia shown in
Figure 5 (d) usedv = 0.01, and compositional languages appear only infrequently. As shown in
the third and fourth columns of the figure, the relative frequencies ofiffezeht languages
correspond closely to their prior probabilities. Thus, compositional lagpegiare favored by
iterated learning only if they have high prior probability.

The results shown in Figure 5 (a)-(c) illustrate that the asymptotic probabitityath
language is spoken is not affected by the amount of data seen by therteaithile the Markov
chain develops a greater tendency to remain in the same staténaseases, indicated by the
strong diagonal in the transition matrices and the length of the streaks in th&esathp relative
frequencies of the different languages remain the same. These rélatjuencies match the
corresponding prior probabilities, consistent with our mathematical analysis, the emergence
of languages with particular properties does not require a bottlenecleantbunt of information

passed from one generation to the next.
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While the amount of data seen by the learners does not influence the asgmpto
consequences of iterated learning by sampling from the posterior, itaffees other properties of
the underlying Markov chain. Figure 6 (a) shows hbwis affected by, ¢, andm. As « brings
P(h) away from uniformity, it increases the probability that successive leamidl share the
same hypothesis. This increase in the fidelity of transmission means that it willotadser to
move from an initial hypothesis to a hypothesis with higher probability undestdtmnary
distribution. As a consequence, convergence to the stationary distributidre slower, and\,
increases aa increases.

Changinge andm also decreases the rate of convergence (and increasess the data
received by each learner become more informative. Decreasmgeases the probability that a
learner produces a set of utterances consistent with their curreoth®gis, and thus the
probability that the next learner will infer the same hypothesis. As a coeseg, movement
between hypotheses is slower, convergence takes longekpdndreases. Increasing increases
the amount of information available to learners, reducing the chance thaleadiigy set of
utterances will be generated. Consequently, the probability that siveckssrners choose the
same hypothesis increases, slowing movement between hypotheseasiauegthe rate of
convergence, and increasing. With largem, it is likely that a single hypothesis will be
maintained across several generations, as can be seen in Figure 5 (c).

The parameters, m, ande also influence the relative stability of compositional and holistic
languages, assessed via the ratio of the mean probability that a partionlgogitional language
would appear as both, | andh,, (i.e., the mean of;; wherei is a compositional language) to the
corresponding mean probability for holistic languages. The effects, f, ande on this ratio are
shown in Figure 6 (b). The stability ratio is strongly affectedabyif the prior probability of a
compositional language is high, it is more likely that a learner will acquire thgulage, and
consequently that language is more stable. The magnitude of this effect isateatiby the

number of datapointsy, with a having the greatest effect whemis small. Asm increases, the
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data begin to overcome the influence of the prior.
6.2. Results for MAP estimation

Figure 7 shows the same quantities as Figure 5 for learners choosing tRépdthesis.
The results are quite different from the corresponding cases fordeassampling from the
posterior: the influence of the prior on the behavior of the Markov chaisfgnificantly increased.
Since every compositional language is also contained in the set of holistitalges, learners
never choose a compositional language when holistic languages hatergneor probability (i.e.
whena = 0.01). The effect is less marked when compositional languages have higber p
probability (i.e. witha = 0.5), since there are many holistic languages which are not dominated by
compositional languages, but the holistic languages are still far less comamimtthe chains
produced by sampling with the same valuesroinde.

A second qualitative difference from the results for sampling is that threrleaver
transitions between languages in the chains favoring compositional laeg(iag, witha = 0.5).
This occurs because if the compositional languages are the only hypstineger consideration,
moving from one language to another requires generating data thatresisteot with that
language. Because the compositional languages do not overlap, thigessgrrors in production.
The probability of such errors is set byand the chance of a compositional languge producing
data that are more consistent with another compositional language thanétselfides as
increases. Because of this, the second eigenvalue of the transition matfor, the chains with
«a = 0.5 is consistently close tb, as shown in Figure 8 (a). The values)@fwhena = 0.01 are
more comparable to those produced by sampling from the posterior, sineagié to move
between holistic languages.

