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Abstract

Languages are transmitted from person to person and generation to generation via a process of

iterated learning: people learn a language from other people who once learned that language

themselves. We analyze the consequences of iterated learning for learning algorithms based on the

principles of Bayesian inference, assuming that learners compute a posterior distribution over

languages by combining a prior (representing their inductive biases) with the evidence provided by

linguistic data. We show that when learners sample languages from this posterior distribution,

iterated learning converges to a distribution over languages that is determined entirely by the prior.

Under these conditions, iterated learning is a form of Gibbs sampling, a widely-used Markov chain

Monte Carlo algorithm. The consequences of iterated learning are more complicated when learners

choose the language with maximum posterior probability, being affected by both the prior of the

learners and the amount of information transmitted between generations. We show that in this case,

iterated learning corresponds to another statistical inference algorithm, a variant of the

expectation-maximization (EM) algorithm. These results clarify the role of iterated learning in

explanations of linguistic universals and provide a formal connection between constraints on

language acquisition and the languages that come to be spoken, suggestingthat information

transmitted via iterated learning will ultimately come to mirror the minds of the learners.
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Language evolution by iterated learning with Bayesian agents

1. Introduction

Languages change as they are passed from person to person, and from generation to

generation. A variety of explanations have been proposed for different aspects of language change,

as part of a growing literature on language evolution (e.g. Briscoe, 2002; Christiansen & Kirby,

2003; Hurford, Studdert-Kennedy, & Knight, 1998). The key idea motivating much of this work is

that language change can be understood as a process of cultural evolution, with languages

themselves being subject to evolutionary forces. Accounts of language evolution differ in the kind

of forces they see as fundamental, appealing to analogues of the forcesof selection, mutation, and

genetic drift that appear in biological evolution. For example, accounts focusing on selection

consider the consequences of a language for the “fitness” of its speakers – that is, their tendency to

produce further speakers of that language (e.g., Komarova, Niyogi, &Nowak, 2001; Nowak,

Komarova, & Niyogi, 2001, 2002).

While explanations of the properties of languages based on the fitness of their speakers are

intuitively appealing, it is important to take into account the possibility that those properties could

be produced by other processes. In biology, the prominent role of selection in early evolutionary

theory has more recently been supplemented by the suggestion that much of the variation in the

genome is the consequence of mutation and genetic drift, the forces that govern the fidelity with

which genetic information is transmitted from one generation to the next (Kimura,1983). In the

case of language evolution, biological transmission is replaced by culturaltransmission, and in

particular, learning. Each person learns a language from the utterances produced by other people

who were once language learners themselves. The variation introduced by learning is the analogue

of mutation and genetic drift in language evolution, and it has been suggested that many of the

properties of human languages might simply arise from this process ofiterated learning(Brighton,
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2002; Briscoe, 2002; Kirby, 1999, 2001; Kirby & Hurford, 2002; Kirby, Smith, & Brighton, 2004;

Smith, Kirby, & Brighton, 2003).

In order to study the consequences of learners learning from other learners, Kirby (2001)

introduced theiterated learning model. In this model, the process of language evolution is

idealized as the transmission of languages over a sequence of discrete generations, each consisting

of one or more learners. The first learner sees some linguistic data, suchas a set of utterances, and

forms a hypothesis about the language that might have produced it. Using this hypothesis, the

learner generates a new set of utterances, which are provided to the next learner as data. This

process continues, with each learner seeing data, forming a hypothesis,and generating data for the

next learner, as illustrated schematically in Figure 1 (a). Formalizing the process of iterated

learning in this way makes it possible to analyze its predictions for language change (e.g.,

Brighton, 2002; Kirby, 2001; Smith et al., 2003).

Accounts of language evolution have the potential to shed light not just on the dynamics of

language change, but on the kinds of languages we might ultimately expect tobe produced by such

a process. One of the main applications of the iterated learning model has been attempting to

explain the origins of linguistic universals (e.g., Brighton, 2002; Kirby, 2001; Smith et al., 2003).

Human languages form a subset of all logically possible communication schemes, with certain

universal properties being shared by all languages. Some of these properties concern the

fundamental structure of language. For example, all human languages arecompositional: the

elements of utterances correspond to the elements of the events they describe (Krifka, 2001). Other

linguistic universals govern subtle and surprisingly specific aspects of the grammar of human

languages (Comrie, 1981; Greenberg, 1963; Hawkins, 1988).

Linguistic universals have traditionally been explained by appealing to innateconstraints

imposed by a system specific to the acquisition of language that is part of the human genetic

endowment (e.g., Chomsky, 1965). Universals are viewed as a manifestation of these innate

constraints. Iterated learning potentially provides an alternative explanation, suggesting that
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properties such as compositionality can emerge as a consequence of many generations of learners

applying general-purpose learning algorithms. In particular, explanations of linguistic universals

based upon iterated learning have tended to focus on the idea that the finite amount of information

that can be communicated from one speaker to another imposes a “bottleneck” on the transmission

of language between generations. If particular properties of languages make it easier to pass

through that bottleneck, then many generations of iterated learning might allowthose properties to

become universal. For example, it has been argued that the regular structure of compositional

languages means that they can be learned from less data, and are thus more likely to pass through

the information bottleneck (Brighton, 2002; Kirby, 2001; Smith et al., 2003).

The central role of iterated learning in language evolution suggests that weshould attempt to

develop a deeper understanding of its implications. In particular, the possibility that iterated

learning with general-purpose learning algorithms might explain linguistic universals requires

determining the consequences of iterated learning for learners with different kinds of inductive

biases. Previous work has explored the influence of language acquisition on language evolution via

a number of avenues (Briscoe, 2002), including simulation of language learners (Kirby, 2001;

Brighton, 2002; Smith et al., 2003) and use of formal models of population dynamics (Komarova

et al., 2001; Niyogi & Berwick, 1995, 1997a, 1997b; Nowak et al., 2001, 2002; Nowak, Plotkin, &

Jansen, 2000). These approaches indicate that languages with specific properties, such as

compositionality, can be produced by iterated learning with specific learning algorithms. However,

there are no general results indicating the consequences of iterated learning for arbitrary properties

of languages or broad classes of learning algorithms.

In this paper, we present a detailed analysis of iterated learning for the case where the

learners are rational Bayesian agents. Assuming that our learners useBayes’ rule allows us to

characterize their biases through a prior probability distribution over hypotheses. We consider two

learning algorithms based on Bayesian inference: sampling from the posterior distribution over

hypotheses, and choosing the hypothesis that has maximum posterior probability. In both cases,
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the consequences of iterated learning are strongly influenced by the prior of the learners. When

learners sample, iterated learning results in convergence of the probabilitythat a learner speaks a

particular language to the prior probability the learner assigns to that language. This convergence

occurs regardless of the nature of the languages or the amount of data available to each learner,

indicating that iterated learning can produce systematic results in the absenceof an information

bottleneck effect. The consequences of iterated learning when learners maximize are more

complicated, with the amount and accuracy of the data passed between learners playing an

important role, but are still governed by the prior distribution assumed by thelearners. We also

show that iterated learning with sampling and maximizing each correspond to algorithms that are

widely used in statistics, providing a rich source of further formal results.

The plan of the paper is as follows. Section 2 formally defines iterated learning, and

presents some general results characterizing its consequences. Section 3 introduces the basic ideas

behind Bayesian inference, and how these ideas apply to modeling language acquisition. Section 4

presents our results on the consequences of iterated learning when learners sample languages from

their posterior distributions. Section 5 considers the case where learnerschoose the hypothesis

with greatest posterior probability. Section 6 illustrates the predictions of this account by

discussing an example of iterated learning in detail: the emergence of compositionality. Section 7

shows how this framework can be extended to characterize the consequences of iterated learning in

an unbounded population of Bayesian learners. Section 8 concludes thepaper, considering the

implications of these results for understanding language evolution and processes of cultural

transmission more generally.

2. Analyzing iterated learning

LetD denote the set of data,d, that a learner might observe, andH denote the set of

hypotheses,h, that the learner might entertain about the origins of those data.1 In the case of

language learning, each hypothesish ∈ H is a language, and the datad ∈ D are a set of utterances.
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Each learner has alearning algorithmthat specifies a procedure for choosing a hypothesish upon

observing datad, and aproduction algorithmthat specifies a procedure for choosing new datad

given a hypothesish. Each learning algorithm,LA, defines a probability distribution over

hypotheses given data,PLA(h | d), and each production algorithm,PA, defines a probability

distribution over data given hypotheses,PPA(d |h). In the following analyses, we will assume that

all learners use the same learning and production algorithms.

Simulations of iterated learning are typically conducted in a setting where each generation

consists of a single learner who receives data produced by the learnerin the previous generation

(Brighton, 2002; Kirby, 2001; Smith et al., 2003). Thus, the first learner sees datad0, samples a

hypothesish1 from PLA(h1 | d0), and generates new datad1 from PPA(d1 |h1). These data are

provided to the second learner, and the process continues, with thenth learner sampling a

hypothesis fromPLA(hn | dn−1), and generating new data fromPPA(dn |hn). This defines a

stochastic process on the variablesd0, d1, . . . andh1, h2, . . ., as illustrated in Figure 1 (b).

Using this formal framework, we can be precise about the questions we aimto answer by

analyzing iterated learning. To model language change, we need to understand thedynamicsof

iterated learning: how the distribution overhn anddn changes as a function of time. To evaluate

the predictions that iterated learning makes about linguistic universals, we need to understand its

asymptotic behavior: what the distribution onhn anddn will be after many generations (that is, as

n becomes large). We can answer both of these questions by analyzing the stochastic process

defined by iterated learning using mathematical results characterizing the behavior of Markov

chains. Before outlining the relevance of these results to iterated learning,we will briefly

summarize the properties of Markov chains. More detailed introductions areprovided by

Rosenthal (1995), Norris (1997), and Kemeny and Snell (1983).
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2.1. A brief introduction to Markov chains

A Markov chain is a sequence of random variablesv0, v1, . . . such that

P (vn | v0, v1, . . . , vn−1) = P (vn | vn−1) (1)

meaning thatvn is independent of all of its predecessors, givenvn−1. We will restrict our attention

to finite Markov chains, where each state of the Markov chainvn is an element of a discrete setV,

with k members. We will index the elements of this set usingi, j ∈ {1, . . . , k}. A Markov chain is

homogeneousif P (vn | vn−1) is constant for all values ofn. In this case, we can fully describe the

Markov chain with atransition matrixT = (tij), such that

tij = P (vn = i | vn−1 = j) (2)

wherei andj are states of the Markov chain. SinceP (vn = i | vn−1 = j) is a probability

distribution,
∑k

i=1 tij = 1.

The dynamics of a finite Markov chain can be characterized using linear algebra. Let

p0 = (p0j) be a vector encoding our knowledge about the initial state of the Markov chain, with

p0j = P (v0 = j). Then we can write

P (v1 = i |p0) =
∑

j

P (v1 = i | v0 = j)P (v0 = j |p0) (3)

=
k

∑

j=1

tijp0j (4)

whereP (v1 = i |p0) is shorthand for the probability thatv1 = i given thatp0 encodes the

distribution ofv0. If we usep1 to denote the distributionP (v1 = i |p0), we can write the result in

matrix form, with

p1 = Tp0 (5)

being the product of the matrixT and the vectorp0. Similarly, we can write

pn = Tnp0 (6)
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multiplying byT each time we add a new variable.

One way of understanding the asymptotic behavior of a Markov chain is to look for the

equivalent of “fixed points”. Thestationary distributionof a Markov chain with transition matrix

T is a distributionπ such that

π = Tπ (7)

meaning that the probability distribution over states at pointn is the same as the distribution over

states at pointn − 1. This distribution is “stationary” because once it has been reached, the

probability of a variable being in a particular state will remain constant. Drawingon linear algebra

once again, Equation 7 identifiesπ as aneigenvectorof the matrixT with aneigenvalueof 1. The

requirement that
∑k

i=1 tij = 1 means thatT is a stochastic matrix, so its largest (or “first”)

eigenvalue,λ1, is 1, makingπ the first eigenvector ofT. A standard result in the theory of Markov

chains indicates that the asymptotic distribution over states of the chain will approach the stationary

distribution asn becomes large, regardless of the initial state of the chain. More formally,

lim
n→∞

Tnp0 = π (8)

for anyp0, implying thatlimn→∞ P (vn|v0) = π(vn) for anyv0. The rate of convergence depends

on the magnitude of the second eigenvalue,λ2, decreasing as|λ2| increases towards1 (a simple

proof is provided by Rosenthal, 1995).

Equation 8 makes it straightforward to determine the asymptotic behavior of a Markov

chain: we need only find the first eigenvector of the transition matrix, which can be done using a

variety of analytic and numerical methods (e.g., Stewart, 1994). However,there is one caveat on

this convergence result: the Markov chain needs to beergodic. Markov chains with finite state

spaces are ergodic if they satisfy two conditions, beingirreducibleandaperiodic. A Markov chain

is irreducible if every state has a non-zero probability of ever reaching every other state after some

finite number of iterations. It is aperiodic if the greatest common divisor of thetimes at which it is

possible for a state to return to itself is1 for all states.
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The most common way in which ergodicity is violated is through the existence of “sinks” –

states (or sets of states) that the chain enters but never leaves (in violationof irreducibility). A

chain with multiple sinks will eventually become stuck in one of them. The probability of entering

a particular sink will depend on the initial state, so the asymptotic independenceimplied by

Equation 8 does not hold. However, it is easy to check whether any finite Markov chain is ergodic

by finding the eigenvalues of the transition matrix: a Markov chain is ergodic ifand only if it has

just one eigenvalue of unit magnitude (see Rosenthal, 1995). Even if the underlying chains are not

ergodic, predictions can still be made about the asymptotic probability of different states, although

they require using more sophisticated tools for the analysis of Markov chains (e.g. Kemeny &

Snell, 1983).

2.2. Markov chains on hypotheses and data

If we can reduce a stochastic process to a Markov chain, we have gonea long way towards

understanding its properties: its dynamics are specified by Equation 6, andits asymptotic behavior

is characterized by Equation 8. We now return to the stochastic process defined by iterated

learning, showing that we can obtain answers to our questions about the consequences of iterated

learning by reducing it to two Markov chains: a Markov chain on hypotheses, and a Markov chain

on data.

A standard way to analyze probabilistic models is to consider the consequences of summing

out a subset of the random variables in the model. The iterated learning model outlined above

defines a joint probability distribution on both the data seen by learners and the hypotheses they

infer, P (d0, h1, d1, h2, . . .). Summing over all possible values for the data seen by each learner

defines a probability distribution on hypotheses alone,P (h1, h2, . . .). The dependencies among

these variables are shown in Figure 1 (c), taking the form of a Markov chain. The state space of

this Markov chain isH, and its transition matrix isQ = (qij), whose elements give the probability
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that a learner chooses hypothesisi after seeing data generated from hypothesisj,

qij = PLA,PA(hn = i |hn−1 = j) =
∑

d∈D

PLA(hn = i | d)PPA(d |hn−1 = j), (9)

wherePLA(hn = i | d) andPPA(d |hn−1 = j) are determined by the learning and production

algorithms respectively, as specified above. This Markov chain has a stationary distribution

θ = (θi) satisfying

θ = Qθ (10)

or, departing from vector notation for a moment,θi =
∑

j qijθj .

We can use a similar approach to derive a Markov chain on the data generated by the

learners. Summing over the hypotheses entertained by each learner, we obtain a probability

distributionP (d0, d1, . . .) with the dependency structure shown in Figure 1 (d), being a Markov

chain ond0, d1, . . .. The state space of this Markov chain isD, and the transition matrixR has

elementsrij indicating the probability that a learner produces datadn = i given that they saw data

dn−1 = j,

rij = PLA,PA(dn = i | dn−1 = j) =
∑

h∈H

PPA(dn = i |h)PLA(h | dn−1 = j). (11)

The stationary distribution of this Markov chain isρ = (ρi) such thatρ = Rρ.

The Markov chains on hypotheses and data induced by iterated learning can be used to

answer questions about its dynamics and asymptotic behavior. The process of language change can

be predicted using the transition matricesQ andR. The properties of the languages produced by

iterated learning are indicated in the stationary distributionsθ andρ, providing the underlying

Markov chains are ergodic. The conditions for ergodicity have intuitive interpretations in the

context of iterated learning. For example, the Markov chain on hypotheses would not be ergodic if

there existed more than one language such that once a learner had chosen that language every

subsequent learner would also select that language (i.e., the language acts as a sink).
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2.3. An example: Two languages

To provide a concrete illustration of the ideas introduced in the previous section, we will

work through a simple example of iterated learning. Following a strategy adopted by Niyogi and

Berwick (1995, 1997a, 1997b), we will consider the case where learners are faced with a choice

between two languages,L1 andL2. In this case, the transition matrixQ has four elements

Q =







q11 q12

q21 q22






(12)

whereqij is defined in Equation 9, withh = i being the hypothesis that the language isLi. q11 and

q22 represent the probability that each language is faithfully transmitted from one learner to the

next, whileq21 andq12 indicate failures of transmission, being the probability that a learner

acquiresL2 from data produced fromL1 and the probability that a learner acquiresL1 from data

produced fromL2 respectively.

With just two languages, it is easy to find the stationary distribution of the Markov chain.θ

will be a distribution over just two languages, withθ1 being the probability thath = 1 andθ2 being

the probability thath = 2. By the definition of the stationary distribution, we have

θ1 = q11θ1 + q12θ2 (13)

from which we obtain

θ1 =
q12

q12 + q21
(14)

by exploiting the fact thatq21 = 1 − q11, q12 = 1 − q22, andθ2 = 1 − θ1. Thus, the stationary

probability of each of the two languages is determined by the relative fidelity withwhich those

languages are transmitted.

Finally, we can compute the eigenvalues ofQ. SinceQ is a2 × 2 matrix, it has two (not

necessarily unique) eigenvalues. The first eigenvalue,λ1, is 1, sinceQ is the transition matrix of a

Markov chain, and corresponds to the eigenvector defined by Equation14. The second eigenvalue
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is given by

λ2 = 1 − q12 − q21 (15)

and corresponds to the eigenvector(1,−1)T . The second eigenvalue thus gets closer to1 asq12

andq21 get closer to zero, slowing convergence of the Markov chain to its stationary distribution,

because it becomes difficult to move between states. Whenq12 = q21 = 0 there is no movement

between languages across generations, and both languages act as a sink. The language spoken by

thenth generation is thus completely determined by the language spoken by the firstlearner. The

Markov chain is thus not ergodic, and this is reflected in the fact thatλ2 = 1. This simple example

can also be used to illustrate the other way in which ergodicity can be violated. If q12 = q21 = 1,

then every generation speaks a different language from that which preceded it. In this case, the

language spoken by thenth learner is completely determined by the language spoken by the first

learner and the parity ofn. Applying Equation 15 givesλ2 = −1, so the magnitude of the second

eigenvalue is|λ2| = 1, consistent with the fact that the Markov chain is not ergodic.

2.4. Summary

Formalizing iterated learning makes analyzing its consequences straightforward. The

reduction of iterated learning to a Markov chain allows us to determine its dynamics and

asymptotic behavior by computing a transition matrix and finding its first eigenvector. For

example, in the case of the Markov chain on hypotheses, we want the transition matrixQ and the

probability distributionθ that satisfies Equation 7. The first eigenvectorθ can be computed

numerically for any choice of learning and production algorithms, providedthe state space,H, is

small or the transition matrix,Q, is sparse. Stronger assumptions about the learning and

production algorithms make it possible to go beyond these general results and obtain analytic

expressions forθ. In previous work, this has been done for two simple learning algorithms: one

that memorizes the data, and one that has no memory at all (Komarova et al., 2001; Nowak et al.,

2001, 2002; Komarova & Nowak, 2003). However, these previous analyses assumed that all
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languages are equally similar to one another, and only allowed a very coarse characterization of the

biases of learners via the size of the set of languages being considered. In the remainder of this

paper, we derive analytic results that apply to a broad class of learning algorithms which can

incorporate a variety of biases for arbitrarily related sets of languages.Our analysis is based upon

the assumption that the learners are Bayesian agents.

3. Iterated learning with Bayesian agents

Bayesian agents use a principle of probability theory, called Bayes’ rule,to infer the process

that was responsible for generating some observed data. Assume that a learner has aprior

probability distribution,P (h), that encodes that learner’s biases by specifying the probability the

learner assigns to the truth of each hypothesish ∈ H before seeingd. Bayes’ rule states that the

probability that an agent should assign to each hypothesis after seeingd – known as theposterior

probability,P (h | d) – is

P (h | d) =
P (d |h)P (h)

P (d)
(16)

whereP (d |h) – thelikelihood– indicates how likelyd is under hypothesish, andP (d) is the

probability ofd averaged over all hypotheses,

P (d) =
∑

h∈H

P (d |h)P (h) (17)

which is sometimes called theprior predictive distribution.

There are several arguments for exploring iterated learning with Bayesian agents. First,

Bayes’ rule is a fundamental principle of rational action in statistics and economics (e.g., Savage,

1954; Jaynes, 2003; Robert, 1994), and is used in a variety of models of human cognition (e.g.,

Anderson, 1990; Chater & Oaksford, 1999; Oaksford & Chater, 1998; Tenenbaum & Griffiths,

2001). Consequently, our analyses will have a direct connection to formal models of learning and

decision-making that are already used to explain human behavior. Second, algorithms based on

Bayesian inference are widely used for learning different aspects oflanguage in computational
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linguistics (e.g., Manning & Scḧutze, 1999), and previous work on iterated learning has examined

algorithms which have a direct Bayesian interpretation, such as minimum description length

(Brighton, 2002; Smith et al., 2003). Finally, Bayes’ rule makes the biases of learners explicit,

encoding those biases in a prior probability distribution over hypotheses. Using Bayesian agents

thus provides us with a direct way to explore the influence of the biases of learners on the

consequences of iterated learning.