Finally, unlike sampling from the posterion, affects the asymptotic consequences of
iterated learning by MAP estimation. Looking just at the cases with 0.5, whenm = 1 only

compositional languages appear in the chain. This is because the evidevided by a single
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utterance is insufficient to overwhelm the higher prior probability of corntjposl languages. The
probability of holistic languages under the stationary distribution is thus ¥énde it is not

shown here, the same phenomenon occurswita 2. Whenm = 3, it finally becomes possible
to generate data that result in selection of holistic languages, and thesadasdgave non-zero
probabilities under the stationary distribution. This trend is more pronounbedm = 10, with
holistic languages appearing more often, albeit for short intervalsdedturning to a
compositional language. As with sampling from the posterior, increasiatso reduces the ratio

of the stability of compositional to holistic languages, following the trend shoviigare 8 (b).

6.3. Summary

The simulations summarized in this section allowed us to analyze the consegjoénce
iterated learning by sampling from the posterior and by MAP estimation in a setting mo
comparable to previous research. The results of these simulations béae predictions produced
by our theoretical analyses: both forms of Bayesian learning resultistrébdtion over languages
that reflects the inductive biases of learners, with the influence of thelping emphasized by
MAP estimation. This setting also makes it possible for us to examine the efféret aimber of
utterancesin, seen by each learner. As expected, this has no effect on the distibugo
languages ultimately produced by sampling from the posterior, althoughstalfeet the rate of
convergence to this distribution. In contrast, when learners use MAP éstintiae dominance of
languages with high prior probability is attenuated with larger values,ds it becomes possible

to generate sets of utterances that provide strong evidence for a dgngiib low prior probability.

7. Population dynamics and iterated learning

The results we have discussed so far characterize the conseqoéiteested learning in a
setting where each generation consists of a single learner. Howexenalgerominent analyses of
language evolution have focused a different setting, examining how dpetion of an

unbounded population that speaks a particular language changediimuoos time (Komarova
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et al., 2001; Nowak et al., 2001, 2002). Our results can be extendethisteetting, indicating
how iterated learning will affect the asymptotic proportion of a populationldzanhs a particular
language.

Let p; denote the proportion of a population of learners entertaining hypothasegiven
momentt, andg;; denote the probability that a learner chooses hypotliedtsr seeing data
generated from hypothesisas defined in Equation 9. If we assume that each learner learns from a

random member of the population at the previous instant, then the populatiporfions evolve as

dpi _
at

> fiaipi — i, (46)
7

wheref; is thefithessof speakers of languagein a population with proportionp = (p;),

¢ = Y. fxpr, is the mean fitness, and the second term on the right hand side enstires tha

>, pi = 1. This is the “language dynamical equation” explored by Nowak et al. 22002). In

such models, fitness is typically assumed to be a function of how well spgeakaparticular

language can communicate with the population at large, implementing a selectsangréor

communication. If we assume that all speakers have equal fitfiess], Equation 46 simplifies to

dp;
e > aipi — pis (47)
J

which is a linear dynamical system. A special case of this model was andlya€omarova and
Nowak (2003).

The asymptotic behavior of this linear dynamical system is straightforwancaiyze. By
setting% equal to zero, we find that the population proportions will be in equilibriunpfsuch
thatp; = Zj q¢i;p;, Which is the same as the condition used to define the stationary distrilfution
in Equation 7. Consequently, this system has an equilibriug-atf. The properties of this
equilibrium depend on the eigenvalues of the mafdix- T, wherel is the identity matrix. As
mentioned above, the largest eigenvalu€ofvill be 1, sinceQ is a stochastic matrix. Under
conditions analogous to those for the ergodicity of the Markov chain onthgges, this largest

eigenvalue will be unique. In this cagg,— I will have a single eigenvalue 6f and the real
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components of the remaining eigenvalues will be negative. It follows thagb#ibrium 6
defined above is a sink, a unique asymptotically stable equilibrium to which fhdaimn
proportions will converge (Hirsch & Smale, 19751).