We can use Bayes’ rule to model language acquisition by assuming that eachhypothesish is

a language, and the datad are a set of utterances sampled from the target language.2 The

likelihood,P (d |h), indicates the probability of observing a particular set of utterancesd if the

languageh were the target. If we assume that the learners have accurate knowledgeof the

production algorithm in use, the probability they should associate withd if the target language ish

is simply the probability ofd under that production algorithm,PPA(d |h). Applying Bayes’ rule,

we have

P (h | d) =
PPA(d |h)P (h)

PPA(d)
(18)

where

PPA(d) =
∑

h∈H

PPA(d |h)P (h). (19)

The specific values ofP (h | d) will be determined by the prior,P (h). The assumption that all

learners share the same learning algorithm (made above, to guarantee thatour Markov chain is

homogeneous) requires that all learners share the same prior.

3.1. Interpreting priors, hypotheses, and data

The standard interpretation of the prior,P (h), as representing the extent to which the learner

believes in a hypothesis before seeing any data is perhaps not the best way to understand the role

that it plays under this view of language acquisition. The prior is better seenas determining the

amount of evidence that a learner would need to see in order to adopt a particular language.

Thinking of the prior as expressing the amount of evidence a learner would need in order to choose
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a particular language makes it clear how it can encode the biases of learners: only hypotheses with

positive prior probability will enter into consideration, and hypotheses with higher prior

probabilities are easier to learn (requiring less evidence, and ultimately less data).

Our formal analyses will not make a commitment to the nature of the prior, the hypotheses,

or the data. Consequently, they are consistent with many different approaches to modeling

language acquisition, from artificial neural network models (Rumelhart & McClelland, 1986), in

which the hypotheses are continuous functions represented by the weights of a network (MacKay,

1995; Neal, 1992), to parameter-setting models, in which hypotheses are configurations of a small

number of discrete parameters (Gibson & Wexler, 1994; Niyogi & Berwick, 1996). The Bayesian

framework is not supposed to be interpreted as a statement of the mechanisticprocess by which

language acquisition takes place, with learners maintaining a hypothesis space in their heads and

updating a distribution over those hypotheses. Rather, it is acomputational levelanalysis (Marr,

1982), as is generally emphasized in rational models of cognition (Anderson, 1990; Chater &

Oaksford, 1999; Oaksford & Chater, 1998), focusing on the abstract computational problem and a

method for solving that problem. So long as the actual process underlying language acquisition

approximates this solution, our results will have implications for understandinghuman behavior.

Finally, it is important to note that the prior distribution assumed by a learner should not be

interpreted as reflecting innate constraints specific to language acquisition.The prior simply

collects together all of the factors affecting how easily a learner will come to entertain a particular

hypothesis. There are many such factors other than language-specificinnate constraints: data from

other domains that is independent of the observed linguistic data given a hypothesis about the

structure of language, but nonetheless affects the beliefs that the learner entertains about that

structure; information-processing constraints, such as limitations on workingmemory; or the

inductive bias associated with some kind of general-purpose learning algorithm. Every learning

algorithm assumes some kind of inductive bias, and this bias is essential to the success of the

algorithm (Kearns & Vazirani, 1994; Geman, Bienenstock, & Doursat, 1992; Vapnik, 1995).
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3.2. Applying Bayes’ rule with just two languages

We can illustrate how Bayes’ rule can be used to model language acquisition by returning to

the case where learners are faced with a choice between just two languages. For the purpose of

illustration, and in accord with previous work on iterated learning (Kirby, 2001; Brighton, 2002;

Smith et al., 2003), we will assume that each language is a mapping from meanings to utterances.

The datad consist of a set of a single input,x, and corresponding output,y, and hypothesesh are

probability distributions overy for eachx. Thenth learner sees data,dn−1 = (xn−1, yn−1), and

then generates an outputyn in response to a new inputxn.

To keep the example as simple as possible, we will assume that outputsy can only take two

values, which we will denote0 or 1. To slightly abuse an example introduced by Quine (1960), we

might imagine that both languages contain only a single utterance – “Gavagai!”– which is made in

response to the presence of some objects (y = 1), but not for others (y = 0). We will useX to

denote the set of objects, andG1 andG2 to denote the sets of values ofx ∈ X for whichy = 1 for

the languagesL1 andL2 respectively. UsingS to denote the subset of the values ofx on which the

two languages agree, we haveS = (G1 ∩ G2) ∪ (G1 ∩ G2). The relationship among these sets is

illustrated in Figure 2.

Applying Bayes’ rule (Equation 18) requires us to specify the productionalgorithm and

prior. We assume that the production of an(x, y) pair involves two stages: an objectx is sampled

from the world according to some distributionP (x) that is constant across the two languages, and

a learner then produces the appropriate value ofy with probability1 − ε, whereε is small (and

definitely less than0.5).3 Consequently, we have

PPA(d = (x, y) |h = i) =











P (x)(1 − ε) if y = I(x ∈ Gi)

P (x)ε otherwise
(20)

whereI(·) takes the value1 when its argument is true, and0 otherwise. As a prior, we will assume

thatP (h = 1) = α andP (h = 2) = 1 − α, where0.5 < α < 1 (i.e., both hypotheses have

positive prior probability, butL1 is favored by the prior).
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The posterior distribution over hypotheses given an observed(x, y) pair breaks down into

three cases. The first case is wherex ∈ S, and both languages make the same prediction about the

value ofy. Consequently,PPA(d |h) is constant, and the posterior probability thath = 1 is simply

the prior probability,α. The second case is wherex ∈ (G1 − G2) andy = 1, or x ∈ (G2 − G1) and

y = 0. The posterior probability thath = 1 is then

P (h = 1 | d) =
(1 − ε)α

(1 − ε)α + ε(1 − α)
(21)

which will favor L1 overL2. The third case is when the values ofy are reversed (that is, if

x ∈ (G1 −G2) andy = 0, orx ∈ (G2 −G1) andy = 1). The posterior probability thath = 1 is then

P (h = 1 | d) =
εα

εα + (1 − ε)(1 − α)
(22)

which will favor L1 only if ε > 1 − α.

This example illustrates how the prior probability of a language can be interpreted as the

amount of evidence that needs to be seen for a learner to choose that language. According to

Bayes’ rule (Equation 16), the posterior probability of a language is simply the normalized product

of the likelihood and prior. If we see a set of utterancesd such thatP (d |h = 2) > P (d |h = 1),

thend provides evidence forL2 overL1. This is exactly the third case mentioned in the previous

paragraph, where the value ofy for the observedx is consistent withL2 but notL1. However, the

posterior distribution will only favorL2 overL1 if P (d |h = 2)P (h = 2) >

P (d |h = 1)P (h = 1). Thus, if the prior strongly favorsL1 overL2, we need to see evidence that

is strongly in favor ofL2 to even consider it a possibility. Hence the condition onε: the observed

data have to be sufficiently unlikely under the hypothesis that the target language isL1 to

overwhelm the prior.

3.3. Summary

Bayesian inference allows us to characterize how learners should update their beliefs about

hypotheses in the light of data, and makes the inductive biases of learnersexplicit through the use
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of a prior distribution. However, the idea that learners use Bayes’ rule does not directly identify a

learning algorithm of the form required for our analysis of iterated learning. By our definition, a

learning algorithm has to specify the probability with which a learner selects a hypothesis after

observing datad. In the remainder of the paper, we will analyze iterated learning using two

learning algorithms based on Bayesian inference: sampling from the posterior distribution over

hypotheses, and choosing the hypothesis with greatest posterior probability.

4. Sampling from the posterior distribution

The simplest way to translate a posterior distribution over hypotheses into a learning

algorithm is to assume that learners sample hypotheses according to their posterior probability.

That is,

Psamp(h | d) = P (h | d) (23)

whereP (h | d) is defined in Equation 18. This approach postulates that learners engagein a form

of “probability matching”, with their choices directly reflecting their posterior distribution.

Probability matching is a robust phenomenon observed in human learning (reviews are provided by

Myers, 1976 and Vulkan, 2000), and is commonly assumed in cognitive modeling. Response

probabilities are often taken as directly corresponding to posterior probabilities in Bayesian models

of cognition (e.g., Anderson, 1990; Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003), and a

similar assumption appears in a variety of models of categorization and choice behavior in the

guise of Luce’s (1959) choice rule (Ashby, 1992; Ashby & Maddox,1993; Ashby &

Alfonso-Reese, 1995; Kruschke, 1992; Nosofsky, 1986, 1987).

Analyzing sampling from the posterior distribution can also be motivated from the

perspective of Bayesian statistics. The posterior distribution encodes a great deal of information,

which can be lost by selecting only a single hypothesis. The best way to makeaccurate predictions

is to use all of this information, averaging over hypotheses (e.g., Hoeting, Madigan, Raftery, &

Volinsky, 1999). Thus, a learner who has seen datadn−1 and wants to predict datadn should
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compute

P (dn | dn−1) =
∑

h∈H

P (dn |h)P (h | dn−1) (24)

wheredn anddn−1 are taken to be independent conditioned onh. This strategy of hypothesis

averaging is widely used in Bayesian models of cognition (e.g., Anderson, 1990; Shepard, 1987;

Tenenbaum & Griffiths, 2001). While we generally assume that each learner selects a single

hypothesis, our analysis of the Markov chain on data that results from theassumption that learners

sample from the posterior distribution also applies to the case where learnersaverage over

hypotheses, since the definition of the transition matrixR in Equation 11 remains the same

whetherh is sampled or summed out analytically.

4.1. The evolution of hypotheses and data

We can now formally analyze the consequences of iterated learning, calculating the

transition matrices and stationary distributions for the Markov chains on hypotheses and data. We

will consider these two cases in turn.

For the Markov chain on hypotheses, with transition matrixQ defined in Equation 9, taking

θi = P (h = i) satisfies the definition of the stationary distribution given in Equation 10, with

θ = Qθ. Specifically, we have

P (hn = i) =
∑

j

Psamp,PA(hn = i |hn−1 = j)P (hn−1 = j) (25)

=
∑

j

∑

d∈D

Psamp(hn = i | d)PPA(d |hn−1 = j)P (hn−1 = j) (26)

=
∑

d∈D

Psamp(hn = i | d)
∑

j

PPA(d |hn−1 = j)P (hn−1 = j) (27)

=
∑

d∈D

Psamp(hn = i | d)PPA(d) (28)

=
∑

d∈D

PPA(d |hn = i)P (hn = i)

PPA(d)
PPA(d) (29)

= P (hn = i)
∑

d∈D

PPA(d |hn = i), (30)
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where Equation 28 uses Equation 19 and Equation 29 uses Equations 23 and 18. Since

PPA(d |hn = i) is a probability distribution overd for any production algorithmPA, the sum in

the last line evaluates to1, providing our result.

The stationary distribution of the Markov chain on hypotheses is thus the prior distribution.

Using the results on the convergence of Markov chains summarized in Section 2.1, this gives a

simple characterization of the asymptotic behavior of iterated learning: the probability that a

learner entertains a particular hypothesish will converge to the prior probability of that hypothesis,

P (h), as the number of learners in the chain increases. Thus, in the case of language evolution, the

probability that a learner speaks a particular language will converge to theprior probability of that

language, and the distribution over languages will directly reflect the inductive biases of the

learners.