Iterated learning with infinite populations evolving in continuous time thus disiays$ar
asymptotic behavior to iterated learning with discrete generations of singteteaiThe key
difference is in the nature of the quantities that converge: with discretrggons of single
learners, the probability that a particular learner entertains hypothesiserges td;; with an
infinite population evolving in continuous time, it is the proportion of the populatiahentertains
hypothesig that converges t8;,. Consequently, the results from the previous sections characterize
the consequences of iterated learning not just for individuals, bytdpulations. This provides an
additional justification for the use of the iterated learning model in studyingikzge evolution: if
the stationary probability corresponds to the proportion of the populatiofetdya a particular
language, estimates of the stationary distribution produced by running sinmglatith discrete

generations consisting of a single learner can be generalized to theflpagwdations.

8. Discussion

Studying iterated learning with Bayesian agents provides the opportunityeondee the
influence of the inductive biases of learners on language evolutionteSuits indicate that these
inductive biases have a strong effect on the consequences of iterateithg. When learners
sample from their posterior distributions, the probability that a learner aasjaiparticular
language converges to the prior probability assigned to that languageadsdtiearning proceeds.
When learners choose the hypothesis with greatest posterior probdteiayed learning produces
in convergence to a distribution in which hypotheses with high prior probabiityidate,
although the exact distribution depends on the amount of information transingtiweden learners.
Furthermore, these results apply not just to the probability that individaelégs acquire a

language, but to the proportion of the members of a population who will acthat language.
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Our analyses provide simple conditions for determining when a particulpepyoof
languages will emerge from iterated learning with Bayesian agents: thagnyavill emerge if it
is favored by the prior. In the remainder of the paper, we explore somsiqus raised by these
results. First, we summarize the assumptions behind our analysis, andecdhsid
appropriateness. We then highlight some further results suggested agalyses, and consider
how our results relate to previous work on iterated learning. Finally, werrédusome of the
larger issues mentioned at the start of the paper, discussing their implicatiexplaining

linguistic universals and language change.

8.1. Summary of assumptions behind analyses

Since the assumptions behind our analyses were introduced incremeniglyoith taking
a moment to summarize those assumptions, and to consider their appropsiittenesleling
language evolution. Our formulation of iterated learning as a homogeneat®ivichain relied

upon two assumptions:

Assumption 1 All learners use the same learning algorithixd, and production algorithmP A.

Assumption 2 We have a sequence of discrete generations of learners, with onerlparn

generation who receives data produced by the previous learner.

These assumptions are standard in applications of the iterated learning sngdeBfighton, 2002;

Kirby, 2001; Smith et al., 2003). In Section 7, we showed that Assumpti@nde replaced with

Assumption 2° We have an infinite (or large) population of learners evolving in contintious,
where each learner receives data from a randomly selected membeipofihlation at the

previous instant.

which is consistent with models of population dynamics that have been applieticaige

evolution (Komarova et al., 2001; Nowak et al., 2001, 2002).
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When the learning algorithm is specified by Bayesian inference, Assunptiequires that
all learners share the same set of hypothésesid the same prior distribution over those

hypothesesP (k). We also assumed

Assumption 3 All learners have knowledge of the probability distribution over utteradces

produced by use of the production algorithit for the languagé.

This assumption is used in specifying how Bayes’ rule is applied in languagesiion in
Equation 18. Essentially, it requires consistency between learning addgiion: that learners
produce utterances from the same probability distribution that they useliratug languages.
Again, assumptions of this kind are common in formulations of iterated learningns tef
minimum descripton length (Brighton, 2002; Smith et al., 2003) or Bayesiareimde (Kirby
et al., 2004).

Finally, our characterization of the dynamics and asymptotic behavior ofdtklearning
required specification of the learning algorithm (as either sampling, spkbifiE&quation 23, or
MAP estimation, specified by Equation 41), and the ergodicity of the undgriierkov chain. As
discussed in Section 2.1, ergodicity is straightforward to check for a fingtekd chain, and most
of the examples we have discussed are ergodic. The possibility remaim®thatgodic Markov
chains play an important role in language evolution, but our results indicatendmy of the
properties emphasized in previous work on iterated learning are consistiethe asymptotic

behavior of ergodic Markov chains.

8.2. Language evolution and algorithms for statistical inference

A key feature of our analysis of iterated learning by both sampling and MAiRhation was
its correspondence to an algorithm used for statistical inference. tio8dc2 we showed that
iterated learning by sampling from the posterior is a form of Gibbs samplingyaegure that is
used for estimating the form of complex probability distributions. In Section & 2hkowed that

iterated learning by MAP estimation corresponds to a variant of the EM alguréatprocedure
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that is used for estimating the parameters of a model that contains latentesrigbe fact that
this correspondence exists in both cases suggests that there may begenaved relationship
between iterative estimation procedures and cultural evolution.

In some ways, the existence of a relationship between estimation algorithmslamdlc
evolution should come as no surprise, since such relationships are wefthkn the context of
biological evolution. For example, the standard model of population dynaigisslection in a
single locus model with no mutation and constant fitness for different allekessponds to
gradient ascent on the mean fitness of the population (e.g., Rice, 206WgiBal evolution may
provide a good cautionary tale in terms of reading too much into such relafisnsince the
conditions identified in the previous sentence are relatively restrictivaaingiarticularly
biologically plausible: with multiple loci, mutation, and a fitness function that dependhe
composition of the population the simple story of optimization that is often assoeitted
biological evolution is no longer true. Similarly, allowing for the effects of sia (removing the
assumption of uniform fitness) could easily disrupt the connections beteudteiral evolution and
statistical inference that we have identified in this paper.

Despite this need for caution, it seems that there is a great deal of fpdtesrtial for the
relationship between iterated learning and algorithms fpr statistical infeterygeld insight into
processes of language evolution. Statisticians have explored a greavamamts on the EM
algorithm, some of which have natural interpretations in the context of itelediecing. In
particular, Monte Carlo EM algorithms whene, > 1 (as opposed to stochastic EM, where
m,, = 1) are directly applicable to cases of iterated learning, and have beendsaxtimsively
(Fort & Moulines, 2003; Sherman et al., 1999). Statisticians have alsetigated a version of the
stochastic EM algorithm in which the samples of latent variables from preitienadions are also
incorporated, providing a natural way of modeling language evolutiomidsners are exposed
to linguistic data produced by more than one previous generation (Celeugl#Ib 1992; Celeux

et al., 1995; Delyon, Lavielle, & Moulines, 1999).
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8.3. Relationship to previous work on iterated learning

Previous work on iterated learning has emphasized the emergence tirgtdidanguages
from general-purpose learning algorithms, and argued that this is pagljothe “information
bottleneck” imposed by the finite nature of the data that is used to transmit egesveen
generations (Brighton, 2002; Kirby, 1999, 2001; Kirby et al., 2004itB et al., 2003). Our results
indicate that these effects depend to a surprising extent on the choiemhigalgorithm. If
learners sample from the posterior distribution, their inductive biasestoestibngly favor
structured languages in order for these languages to emerge, and tinet afnata communicated
between generations has no effect on the asymptotic probability thatigavitlesspeak a particular
langauge. However, if learners use a learning algorithm equivaleptdotig the hypothesis with
greatest posterior probability, their biases can be emphasized, angthetasc distribution over
languages is affected by the amount of information transmitted betweeragensr

Our analysis of the consequences of iterated learning with learnersamfqesfrom their
posterior distributions initially seems to provide a counter-example to the idethéigiformation
bottleneck is involved in the emergence of structured languages. Spigificshows that sensible
learning algorithms exist that can produce structured languages, wéghaoformation bottleneck
effect. However, in this case, structured languages will emerge onlyjifaieestrongly favored by
the inductive biases of the learning algorithms being used. Thus, whilerérades show that
iterated learning need not always exhibit an information bottleneck effest,do not undermine
the argument that such effects might play a central role in the emergehogustic structure
when learners use general-purpose learning algorithms that aslyemtweak preference for
structured languages.