An analogous result can be obtained for the Markov chain on data. For the transition matrix

R defined in Equation 11, takingρi = PPA(d = i), the prior predictive distribution specified in

Equation 19, satisfiesρ = Rρ. Specifically, we have

PPA(dn = i) =
∑

j

Psamp,PA(dn = i | dn−1 = j)PPA(dn−1 = j) (31)

=
∑

j

∑

h∈H

PPA(dn = i |h)Psamp(h | dn−1 = j)PPA(dn−1 = j) (32)

=
∑

j

∑

h∈H

PPA(dn = i |h)
PPA(dn−1 = j |h)P (h)

PPA(dn−1 = j)
PPA(dn−1 = j) (33)

=
∑

j

∑

h∈H

PPA(dn = i |h)PPA(dn−1 = j |h)P (h) (34)

=
∑

h∈H

PPA(dn = i |h)P (h)
∑

j

PPA(dn−1 = j |h) (35)

=
∑

h∈H

PPA(dn = i |h)P (h), (36)

where Equation 33 uses Equations 23 and 18 and Equation 35 uses the fact thatPPA(dn−1 = j |h)

sums to1 over alldn−1. The result is the definition ofP (dn = i) from Equation 19.

This analysis of the behavior of the Markov chain on data complements our analysis of the

Markov chain on hypotheses, indicating that the stationary distribution is the prior predictive
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distribution. Consequently, the probability that a learner produces datad converges to the

probability thatd would be produced by sampling a hypothesis from the prior and then sampling

data according to that hypothesis. In the case of language evolution, this means that the distribution

over utterances produced by a learner will ultimately be the distribution we would expect if

learners were simply sampling languages according to their prior.

The stationary distributions of these two Markov chains indicate that iterated learning

converges to the prior when learners sample from their posterior distributions. An intuitive

explanation for this result is that the inference made by each learner provides another opportunity

for the prior to affect the distribution over hypotheses. The data seen bythe first learner or the

hypothesis they entertain will affect the conclusions drawn by the next few learners, but is

ultimately only a single piece of information, while the prior asserts its effect on each iteration.

Thus, the distribution over hypotheses should move closer to the prior on each iteration. Since the

only distribution over hypotheses that is invariant under this influence is theprior itself

(demonstrated formally through the fact that the prior is the stationary distribution for the Markov

chain on hypotheses), we should expect that iterated learning will remain at that distribution once it

has been reached.

4.2. Iterated learning by sampling and the Gibbs sampler

A deeper formal explanation for the consequences of iterated learning can be obtained by

noting a correspondence between iterated learning and a class of inference algorithms used in

Bayesian statistics. This requires considering another way of reducing the stochastic process that

iterated learning defines on both hypotheses and data to a Markov chain. If we choose to group the

hypothesis inferred by a learner and the data generated by that learnerinto a single variable, we

obtain the dependency structure shown in Figure 1 (e), which is a Markovchain on hypothesis-data

pairs. The state space of this Markov chain is the Cartesian product ofH andD, and the transition

matrix has elements corresponding toP (hn, dn |hn−1, dn−1) = PLA(hn | dn−1)PPA(dn |hn).
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Again, this Markov chain will converge to a stationary distribution, providedit satisfies the

conditions for ergodicity. Determining the stationary distribution is straightforward, as this Markov

chain takes a form commonly encountered in Markov chain Monte Carlo.

Bayesian statistics often requires working with complex probability distributions, which can

be hard to compute analytically. A standard solution to this problem is to apply the Monte Carlo

principle, drawing a set of samples from a distribution and performing calculations with those

samples rather than the distribution itself (excellent tutorials on Monte Carlo methods are provided

by Mackay, 2003, and Neal, 1993). However, sometimes even sampling from a distribution can be

difficult, particularly if the distribution is defined over a large state space. This has led to the

development of a variety of algorithms for generating samples from probability distributions using

Markov chains, which are known as Markov chain Monte Carlo (MCMC) algorithms (an

introduction to MCMC, as well as several applications, are given in Gilks, Richardson, &

Spiegelhalter, 1996).

The basic idea behind MCMC is to construct a Markov chain that has the distribution from

which one wants to sample as its stationary distribution. Thus, for a target distribution on a

variablev with k components,v = (v1, v2, . . . , vk), we would define a Markov chain with a state

space corresponding to the different values ofv and a transition matrix designed to produce the

target distibution,P (v) as its stationary distribution. The MCMC algorithm then samples a

succession of states from this Markov chain, each being a set of valuesfor v. Once this has been

done sufficiently many times for the Markov chain to converge to its stationary distribution, the

subsequent samples can be treated like samples fromP (v) (although the fact that these samples

are drawn from a Markov chain means that they will be correlated, making the effective sample

size smaller than the total number of samples).

One of the most common methods that is used to construct Markov chains that converge to a

particular stationary distribution isGibbs sampling(Geman & Geman, 1984). The Gibbs sampler

for a target distributionP (v) is the Markov chain defined by drawing each component ofv from
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its distribution conditioned on the current values of all other variables, withvi being drawn from

P (vi | v1, . . . , vi−1, vi+1, . . . , vk). There are a number of variants on this procedure, but one

standard method is to cycle through the variables in turn (this is called a “systematic scan” Gibbs

sampler). Thus, we would initialize the Markov chain by settingv1, v2, . . . , vk to some arbitrary

initial values, and then drawv1 from its distribution conditioned on the current values of

v2, v3, . . . , vk, thenv2 conditioned on the current values ofv1, v3, . . . , vk (including the newly

assigned value ofv1), and so forth. Each complete sweep through the variables constitutes one

iteration of the Markov chain, and this procedure is repeated until the Markov chain has converged

to its stationary distribution and the desired number of samples have been drawn.

To return to iterated learning, consider the Gibbs sampler for the target distribution

P (d, h) = PPA(d |h)P (h). The variable of interest is the hypothesis-data pair(d, h), having

componentsd andh, and the sampler would alternate between drawingh conditioned on the

current value ofd andd conditioned on the current value ofh. The corresponding conditional

distributions arePsamp(h | d) andPPA(d |h) respectively. Alternating between drawing from these

conditional distributions is exactly the procedure followed in iterated learning, with the Markov

chain defined by Gibbs sampling being that shown in Figure 1 (e). Consequently, the convergence

results for the Gibbs sampler apply to iterated learning, with the distribution overhypothesis-data

pairs converging toPPA(d, h). This relationship can also be used to derive the results for the

stationary distribution of the Markov chains on hypotheses and data presented in Section 4.1.

This demonstration that iterated learning is a Gibbs sampler is, to our knowledge, the first

instance of a connection between Markov chain Monte Carlo and human cognition. In addition to

offering insight into why iterated learning converges to the prior, it provides a source of further

formal results about the dynamics of iterated learning, thus helping to characterize the process of

language change. The rate of convergence of Markov chains induced by Gibbs sampling has been

extensively analyzed by statisticians (Geman & Geman, 1984; Liu, Wong, & Kong, 1995;

Schervish & Carlin, 1992; Tanner & Wong, 1987). These analyses indicate that the distance
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between the distribution over the state space aftern iterations and the target distribution decreases

geometrically withn, using some standard measures of the distance between probability

distributions. The same result carries over to iterated learning, indicating that each learner will

bring us ever closer to the prior. The analysis of MCMC algorithms is still an ongoing project in

statistics, and any further results characterizing the properties of Gibbs sampling will likewise have

implications for iterated learning.

4.3. Sampling from the posterior with two languages

We can illustrate some of the results outlined above by returning to our example with just

two languages. In this case, the probability with which a learner chooses a particular hypothesis,

defined in Equation 23, is given by the posterior distribution derived in Section 3.2. This

distribution was specified for three cases, corresponding to differentkinds of data a learner can see.

We can also compute the probability of generating data that match each of thesethree cases. For

either language, the probability of generating an(x, y) pair such thatx ∈ S is simply

s =
∑

x∈S P (x). The probability that we generate an(x, y) pair that corresponds to the second

case is(1 − s)(1 − ε) for hn−1 = 1 and(1 − s)ε for hn−1 = 2. Finally, the probability that we

generate an(x, y) pair that corresponds to the third case is(1 − s)ε for hn−1 = 1 and

(1 − s)(1 − ε) for hn−1 = 2.

Putting the results in the previous paragraph together with those from Section3.2 gives us

the transition probabilities for the Markov chain on hypotheses, as specified in Equation 9.

Summing over the three cases gives

q12 = αs +
(1 − ε)α

(1 − ε)α + ε(1 − α)
(1 − s)ε +

εα

εα + (1 − ε)(1 − α)
(1 − s)(1 − ε)

= α

[

s + (1 − s)(1 − ε)ε

(

1

α + ε − 2αε
+

1

1 − α − ε + 2αε

)]

(37)
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and

q21 = (1 − α)s +
(1 − ε)(1 − α)

(1 − ε)(1 − α) + εp
(1 − s)ε +

ε(1 − α)

ε(1 − α) + (1 − ε)α
(1 − s)(1 − ε)

= (1 − α)

[

s + (1 − s)(1 − ε)ε

(

1

α + ε − 2αε
+

1

1 − α − ε + 2αε

)]

. (38)

These two values specify the transition matrixQ, sinceq22 = 1 − q12 andq11 = 1 − q21.

Knowing the transition matrix allows us to characterize the dynamics and asymptotic

behavior of iterated learning. We can use Equation 6 to compute the probabilitythat a learner

acquiresL1 at each iteration given that the first learner spoke a particular language, producing the

results shown in Figure 3. We can compute the stationary distribution of the Markov chain using

Equation 14. The bracketed term in Equations 37 and 38 is constant across the two expressions, so

the stationary distribution hasθ1 = α (unlesss = 0 andε = 0). Thus, as indicated by the results

outlined above and illustrated in Figure 3, the probability that a learner choosesh = 1 converges to

its prior probability,α. From Equation 15, we find that the second eigenvalue is

λ2 = 1 −

[

s + (1 − s)(1 − ε)ε

(

1

α + ε − 2αε
+

1

1 − α − ε + 2αε

)]

(39)

which is less than1 unlesss = 0 andε = 0. Consequently, the Markov chain will be ergodic if

there is any agreement between the languages or any noise in production,since this makes it

possible to move between languages. Whens = 0 andε = 0 there is no agreement and no noise,

so it is impossible for a speaker of one language to generate data that are consistent with the other

language. In this case, both languages act as sinks and the Markov chain is not ergodic. Figure 3

shows that the rate of convergence increases asε increases, since this makes it easier to move

between languages, and this is reflected in the effect ofε onλ2.

4.4. Summary

When learners sample from their posterior distribution over hypotheses, theconsequences of

iterated learning are determined entirely by the biases of the learners. The probability that a learner

entertains a particular hypothesis will converge to the prior probability of that hypothesis, and the
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probability that a learner produces particular data will converge to the probability distribution over

data produced by choosing a hypothesis from the prior, and then generating data from that

hypothesis. The asymptotic outcome of iterated learning thus does not depend on the amount or

structure of the data seen by the learners, or the properties of the hypotheses those learners

consider, except insofar as those factors influence the prior probabilities assumed by the learners.

Before considering further conclusions we might draw from this case, we will examine the

consequences of what seems like a small change to our assumptions, considering what happens

when learners choose the hypothesis that has maximum posterior probabilityrather than sampling.