The case where learners select hypotheses with greatest postebabitity provides closer
parallels with previous work on iterated learning. Indeed, as pointed @s#dtion 5, many of the
algorithms that have been examined in previous work can be construddras af MAP

estimation. This analysis potentially indicates how structured languages coatde using
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general-purpose learning algorithms that embody only a weak pre&efensuch structure. The
relationship between this form of iterated learning and the stochastic EMtalgamplies that the
stationary distribution over languages will center around those languatiesighest prior
probability. Since the maximum of the prior is a relative notion, the prior needtrungly favor
languages for them to dominate the stationary distribution. For example, indaetderated
learning with two languages explored in Section 5.2, the prior probabilityitkatl, «, could be
manipulated over a wide range for a fixed value,cdnd have no effect on the stationary
probability thath = 1, ;. Thus, learners having a weak preferencelfprwith « only slightly
greater thai®).5, would result in emergence @f; with exactly the same probability as having a
strong preference, wittk only slightly less tharl — e. This example illustrates how MAP learning
can emphasize the weak biases of learners.

While these results provide some suggestive connections, there is still nouktohbe done
in understanding the effects identified in previous work on iterated learhirgarticular, the
correspondence between iterated learning and stochastic EM leavessmogvns about the
factors influencing the stationary distribution over languages. In the drarplored in Section 6,
we obtained results consistent with an information bottleneck effect ariingMAP estimation,
with the preference for compositional languages being emphasizedmwhes small. Obtaining
systematic results connecting the stationary distribution with the size of the boktlsren
important topic for future research. Some preliminary work exploring batkeffects with MAP

learners appears in Dowman, Kirby, and Griffiths (2006).

8.4. Implications for explaining linguistic universals

In Section 1, we outlined two possible explanations for linguistic univerfiadstraditional
idea that these universals are the result of strong constraints thateaigcsto language learning,
and the alternative hypothesis that iterated learning might be able to priachgeemges with the

structural properties of human languages even if learners use gpoguase learning algorithms.
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Unfortunately, our formal results do not indicate which of these explamat®more plausible.
However, they do help to fill in some gaps in the traditional argument, andderseme insight
into the kind of questions that need to be asked to resolve the debate.

Advocates of the traditional explanation of linguistic universals in terms w$ttaints
arising from an innate language faculty can seize upon our results faetsavho sample from
the posterior distribution, which dictate a one-to-one correspondemwedre the inductive biases
of learners and the languages that ultimately manifest in a population. Témdtsmprovide an
important missing piece of the traditional story, indicating how soft constramtadividual
learning can influence the languages spoken by a population. If thedstdbution is taken as
reflecting innate constraints specific to language learning (a view whiclowetencourage, as
mentioned in Section 3), then our results show that iterated learning cas thet @hgine by which
these constraints result in universals. Those who prefer the idea tipaislic universals can be
produced by iterated learning exaggerating the weak biases expneggatkral-purpose learning
algorithms can take heart from our results for learners who use MAP ¢mtimahich illustrate
that iterated learning can potentially emphasize weak biases. The informattanbck also
provides a further factor that could contribute to this effect.

Even though our present results have something to offer for both dides debate, they do
place some important constraints on possible explanations. In particul@analysis suggests two
guestions that we might pursue in order to evaluate the plausibility of ditffesgatanations for
linguistic universals. The first question is whether human language hsaarebetter
approximated as sampling from the posterior distribution or selecting the hagisthith greater
posterior probability. We provided some empirical arguments for the afptepess of sampling
in Section 4, but this is an issue that has not been explored in depth in thefdaaguage learning
(although see Hudson-Kam & Newport, 2005). If learners are clossampling than maximizing,
strong constraints are necessary. If they are closer to maximizing, thertkebiases of

general-purpose learning mechanisms might be sufficient. The secestiaiuis whether we can
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identify general-purpose learning algorithms that have inductive biafi@sit(weak ones)
consistent with the properties of human languages. Our results indicatethdnguages favored
by the prior will be produced by iterated learning, regardless of whétheners sample or
maximize. In previous work, the inductive biases of different algorithnve tergely been
investigated by running iterated learning simulations (Brighton, 2002; K2@§1; Smith et al.,
2003). The connection between biases and universals indicated bysoltis suggests a more
productive mode of analysis might be to investigate these biases directiyndeitsy which kinds

of languages are easier to learn with different prospective generpbge learning algorithms.