5. Choosing hypotheses with maximum posterior probability

While it may be the simplest, sampling from the posterior distribution is not the only way to

define a learning algorithm based on Bayesian inference. An alternativeis to assume that learners

select the hypothesis with the maximum posterior probability (known asmaximum a posteriorior

MAP estimation). If we letH∗(d) denote the set of hypothesesh∗ such that

h∗ = arg max
h

P (h | d) = arg max
h

PPA(d|h)P (h) (40)

for some datasetd, this learning algorithm is associated with the probability distribution

PMAP(h | d) =











1/|H∗(d)| h ∈ H∗(d)

0 otherwise
(41)

where|H∗(d)| is the size of the set of hypotheses with maximum posterior probability.

The strategy of selecting the hypothesis with the greatest posterior probability can be

justified from the perspective of Bayesian decision theory, as it maximizes the probability of

selecting the hypothesis from which the data were generated (e.g., Robert,1994). Thus, MAP

estimation is the scheme with the greatest fidelity of transmission of hypotheses across

generations. It is also consistent with the approach taken in previous work on iterated learning.

Some of this work has explicitly approached language acquisition as a problemof Bayesian
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inference (Kirby et al., 2004), while other work has considered algorithms based on minimum

description length (Brighton, 2002; Smith et al., 2003). The principle of maximizing the posterior

probability is equivalent to minimizing the length of the representation of a language in a particular

encoding scheme (this idea is explored in detail in Chater, 1996, and Li & Vitanyi, 1997). Other

learning algorithms, such as gradient descent algorithms for artificial neural networks, can also be

interpreted as a form of MAP estimation (MacKay, 1995; Neal, 1992).

Unfortunately, iterated learning by MAP estimation is more difficult to analyze than iterated

leaning by sampling from the posterior. However, as with sampling, it can be reduced to an

inference algorithm that is used in statistics, and for which some analytic results exist. We will

establish this correspondence and summarize the relevant results, and then turn to a more detailed

analysis of the case of iterated learning with just two languages that we haveused throughout the

paper. This example helps to highlight the differences between MAP estimationand sampling, and

provides some intuitions about the consequences of iterated learning by MAP estimation.

5.1. Iterated learning by MAP estimation and the stochastic EM algorithm

The correspondence between iterated learning by sampling and the Gibbs sampler suggests

that we might be able to analyze other cases of iterated learning by identifyingcorresponding

algorithms used in statistics. This strategy provides us with a way to analyze iterated learning by

MAP estimation, which corresponds to a variant on the expectation-maximization(EM) algorithm

(Dempster, Laird, & Rubin, 1977), which is widely used in modern statistics and machine learning.

An introduction to the EM algorithm is given by Bilmes (1997), and a more detailedtreatment

appears in McLachlan and Krishnan (1997).

The EM algorithm is typically used to obtain the maximum-likelihood estimate of the

parameters of a model that containslatent variables– variables that are involved in generating

data, but are not themselves observed. A classic example is a clustering problem, where we

observe the locations of a set of points, but do not know the clusters from which those points were
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generated or the parameters that characterize each cluster. The EM algorithm makes it possible to

estimate the cluster parameters even though we do not know the cluster assignments. It alternates

between two steps: an expectation (E) step, in which the probability distributionover cluster

assignments is computed, and a maximization (M) step in which the parameters of theclusters are

updated based on the probabilities with which the different points are assigned to those clusters.

More formally, assume we have observed datax, latent variablesz, and we useh to

represent a hypothesis about the parameters of the model.4 In the clustering problem mentioned in

the previous paragraph,x is the location of the points,z the cluster assignments, andh the cluster

parameters. Our goal is to obtain a maximum-likelihood estimate ofh, choosing the hypothesis

that maximizesP (x|h) (or, equivalently, the log-likelihoodlog P (x|h)). However, this is made

complicated by the involvement of the latent variables, since typically it is far easier to find the

parameters that maximizeP (x, z|h) thanP (x|h). If we knew the values of the latent variables, we

could findh easily, and if we knewh, we could work out the distribution on the latent variables.

The EM algorithm exploits this by alternating between adjusting the distribution on the latent

variables and the values of the parameters. On iterationn of the algorithm, the E step involves

computing the posterior distribution overz givenx and the previous choice ofh, P (z|x, hn−1),

and then taking the expectation oflog P (x, z|hn) with respect to this distribution for each

hypothesishn, to give

EP (z|x,hn−1) [log P (x, z|hn)] =
∑

z

P (z|x, hn−1) log P (x, z|hn). (42)

In the M step, we choose the value ofhn that maximizes this expectation. This procedure is

guaranteed to produce a series of estimates ofhn for whichP (x|hn) is non-decreasing (Dempster

et al., 1977; Neal & Hinton, 1998). If the set of hypotheses under consideration is continuous, the

EM algorithm converges to a local maximum (or saddle-point) ofP (x|h). With discrete

hypothesis spaces, the maximum-likelihood solution is one fixed point, but the algorithm can also

converge on other, suboptimal, hypotheses (Friedman, 1998).



Iterated learning 30

Performing the expectation in Equation 42 can be difficult, leading to the development of

approximate EM algorithms. In Monte Carlo EM (Wei & Tanner, 1990), the expectation is

approximated using samples fromP (z|x, hn−1), with

EP (z|x,hn−1) [log P (x, z|hn)] ≈
1

mn

mn
∑

`=1

log P (x, z(`)|hn) (43)

wheremn is the number of samples on iterationn, andz(`) is the`th sample of the latent variables

z. The number of samples,mn, typically increases withn, producing similar convergence

guarantees to those of the standard EM algorithm (Fort & Moulines, 2003;Sherman, Ho, & Dalal,

1999). However, some authors have also advocated algorithms in whichmn remains constant. The

case wheremn = 1 for all n is calledstochastic EM(Celeux & Diebolt, 1985; Diebolt & Ip, 1996).

The additional variability introduced by sampling in stochastic EM means that it is less

likely to get stuck in sub-optimal solutions, although the output of the algorithm isa distribution

over hypotheses rather than a single hypothesis. The sequence of hypotheses produced by

stochastic EM form a homogeneous Markov chain, and conditions for the ergodicity of this chain

have been established (Diebolt & Ip, 1996; Ip, 1994, 2002; Nielsen, 2000). Empirical and

theoretical results indicate that the stationary distribution over hypotheses produced by this

Markov chain is approximately centered on the maximum-likelihood solution, with a variance that

increases as a function of the rate at which the hypotheses change across iterations (Celeux &

Diebolt, 1985, 1988; Celeux, Chauveau, & Diebolt, 1995; Diebolt & Ip, 1996; Ip, 1994; Nielsen,

2000). A more precise characterization of the consequences of stochastic EM can be given in

special cases, such as estimating parameters for the kind of clustering problem introduced above

(Diebolt & Celeux, 1993; Nielsen, 2000), but there are no explicit results characterizing the

asymptotic behavior of stochastic EM when the set of hypotheses is discrete.

The EM algorithm and its variants can also be used to perform MAP estimation simply by

replacinglog P (x, z|hn) with log P (x, z|hn)P (hn) in Equation 42 or 43. The resulting algorithm

converges to a local maximum of the joint probabilityP (x|h)P (h) rather than the likelihood
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P (x|h). Since the posterior distributionP (h|x) is directly proportional toP (x|h)P (h), this is a

MAP solution. The stochastic EM algorithm for MAP estimation withmn = 1 would thus takehn

to be the value ofh that maximizesP (x, z|h)P (h) whenz is drawn from the distribution

P (z|x, hn−1), and converge to a stationary distribution approximately centered at the maximum of

P (h|x).

With this background in place, the correspondence between iterated learning by MAP

estimation and stochastic EM can be stated: iterated learning corresponds to stochastic EM in a

model where the data passed from one generation to the next,d, plays the role of the latent

variable,z, and there are no observations,x. In this case, the stochastic EM algorithm reduces to

takinghn to be the hypothesis that maximizesPPA(d|hn)P (hn) whend is drawn from the

distributionPPA(d|hn−1). This is exactly the procedure followed in iterated learning using MAP

estimation. Consequently, results characterizing the behavior of stochasticEM apply to this form

of iterated learning. Since this correspondence applies to the case wherethere are no observations,

x, the MAP solution is simply the maximum of the prior (with nox, the joint distribution ofx and

h is justP (h)). Thus, the stationary distribution over hypotheses produced by iteratedlearning by

MAP estimation should be approximately centered on the maximum of the prior, with avariance

that increases as a function of the rate at which hypotheses change across generations.

The relationship between iterated learning by MAP estimation and stochastic EM provides a

rough characterization of the consequences of iterated learning: the probability that a learner

acquires a particular language will converge to a distribution that emphasizes languages with high

prior probability. Unlike sampling, this distribution will be affected by the properties of the

languages involved and the amount of information transmitted between learners, with these factors

determining the amount of variation around the high probability languages exhibited by the

stationary distribution. As with our previous observation about the relationship between iterated

learning by sampling and the Gibbs sampler, this correspondence establishes a route by which

results in statistics can be used to gain a deeper understanding of the processes of language
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evolution.

5.2. MAP estimation with two languages

Identifying iterated learning by MAP estimation with the stochastic EM algorithm provides

an abstract characterization of its behavior. To obtain a deeper understanding of this process, we

will return to the example of iterated learning with two languages introduced in Section 2.3 and

embellished on in Sections 3.2 and 4.3. In this simple case we can determine the consequences of

iterated learning by MAP estimation directly, and give analytic results for the stationary

distribution and the rate of convergence that provide some valuable intuitions.

We established the fundamentals of Bayesian iterated learning with just two languages in

Section 3.2. We need only change the learning algorithm that is used to translate the posterior

distribution into the choice of a hypothesis, replacing sampling with maximizing. Thesame three

cases are relevant. Whenx ∈ S the posterior probability thath = 1 is simply the prior probability,

α. By assumption,α > 0.5, so the MAP hypothesis ish = 1. Thus, we should selecth = 1 with

probability1. In the second case,h = 1 is likewise dominant, asα > 0.5 andε < 0.5. However, in

the third case, which hypothesis has highest posterior probability depends on the relative values of

α andε. We can write the transition probabilities as

q12 = s + (1 − s)ε + R

(

εα

εα + (1 − ε)(1 − α)

)

(1 − s)(1 − ε)

and

q21 = R

(

ε(1 − α)

ε(1 − α) + (1 − ε)α

)

(1 − s)(1 − ε)

whereR(·) is a rounding function, taking the value1 when its argument is greater than0.5, 0 when

its argument is less than0.5, and0.5 when its argument is exactly0.5.

Table 1 gives the values ofq12, q21, θ1, andλ2 under different conditions on the relationship

betweenα andε. L1 is almost always favored overL2, with the stationary probability thath = 1,

θ1, being greater than0.5 for anys > 0 becauseL1 is always chosen whenx ∈ S. When
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ε > 1 − α, there is so much uncertainty thatL1 is also able to dominate, being selected on every

iteration after the first (henceλ2 = 0, indicating the fastest rate of convergence possible). More

interesting results are obtained whenε < 1 − α. In this case, the preference forL1 gradually

decreases asε increases, as higher values ofε make it more likely that we will observe data that are

consistent withL2 being generated by speakers ofL1. In fact,θ1 is completely independent ofα

so long asε < 1−α, implying that a broad range of inductive biases will result in exactly the same

stationary distribution. The relationship betweens, ε, andθ1 is shown in Figure 4, under the

assumption thatε < 1 − α. The second eigenvalue,λ2, also decreases asε increases, indicating

that convergence to the stationary distribution becomes faster in the presence of more noise.

The differences between the results for MAP estimation outlined in this section and the

results for sampling presented in Section 4.3 are instructive. When learners sample from their

posterior distributions, the stationary probability thath = 1 is simply the prior probability,α, for

almost any amount of overlap between languages,s, and production noise,ε. The consequences of

iterated learning are thus determined entirely by the prior. When learners use MAP estimation, the

stationary probability thath = 1 is stable over a large range of values ofα (for 0.5 < α < 1 − ε),

but depends directly ons andε. The consequences of iterated learning are thus the same for many

priors, being determined by the overlap between languages and the amountof production noise.

5.3. Summary

While iterated learning by MAP estimation is harder to analyze than sampling from the

prior, we can obtain some insight into its consequences by observing a correspondence with the

stochastic EM algorithm and by analyzing specific cases. The results of these analyses indicate

that iterated learning by MAP estimation still favors languages with higher priorprobability, but

the stationary distribution depends on the nature of the hypotheses and the amount of noise. The

correspondence with stochastic EM provides a rough characterization of the stationary distribution

of iterated learning by MAP estimation, indicating that this distribution should be approximately
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centered on the hypotheses with greatest prior probability, but will exhibitvariance around these

hypotheses. Analyzing the case of just two languages provides an illustration of these general

trends: the stationary distribution favors the language with greatest prior probability,L1, but the

extent to which this is the case depends on the amount of noise in the data, as represented byε.

Whenε is higher, it is easier to move between hypotheses, and it is easier to generate data that

result in the acquisition ofL2.

6. An example: The emergence of compositionality

The results presented in the last two sections provide a characterization ofthe consequences

of iterated learning when Bayesian learners either sample from their posterior distribution or select

the hypothesis with the greatest posterior probability. In order to explore the implications of these

results for language evolution, we chose to examine their predictions in a setting that is closer to

that used in previous work on iterated learning. To this end, we simulated iterated learning in a

simplified version of a scenario that has been used in several papers exploring the emergence of

compositionality (Brighton, 2002; Kirby, 2001; Smith et al., 2003).

As in our two-language example, we model language acquisition as learning amapping

between meanings and utterances. The datad consist of a set ofm inputs,x = {x1, . . . , xm}, and

m corresponding outputs,y = {y1, . . . , ym}, and hypothesesh are probability distributions overy

for eachx. Thenth learner sees data,(xn−1,yn−1), and then generates outputsyn in response to

new inputsxn. Meanings and utterances each vary along two binary dimensions. This yields a

total of four meanings and four utterances, each corresponding to the set{00, 01, 10, 11}.

In acompositionallanguage, the mapping between meanings and utterances depends upon

their parts: the two dimensions of meanings are mapped onto the two dimensions ofutterances (for

simplicity, we assumed that the order is preserved), and the only uncertaintyis in which values

map to one another. There are22 = 4 such languages. In aholistic language, the mapping between

meanings and utterances is arbitrary, and a single word is chosen to represent each meaning
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without any constraints. There are44 = 256 such languages.H thus contains260 hypotheses, each

a mapping between meanings and utterances. For eachh ∈ H, we define the probability

distribution over outputsy given the inputx to be

P (y |x, h) =











1 − ε x maps toy in h

ε
3 otherwise

(44)

whereε is the error rate of production, as in our example with just two languages. The prior

probability of each hypothesis is

P (h) =











α
4 h refers to a compositional language

1−α
256 h refers to a holistic language

. (45)

This is ahierarchical prior, allocating a probability ofα to the set of compositional languages and

1 − α to the set of holistic languages, and then spreading this probability uniformly over the

hypotheses within those sets.

Since every language is simply a mapping from meanings to utterances,H includes four

holistic languages that each give the same mapping as one of the four compositional languages.

These languages make the same predictions about inputs and outputs, as determined by Equation

44, and thus cannot be discriminated by any data. Any advantage of the compositional languages

over their holistic counterparts results from the prior defined in Equation 45. If compositional and

holistic languages are equally probable a priori (α = 0.5), then the relatively small number of

compositional languages means that any particular compositional language ismore probable than

any particular holistic language. Consequently, it would be very unlikely to see a holistic language

that just happened to produce a compositional mapping. Asα becomes smaller, it becomes less

likely that one would see a compositional language at all, and a holistic language that just

happened to produce a compositional mapping becomes more plausible.

The transition matrix for the Markov chain on hypotheses,Q, for each algorithm can be

obtained by summing over all(x,y) pairs. Since there are(2222)m such pairs, this is intractable

for largem. Consequently, matrices form > 4 were computed approximately using Monte Carlo,
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with 1000 samples for each hypothesis. We computed transition matrices forα ∈ {0.01, 0.5},

ε ∈ {0.01, 0.05}, andm ∈ {1, 2, . . . , 10} for both sampling and MAP. We will discuss the results

for the two algorithms in turn.

6.1. Results for sampling from the posterior

The first column of Figure 5 shows a portion of some of the transition matrices produced by

sampling from the posterior. The second column shows 1000 iterations for four Markov chains

(initialized by choosingh1 uniformly at random), while the third and fourth columns (labeled

“Chain” and “Prior”) show the distribution over hypotheses from a singlesample of 10000

iterations from those chains and the priorP (h) respectively. Our theoretical results predict that the

asymptotic probability that a learner infers a particular language depends only on its prior

probability, and not on other properties of the language. This was confirmed by our simulations, as

can be seen by comparing Figure 5 (b) and (d). The Markov chain shown in Figure 5 (b) used

α = 0.5, and compositional languages appear with high frequency. The Markovchain shown in

Figure 5 (d) usedα = 0.01, and compositional languages appear only infrequently. As shown in

the third and fourth columns of the figure, the relative frequencies of the different languages

correspond closely to their prior probabilities. Thus, compositional languages are favored by

iterated learning only if they have high prior probability.

The results shown in Figure 5 (a)-(c) illustrate that the asymptotic probability that a

language is spoken is not affected by the amount of data seen by the learners. While the Markov

chain develops a greater tendency to remain in the same state asm increases, indicated by the

strong diagonal in the transition matrices and the length of the streaks in the samples, the relative

frequencies of the different languages remain the same. These relativefrequencies match the

corresponding prior probabilities, consistent with our mathematical analysis. Thus, the emergence

of languages with particular properties does not require a bottleneck on the amount of information

passed from one generation to the next.
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While the amount of data seen by the learners does not influence the asymptotic

consequences of iterated learning by sampling from the posterior, it doesaffect other properties of

the underlying Markov chain. Figure 6 (a) shows howλ2 is affected byα, ε, andm. As α brings

P (h) away from uniformity, it increases the probability that successive learners will share the

same hypothesis. This increase in the fidelity of transmission means that it will take longer to

move from an initial hypothesis to a hypothesis with higher probability under thestationary

distribution. As a consequence, convergence to the stationary distributionwill be slower, andλ2

increases asα increases.

Changingε andm also decreases the rate of convergence (and increasesλ2), as the data

received by each learner become more informative. Decreasingε increases the probability that a

learner produces a set of utterances consistent with their current hypothesis, and thus the

probability that the next learner will infer the same hypothesis. As a consequence, movement

between hypotheses is slower, convergence takes longer, andλ2 increases. Increasingm increases

the amount of information available to learners, reducing the chance that a misleading set of

utterances will be generated. Consequently, the probability that successive learners choose the

same hypothesis increases, slowing movement between hypotheses, decreasing the rate of

convergence, and increasingλ2. With largem, it is likely that a single hypothesis will be

maintained across several generations, as can be seen in Figure 5 (c).

The parametersα, m, andε also influence the relative stability of compositional and holistic

languages, assessed via the ratio of the mean probability that a particular compositional language

would appear as bothhn−1 andhn (i.e., the mean ofqii wherei is a compositional language) to the

corresponding mean probability for holistic languages. The effects ofm, α, andε on this ratio are

shown in Figure 6 (b). The stability ratio is strongly affected byα: if the prior probability of a

compositional language is high, it is more likely that a learner will acquire that language, and

consequently that language is more stable. The magnitude of this effect is modulated by the

number of datapoints,m, with α having the greatest effect whenm is small. Asm increases, the
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data begin to overcome the influence of the prior.5

6.2. Results for MAP estimation

Figure 7 shows the same quantities as Figure 5 for learners choosing the MAP hypothesis.

The results are quite different from the corresponding cases for learners sampling from the

posterior: the influence of the prior on the behavior of the Markov chainsis significantly increased.

Since every compositional language is also contained in the set of holistic languages, learners

never choose a compositional language when holistic languages have greater prior probability (i.e.

whenα = 0.01). The effect is less marked when compositional languages have higher prior

probability (i.e. withα = 0.5), since there are many holistic languages which are not dominated by

compositional languages, but the holistic languages are still far less common than in the chains

produced by sampling with the same values ofm andε.

A second qualitative difference from the results for sampling is that there are fewer

transitions between languages in the chains favoring compositional languages (i.e., withα = 0.5).

This occurs because if the compositional languages are the only hypotheses under consideration,

moving from one language to another requires generating data that are consistent with that

language. Because the compositional languages do not overlap, this requires errors in production.

The probability of such errors is set byε, and the chance of a compositional languge producing

data that are more consistent with another compositional language than itself decreases asm

increases. Because of this, the second eigenvalue of the transition matrix,λ2, for the chains with

α = 0.5 is consistently close to1, as shown in Figure 8 (a). The values ofλ2 whenα = 0.01 are

more comparable to those produced by sampling from the posterior, since it iseasier to move

between holistic languages.

Finally, unlike sampling from the posterior,m affects the asymptotic consequences of

iterated learning by MAP estimation. Looking just at the cases withα = 0.5, whenm = 1 only

compositional languages appear in the chain. This is because the evidenceprovided by a single
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utterance is insufficient to overwhelm the higher prior probability of compositional languages. The

probability of holistic languages under the stationary distribution is thus zero.While it is not

shown here, the same phenomenon occurs withm = 2. Whenm = 3, it finally becomes possible

to generate data that result in selection of holistic languages, and these languages have non-zero

probabilities under the stationary distribution. This trend is more pronouncedwhenm = 10, with

holistic languages appearing more often, albeit for short intervals before returning to a

compositional language. As with sampling from the posterior, increasingm also reduces the ratio

of the stability of compositional to holistic languages, following the trend shown inFigure 8 (b).

6.3. Summary

The simulations summarized in this section allowed us to analyze the consequences of

iterated learning by sampling from the posterior and by MAP estimation in a setting more

comparable to previous research. The results of these simulations bear out the predictions produced

by our theoretical analyses: both forms of Bayesian learning result in a distribution over languages

that reflects the inductive biases of learners, with the influence of the prior being emphasized by

MAP estimation. This setting also makes it possible for us to examine the effect ofthe number of

utterances,m, seen by each learner. As expected, this has no effect on the distribution over

languages ultimately produced by sampling from the posterior, although it does affect the rate of

convergence to this distribution. In contrast, when learners use MAP estimation the dominance of

languages with high prior probability is attenuated with larger values ofm, as it becomes possible

to generate sets of utterances that provide strong evidence for a language with low prior probability.