8.5. Conclusion

Iterated learning is one of the basic mechanisms by which languages aegl ffiasn person
to person, and generation to generation. Understanding the consegudiiterated learning is
thus a crucial step towards understanding the process of languaggechta this paper, we have
laid out a framework for analyzing iterated learning, making it possible toacierize both the
dynamics and asymptotic behavior of processes in which learners leanrother learners. The
formulation of iterated learning in terms of Markov chains on hypotheseslatadmakes it
straightforward to determine the distribution over languages that shoulkpleeted to arise at any
iteration (and the change in this distribution across iterations), as well asythgtotic probability
that any particular language will be chosen by a learner. The conndstareen the stationary
distribution of the Markov chain on hypotheses and the equilibrium of ptipaldynamics based
on iterated learning also makes it possible to generalize the conclusiohgsdeaith sequences of
individual learners to the level of the population. These results stremgjtieecontributions that use
of the iterated learning model can make to our understanding of languaggesh

We have used this framework to provide a detailed account of the cozrseegiof iterated
learning with Bayesian learners. The use of Bayesian inference mai@ssible to explicitly

identify the inductive biases of our learners, and to demonstrate thattiases strongly affect the
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outcome of iterated learning. Formally establishing the basic predictions st frem iterated
learning paves the way towards being able to develop more complete modeigudidee
evolution, exploring the interaction between iterated learning and foraadtafal and biological
selection. It also provides insight into the plausibility of different explametiof linguistic
universals, providing new terms in which to formulate the debate aboutltt®rehip between
linguistic universals and the inductive biases of learners.

Going beyond language evolution, our analysis of iterated learning witeday learners
provide conditions under which information transmitted via iterated learning itiithately come
to mirror the structure of the mind of the learners. This information will be infiedrby the
inductive biases of learners, regardless of the source of thoses lsiadevhether the learners
sample from the posterior or use MAP estimation. This correspondengestgghat we should
look closely at the universal properties of human languages, sinder tiis account, they should
reflect the biases behind human language learning. More generallgsults suggest that any
information transmitted by a process of iterated learning — not just languagfesso legends,
religious concepts, and social norms — will ultimately come to be tailored to matgieg®o
inductive biases, providing a formal justification for treating these phenarae a source of clues

about the assumptions that guide human thought.
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Footnotes

Iwe will assume that{ andD are both finite sets. This is not a necessary assumption, but
simplifies the statement of the results we present in this paper.

2, similar use of Bayes’ rule to characterize the role of inductive biases gquizge
acquisition in the context of iterated learning appears in Kirby, Smith, andh&mg2004).

3This definition ofe treats it as the error rate of production, but it could equivalently be
considered the error rate of perception. Under either of these intatipres, it characterizes the
variation in the perceptual data available to the learner.

4We usex andz simply to denote vector-valued random variables in this section. The choice
of these variable names matches much of the literature on the EM algorithm,@uid sbt be
connected with the use afandz in other sections.

A small influence of the prior remains even at asymptote due to the presemokstic
hypotheses that are equivalent to compositional hypotheses. Thesthéyes cannot be separated
by any amount of data, so the stability ratio approacégé% asm — oo. If H did not include
hypotheses that make equivalent predictions about the data, the stakiitywoald approach as
m — oo. Consequently, the decrease in the stability ratio as a functienfof the cases where
a = 0.01 is due to the specific structure #f, rather than being a general trend.