7. Population dynamics and iterated learning

The results we have discussed so far characterize the consequencesof iterated learning in a

setting where each generation consists of a single learner. However, several prominent analyses of

language evolution have focused a different setting, examining how the proportion of an

unbounded population that speaks a particular language changes in continuous time (Komarova
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et al., 2001; Nowak et al., 2001, 2002). Our results can be extended intothis setting, indicating

how iterated learning will affect the asymptotic proportion of a population thatlearns a particular

language.

Let pi denote the proportion of a population of learners entertaining hypothesisi at a given

momentt, andqij denote the probability that a learner chooses hypothesisi after seeing data

generated from hypothesisj, as defined in Equation 9. If we assume that each learner learns from a

random member of the population at the previous instant, then the population proportions evolve as

dpi

dt
=

∑

j

fjqijpj − φ pi, (46)

wherefj is thefitnessof speakers of languagej in a population with proportionsp = (pi),

φ =
∑

k fkpk, is the mean fitness, and the second term on the right hand side ensures that

∑

i pi = 1. This is the “language dynamical equation” explored by Nowak et al. (2001, 2002). In

such models, fitness is typically assumed to be a function of how well speakers of a particular

language can communicate with the population at large, implementing a selection pressure for

communication. If we assume that all speakers have equal fitness,fj = 1, Equation 46 simplifies to

dpi

dt
=

∑

j

qijpj − pi, (47)

which is a linear dynamical system. A special case of this model was analyzedby Komarova and

Nowak (2003).

The asymptotic behavior of this linear dynamical system is straightforward to analyze. By

settingdpi

dt equal to zero, we find that the population proportions will be in equilibrium for p such

thatpi =
∑

j qijpj , which is the same as the condition used to define the stationary distributionθ

in Equation 7. Consequently, this system has an equilibrium atp = θ. The properties of this

equilibrium depend on the eigenvalues of the matrixQ − I, whereI is the identity matrix. As

mentioned above, the largest eigenvalue ofQ will be 1, sinceQ is a stochastic matrix. Under

conditions analogous to those for the ergodicity of the Markov chain on hypotheses, this largest

eigenvalue will be unique. In this case,Q − I will have a single eigenvalue of0, and the real
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components of the remaining eigenvalues will be negative. It follows that theequilibriumθ

defined above is a sink, a unique asymptotically stable equilibrium to which the population

proportions will converge (Hirsch & Smale, 1974).6

Iterated learning with infinite populations evolving in continuous time thus displayssimilar

asymptotic behavior to iterated learning with discrete generations of single learners. The key

difference is in the nature of the quantities that converge: with discrete generations of single

learners, the probability that a particular learner entertains hypothesisi converges toθi; with an

infinite population evolving in continuous time, it is the proportion of the populationthat entertains

hypothesisi that converges toθi. Consequently, the results from the previous sections characterize

the consequences of iterated learning not just for individuals, but forpopulations. This provides an

additional justification for the use of the iterated learning model in studying language evolution: if

the stationary probability corresponds to the proportion of the population that learn a particular

language, estimates of the stationary distribution produced by running simulations with discrete

generations consisting of a single learner can be generalized to the level of populations.

8. Discussion

Studying iterated learning with Bayesian agents provides the opportunity to determine the

influence of the inductive biases of learners on language evolution. Ourresults indicate that these

inductive biases have a strong effect on the consequences of iteratedlearning. When learners

sample from their posterior distributions, the probability that a learner acquires a particular

language converges to the prior probability assigned to that language as iterated learning proceeds.

When learners choose the hypothesis with greatest posterior probability,iterated learning produces

in convergence to a distribution in which hypotheses with high prior probability dominate,

although the exact distribution depends on the amount of information transmittedbetween learners.

Furthermore, these results apply not just to the probability that individual learners acquire a

language, but to the proportion of the members of a population who will acquire that language.
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Our analyses provide simple conditions for determining when a particular property of

languages will emerge from iterated learning with Bayesian agents: that property will emerge if it

is favored by the prior. In the remainder of the paper, we explore some questions raised by these

results. First, we summarize the assumptions behind our analysis, and consider their

appropriateness. We then highlight some further results suggested by our analyses, and consider

how our results relate to previous work on iterated learning. Finally, we return to some of the

larger issues mentioned at the start of the paper, discussing their implicationsfor explaining

linguistic universals and language change.

8.1. Summary of assumptions behind analyses

Since the assumptions behind our analyses were introduced incrementally, itis worth taking

a moment to summarize those assumptions, and to consider their appropriateness in modeling

language evolution. Our formulation of iterated learning as a homogeneous Markov chain relied

upon two assumptions:

Assumption 1 All learners use the same learning algorithm,LA, and production algorithm,PA.

Assumption 2 We have a sequence of discrete generations of learners, with one learner per

generation who receives data produced by the previous learner.

These assumptions are standard in applications of the iterated learning model (e.g., Brighton, 2002;

Kirby, 2001; Smith et al., 2003). In Section 7, we showed that Assumption 2 can be replaced with

Assumption 2’ We have an infinite (or large) population of learners evolving in continuoustime,

where each learner receives data from a randomly selected member of thepopulation at the

previous instant.

which is consistent with models of population dynamics that have been applied to language

evolution (Komarova et al., 2001; Nowak et al., 2001, 2002).
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When the learning algorithm is specified by Bayesian inference, Assumption1 requires that

all learners share the same set of hypothesesH and the same prior distribution over those

hypotheses,P (h). We also assumed

Assumption 3 All learners have knowledge of the probability distribution over utterancesd

produced by use of the production algorithmPA for the languageh.

This assumption is used in specifying how Bayes’ rule is applied in language acquisition in

Equation 18. Essentially, it requires consistency between learning and production: that learners

produce utterances from the same probability distribution that they use in evaluating languages.

Again, assumptions of this kind are common in formulations of iterated learning in terms of

minimum descripton length (Brighton, 2002; Smith et al., 2003) or Bayesian inference (Kirby

et al., 2004).

Finally, our characterization of the dynamics and asymptotic behavior of iterated learning

required specification of the learning algorithm (as either sampling, specified by Equation 23, or

MAP estimation, specified by Equation 41), and the ergodicity of the underlying Markov chain. As

discussed in Section 2.1, ergodicity is straightforward to check for a finite Markov chain, and most

of the examples we have discussed are ergodic. The possibility remains thatnon-ergodic Markov

chains play an important role in language evolution, but our results indicate that many of the

properties emphasized in previous work on iterated learning are consistent with the asymptotic

behavior of ergodic Markov chains.

8.2. Language evolution and algorithms for statistical inference

A key feature of our analysis of iterated learning by both sampling and MAP estimation was

its correspondence to an algorithm used for statistical inference. In Section 4.2 we showed that

iterated learning by sampling from the posterior is a form of Gibbs sampling, a procedure that is

used for estimating the form of complex probability distributions. In Section 5.2 we showed that

iterated learning by MAP estimation corresponds to a variant of the EM algorithm, a procedure



Iterated learning 44

that is used for estimating the parameters of a model that contains latent variables. The fact that

this correspondence exists in both cases suggests that there may be a moregeneral relationship

between iterative estimation procedures and cultural evolution.

In some ways, the existence of a relationship between estimation algorithms and cultural

evolution should come as no surprise, since such relationships are well known in the context of

biological evolution. For example, the standard model of population dynamicsby selection in a

single locus model with no mutation and constant fitness for different alleles corresponds to

gradient ascent on the mean fitness of the population (e.g., Rice, 2004). Biological evolution may

provide a good cautionary tale in terms of reading too much into such relationships, since the

conditions identified in the previous sentence are relatively restrictive andnot particularly

biologically plausible: with multiple loci, mutation, and a fitness function that depends on the

composition of the population the simple story of optimization that is often associatedwith

biological evolution is no longer true. Similarly, allowing for the effects of selection (removing the

assumption of uniform fitness) could easily disrupt the connections between cultural evolution and

statistical inference that we have identified in this paper.

Despite this need for caution, it seems that there is a great deal of furtherpotential for the

relationship between iterated learning and algorithms fpr statistical inferenceto yield insight into

processes of language evolution. Statisticians have explored a great many variants on the EM

algorithm, some of which have natural interpretations in the context of iteratedlearning. In

particular, Monte Carlo EM algorithms wheremn > 1 (as opposed to stochastic EM, where

mn = 1) are directly applicable to cases of iterated learning, and have been studied extensively

(Fort & Moulines, 2003; Sherman et al., 1999). Statisticians have also investigated a version of the

stochastic EM algorithm in which the samples of latent variables from previousiterations are also

incorporated, providing a natural way of modeling language evolution when learners are exposed

to linguistic data produced by more than one previous generation (Celeux & Diebolt, 1992; Celeux

et al., 1995; Delyon, Lavielle, & Moulines, 1999).
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8.3. Relationship to previous work on iterated learning

Previous work on iterated learning has emphasized the emergence of structured languages

from general-purpose learning algorithms, and argued that this is partly due to the “information

bottleneck” imposed by the finite nature of the data that is used to transmit language between

generations (Brighton, 2002; Kirby, 1999, 2001; Kirby et al., 2004; Smith et al., 2003). Our results

indicate that these effects depend to a surprising extent on the choice of learning algorithm. If

learners sample from the posterior distribution, their inductive biases needto strongly favor

structured languages in order for these languages to emerge, and the amount of data communicated

between generations has no effect on the asymptotic probability that learners will speak a particular

langauge. However, if learners use a learning algorithm equivalent to selecting the hypothesis with

greatest posterior probability, their biases can be emphasized, and the asymptotic distribution over

languages is affected by the amount of information transmitted between generations.

Our analysis of the consequences of iterated learning with learners who sample from their

posterior distributions initially seems to provide a counter-example to the idea thatthe information

bottleneck is involved in the emergence of structured languages. Specifically, it shows that sensible

learning algorithms exist that can produce structured languages, withoutan information bottleneck

effect. However, in this case, structured languages will emerge only if they are strongly favored by

the inductive biases of the learning algorithms being used. Thus, while theseresults show that

iterated learning need not always exhibit an information bottleneck effect,they do not undermine

the argument that such effects might play a central role in the emergence oflinguistic structure

when learners use general-purpose learning algorithms that assert only a weak preference for

structured languages.

The case where learners select hypotheses with greatest posterior probability provides closer

parallels with previous work on iterated learning. Indeed, as pointed out inSection 5, many of the

algorithms that have been examined in previous work can be construed as aform of MAP

estimation. This analysis potentially indicates how structured languages could emerge using
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general-purpose learning algorithms that embody only a weak preference for such structure. The

relationship between this form of iterated learning and the stochastic EM algorithm implies that the

stationary distribution over languages will center around those languageswith highest prior

probability. Since the maximum of the prior is a relative notion, the prior need not strongly favor

languages for them to dominate the stationary distribution. For example, in the case of iterated

learning with two languages explored in Section 5.2, the prior probability thath = 1, α, could be

manipulated over a wide range for a fixed value ofε, and have no effect on the stationary

probability thath = 1, θ1. Thus, learners having a weak preference forL1, with α only slightly

greater than0.5, would result in emergence ofL1 with exactly the same probability as having a

strong preference, withα only slightly less than1 − ε. This example illustrates how MAP learning

can emphasize the weak biases of learners.

While these results provide some suggestive connections, there is still much work to be done

in understanding the effects identified in previous work on iterated learning.In particular, the

correspondence between iterated learning and stochastic EM leaves someunknowns about the

factors influencing the stationary distribution over languages. In the example explored in Section 6,

we obtained results consistent with an information bottleneck effect arising from MAP estimation,

with the preference for compositional languages being emphasized whenm was small. Obtaining

systematic results connecting the stationary distribution with the size of the bottleneck is an

important topic for future research. Some preliminary work exploring bottleneck effects with MAP

learners appears in Dowman, Kirby, and Griffiths (2006).

8.4. Implications for explaining linguistic universals

In Section 1, we outlined two possible explanations for linguistic universals:the traditional

idea that these universals are the result of strong constraints that are specific to language learning,

and the alternative hypothesis that iterated learning might be able to producelanguages with the

structural properties of human languages even if learners use general-purpose learning algorithms.
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Unfortunately, our formal results do not indicate which of these explanations is more plausible.

However, they do help to fill in some gaps in the traditional argument, and provide some insight

into the kind of questions that need to be asked to resolve the debate.

Advocates of the traditional explanation of linguistic universals in terms of constraints

arising from an innate language faculty can seize upon our results for learners who sample from

the posterior distribution, which dictate a one-to-one correspondence between the inductive biases

of learners and the languages that ultimately manifest in a population. These results provide an

important missing piece of the traditional story, indicating how soft constraintson individual

learning can influence the languages spoken by a population. If the priordistribution is taken as

reflecting innate constraints specific to language learning (a view which we do not encourage, as

mentioned in Section 3), then our results show that iterated learning can act as the engine by which

these constraints result in universals. Those who prefer the idea that linguistic universals can be

produced by iterated learning exaggerating the weak biases expressedin general-purpose learning

algorithms can take heart from our results for learners who use MAP estimation, which illustrate

that iterated learning can potentially emphasize weak biases. The information bottleneck also

provides a further factor that could contribute to this effect.

Even though our present results have something to offer for both sides of the debate, they do

place some important constraints on possible explanations. In particular, our analysis suggests two

questions that we might pursue in order to evaluate the plausibility of different explanations for

linguistic universals. The first question is whether human language learners are better

approximated as sampling from the posterior distribution or selecting the hypothesis with greater

posterior probability. We provided some empirical arguments for the appropriateness of sampling

in Section 4, but this is an issue that has not been explored in depth in the case of language learning

(although see Hudson-Kam & Newport, 2005). If learners are closerto sampling than maximizing,

strong constraints are necessary. If they are closer to maximizing, then theweak biases of

general-purpose learning mechanisms might be sufficient. The second question is whether we can
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identify general-purpose learning algorithms that have inductive biases (albeit weak ones)

consistent with the properties of human languages. Our results indicate thatonly languages favored

by the prior will be produced by iterated learning, regardless of whetherlearners sample or

maximize. In previous work, the inductive biases of different algorithms have largely been

investigated by running iterated learning simulations (Brighton, 2002; Kirby,2001; Smith et al.,

2003). The connection between biases and universals indicated by ourresults suggests a more

productive mode of analysis might be to investigate these biases directly, determining which kinds

of languages are easier to learn with different prospective general-purpose learning algorithms.

8.5. Conclusion

Iterated learning is one of the basic mechanisms by which languages are passed from person

to person, and generation to generation. Understanding the consequences of iterated learning is

thus a crucial step towards understanding the process of language change. In this paper, we have

laid out a framework for analyzing iterated learning, making it possible to characterize both the

dynamics and asymptotic behavior of processes in which learners learn from other learners. The

formulation of iterated learning in terms of Markov chains on hypotheses anddata makes it

straightforward to determine the distribution over languages that should be expected to arise at any

iteration (and the change in this distribution across iterations), as well as the asymptotic probability

that any particular language will be chosen by a learner. The connectionbetween the stationary

distribution of the Markov chain on hypotheses and the equilibrium of population dynamics based

on iterated learning also makes it possible to generalize the conclusions reached with sequences of

individual learners to the level of the population. These results strengthen the contributions that use

of the iterated learning model can make to our understanding of language change.

We have used this framework to provide a detailed account of the consequences of iterated

learning with Bayesian learners. The use of Bayesian inference makes itpossible to explicitly

identify the inductive biases of our learners, and to demonstrate that thesebiases strongly affect the
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outcome of iterated learning. Formally establishing the basic predictions that result from iterated

learning paves the way towards being able to develop more complete models of language

evolution, exploring the interaction between iterated learning and forces ofcultural and biological

selection. It also provides insight into the plausibility of different explanations of linguistic

universals, providing new terms in which to formulate the debate about the relationship between

linguistic universals and the inductive biases of learners.

Going beyond language evolution, our analysis of iterated learning with Bayesian learners

provide conditions under which information transmitted via iterated learning will ultimately come

to mirror the structure of the mind of the learners. This information will be influenced by the

inductive biases of learners, regardless of the source of those biases and whether the learners

sample from the posterior or use MAP estimation. This correspondence suggests that we should

look closely at the universal properties of human languages, since, under this account, they should

reflect the biases behind human language learning. More generally, ourresults suggest that any

information transmitted by a process of iterated learning – not just languages, but also legends,

religious concepts, and social norms – will ultimately come to be tailored to match people’s

inductive biases, providing a formal justification for treating these phenomena as a source of clues

about the assumptions that guide human thought.
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Footnotes

1We will assume thatH andD are both finite sets. This is not a necessary assumption, but

simplifies the statement of the results we present in this paper.

2A similar use of Bayes’ rule to characterize the role of inductive biases in language

acquisition in the context of iterated learning appears in Kirby, Smith, and Brighton (2004).

3This definition ofε treats it as the error rate of production, but it could equivalently be

considered the error rate of perception. Under either of these interpretations, it characterizes the

variation in the perceptual data available to the learner.

4We usex andz simply to denote vector-valued random variables in this section. The choice

of these variable names matches much of the literature on the EM algorithm, and should not be

connected with the use ofx andz in other sections.

5A small influence of the prior remains even at asymptote due to the presence of holistic

hypotheses that are equivalent to compositional hypotheses. These hypotheses cannot be separated

by any amount of data, so the stability ratio approaches6462+1/α asm → ∞. If H did not include

hypotheses that make equivalent predictions about the data, the stability ratio would approach1 as

m → ∞. Consequently, the decrease in the stability ratio as a function ofm for the cases where

α = 0.01 is due to the specific structure ofH, rather than being a general trend.

6The fact thatQ − I has an eigenvector with eigenvalue0 indicates that this system has a

one-dimensional linear subspace of equilibrium solutions, corresponding to multiples of the

corresponding eigenvector. The uniqueness ofθ as an equilibrium follows from the fact thatθ is

the only multiple of this eigenvector that is a probability distribution, with
∑

i θi = 1.
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Table 1

Properties of the Markov chain on hypotheses for iterated learning with MAPestimation

Condition q12 q21 θ1 λ2

ε < 1 − α s + (1 − s)ε (1 − s)ε s+(1−s)ε
s+2(1−s)ε (1 − s)(1 − 2ε)

ε = 1 − α s + (1 − s)(1 + ε)/2 (1 − s)ε/2 s+(1−s)(1+ε)/2
s+(1−s)(1+2ε)/2 (1 − s)(1 − 2ε)/2

ε > 1 − α 1 0 1 0
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Figure Captions

Figure 1. (a) Language is learned anew by each generation, a process which has been proposed as

an explanation for the existence of linguistic universals. Each learner sees data – a set of utterances

– produced by the previous generation, forms a hypothesis about the language from which those

utterances were produced, and uses this hypothesis to produce the datathat will be supplied to the

next generation. (b) Dependencies among variables in the stochastic process induced by iterated

learning. (c) Reduction to a Markov chain on hypotheses. (d) Reductionto a Markov chain on

data. (e) Reduction to a Markov chain on hypothesis-data pairs.

Figure 2.Sets involved in the two language example.X is the set of all objects in the domain, with

eachx ∈ X being an object.G1 andG2 are the sets of objects that are likely to elicit a spontaneous

utterance of “Gavagai!” from a speaker of the languagesL1 andL2, modeled as the outputy

associated with the inputx taking value1. y = 0 for all objects outside the appropriate set.S is the

set of objects on which the two languages agree, with speakers of either language being equally

likely to produce the same response.

Figure 3.Dynamics of iterated learning by sampling from the posterior. Solid lines show the

probability that a learner choosesh = 1 as a function of the number of iterations, starting from a

state where the first learner speaks eitherL1 or L2, with ε = 0.05 andε = 0.001. In all cases,

α = 0.6 ands = 0.5. The probability of choosingh = 1 rapidly converges to the stationary

probability,α, indicated by the dotted line.

Figure 4.Stationary probability thath = 1 as a function of agreement betwen languages,s, and

level of production noise,ε, in iterated learning with MAP learners. The stationary probability is

unaffected by the prior probability thath = 1, α, providedε < 1 − α.

Figure 5.Markov chains on hypotheses for the evolution of compositionality when learners sample

from their posterior distribution. Different rows correspond to different parameter values. For each
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set of parameters, the first column shows a portion of the transition matrix,Q, with four

compositional languages (labeled C) and four holistic languages (labeled H). Columns arehn−1,

rows arehn, and darker grey indicates a higher value ofqij = P (hn = i |hn−1 = j). The second

column shows a sample of 1000 iterations from this matrix, the third shows the relative frequency

of hypotheses across 10000 iterations, and the fourth shows the prior,P (h). The quantities in the

third and fourth columns are subjected to a square root transformation in order to make the full

range of variation apparent.

Figure 6.Quantities derived from Markov chains on hypotheses for learners sampling from the

posterior, as a function of number of datapoints,m, prior on composite languages,α, and error

rate,ε. (a) Second eigenvalue of transition matrix,λ2. (b) Stability ratio. The dotted line shows the

stability ratio asm → ∞.

Figure 7.Markov chains on hypotheses for the evolution of compositionality with MAP

estimation. Different rows correspond to different parameter values. For each set of parameters,

the first column shows a portion of the transition matrix,Q, with four compositional languages

(labeled C) and four holistic languages (labeled H). Columns arehn−1, rows arehn, and darker

grey indicates a higher value ofqij = P (hn = i |hn−1 = j). The second column shows a sample

of 1000 iterations from this matrix, the third shows the relative frequency ofhypotheses across

10000 iterations, and the fourth shows the prior,P (h). The quantities in the third and fourth

columns are subjected to a square root transformation in order to make the full range of variation

apparent.

Figure 8.Quantities derived from Markov chains on hypotheses for learners using MAP

estimation, as a function of number of datapoints,m, prior on composite languages,α, and error

rate,ε. (a) Second eigenvalue of transition matrix,λ2. (b) Stability ratio. The stability ratios for

α = 0.01 are constant at zero, since compositional hypotheses are never chosen, and infinite for
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m < 3 andm < 2 whenε = 0.05 and0.01 respectively forα = 0.5, since in these cases holistic

languages are never chosen.
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