5The fact thalQ — I has an eigenvector with eigenvaldiendicates that this system has a
one-dimensional linear subspace of equilibrium solutions, corresppiaimultiples of the
corresponding eigenvector. The uniquenesg a$ an equilibrium follows from the fact thétis

the only multiple of this eigenvector that is a probability distribution, Withé; = 1.
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Table 1

Properties of the Markov chain on hypotheses for iterated learning with Egtifhation

Condition q12 g21 01 A9
e<l—-a s+ (1—s)e (1—s)e 8812((1118256 (1 —s)(1—2¢)

e=l-a s+(1-s)1+6/2 (1-s)/2 AL (1 -s5)1-20/2

e>1—« 1 0 1 0
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Figure Captions

Figure 1.(a) Language is learned anew by each generation, a process whibkéraproposed as
an explanation for the existence of linguistic universals. Each learesrdsta — a set of utterances
— produced by the previous generation, forms a hypothesis about thealga from which those
utterances were produced, and uses this hypothesis to produce ttizadatél be supplied to the
next generation. (b) Dependencies among variables in the stochastsgpiaduced by iterated
learning. (c) Reduction to a Markov chain on hypotheses. (d) ReductiamMarkov chain on

data. (e) Reduction to a Markov chain on hypothesis-data pairs.

Figure 2. Sets involved in the two language exampléis the set of all objects in the domain, with
eachr € X being an objectg; andG, are the sets of objects that are likely to elicit a spontaneous
utterance of “Gavagai!” from a speaker of the languabeand L2, modeled as the outpyt
associated with the inputtaking valuel. y = 0 for all objects outside the appropriate s&iis the

set of objects on which the two languages agree, with speakers of eitlgeialge being equally

likely to produce the same response.

Figure 3. Dynamics of iterated learning by sampling from the posterior. Solid lines shew th
probability that a learner choosks= 1 as a function of the number of iterations, starting from a
state where the first learner speaks eitheor L, with e = 0.05 ande = 0.001. In all cases,

a = 0.6 ands = 0.5. The probability of choosing = 1 rapidly converges to the stationary

probability, «, indicated by the dotted line.

Figure 4. Stationary probability thatt = 1 as a function of agreement betwen languageand
level of production noise, in iterated learning with MAP learners. The stationary probability is

unaffected by the prior probability that= 1, «, providede < 1 — a.

Figure 5. Markov chains on hypotheses for the evolution of compositionality whendesisample

from their posterior distribution. Different rows correspond to diffengarameter values. For each
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set of parameters, the first column shows a portion of the transition m@rixjth four
compositional languages (labeled C) and four holistic languages (labgl€zblimns aré:,, 1,
rows areh,,, and darker grey indicates a higher valuegjgf= P(h,, = i| h,—1 = j). The second
column shows a sample of 1000 iterations from this matrix, the third shows thizedtequency
of hypotheses across 10000 iterations, and the fourth shows theRfior, The quantities in the
third and fourth columns are subjected to a square root transformatioden tormake the full

range of variation apparent.

Figure 6. Quantities derived from Markov chains on hypotheses for learnenplgay from the
posterior, as a function of number of datapoimts prior on composite languages, and error
rate,e. (@) Second eigenvalue of transition matrix, (b) Stability ratio. The dotted line shows the

stability ratio asn — oc.

Figure 7. Markov chains on hypotheses for the evolution of compositionality with MAP
estimation. Different rows correspond to different parameter valumsed&ch set of parameters,
the first column shows a portion of the transition mat@,with four compositional languages
(labeled C) and four holistic languages (labeled H). Columnsare, rows areh,,, and darker
grey indicates a higher value ¢f; = P(h,, = i|hn,—1 = j). The second column shows a sample
of 1000 iterations from this matrix, the third shows the relative frequentypbtheses across
10000 iterations, and the fourth shows the pri®fh). The quantities in the third and fourth
columns are subjected to a square root transformation in order to makd! tiam§e of variation

apparent.

Figure 8. Quantities derived from Markov chains on hypotheses for learnémg MAP
estimation, as a function of number of datapointsprior on composite languages, and error
rate,e. (@) Second eigenvalue of transition matrix, (b) Stability ratio. The stability ratios for

« = 0.01 are constant at zero, since compositional hypotheses are nevenchaod infinite for
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m < 3 andm < 2 whene = 0.05 and0.01 respectively forx = 0.5, since in these cases holistic

languages are never chosen.
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