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Abstract- Evolutionary computation is used to explore 
the emergence of language, focusing particularly on the 
intrinsic relationship between the lexicon and syntax, 
and the exogenous relationship between language use 
and cultural development. A multi-agent model traces 
a coevolution of the lexicon and syntax, and 
demonstrates that linguistic and some distance 
constrain on communications can trigger and maintain 
cultural heterogeneity. This model also traces an 
optimization process using evolutionary mechanisms 
based on local information. Certain mechanisms in this 
model, such as recurrent pattern extraction, strength-
based competition and indirect feedback, can be 
generalized to study robot learning, optimization and 
other evolutionary phenomena. 

1 Introduction 

The adoption of evolutionary computation in linguistics 
has grown rapidly as more computational models are 
proposed and their validity has more readily been accepted 
(e.g., Cangelosi and Parisi 2002; Wagner et al. 2003). 
Models based on evolutionary computation can assist 
linguistic research in several aspects. First, many linguistic 
phenomena are based on local actions without resorting to 
coordinating influence of certain centralized authority 
(Axelrod 1997). Therefore, self-organizing mechanisms in 
evolutionary computation are suitable for studying these 
phenomena. Second, these models provide an arena to test 
hypotheses based on linguistic data, to exemplify certain 
scenarios, and to suggest some research directions 
(Christiansen and Kirby 2003). Third, some general 
algorithms adopted in these models are derived from other 
domains (e.g., Genetic Algorithm (GA) (Holland 1975)) 
and they can be used to objectively study the dynamics of 
language evolution and compare it with other evolutionary 
processes, such as the evolution of music or social status. 
Finally, the model that we present here has only limited 
language-specific knowledge built in, so the mechanisms 
and conclusions of this model may instructively be applied 
to the study of other similar phenomena. In all, the recent 
frequent advances in computational techniques and the 
enormous availability of language resources have 
triggered a rapid development in computational linguistics 
(Huang and Lenders 2004).  

This paper adopts a multi-agent model and uses 
evolutionary computation mechanisms to explore two 
open questions regarding the evolution of language, which 
is a resurgent interest in linguistics.  

One essential question is how the lexicon (a set of 
mappings between semantic concepts and phonological 
structures) is gradually formed. The default dogma in 
linguistics states that it is the syntax that directs the 
semantics and phonology in forming lexicons and 
sentences, and this syntactic ability is unique to humans 
(Chomsky 1995). However, much evidence from anatomy 
(Schoenemann 2005), biology (Deacon 1997, 2003) and 
comparative study of the communication systems of 
humans and animals (Oller and Griebel 2004) suggests 
that syntax might have evolved gradually from some 
domain-general abilities (Knight et al. 2000). For example, 
the domain-general ability of detecting recurrent patterns 
and sequences is suggested to be necessary for language 
(Christiansen and Ellefson 2002). Research in both first 
and second language acquisition in children (e.g., Clark 
1987) has attested a developmental process of syntax, 
which requires limited innate language-specific 
prerequisite and occurs in parallel to the acquisition of the 
lexicon. 

Another open question concerns the mechanisms that, 
on the one hand, tend to increase the homogeneity among 
individuals but, on the other hand, tend to maintain the 
heterogeneity among cultures. Social scientists ascribe the 
durability of cultural differences to nonlinguistic factors, 
such as social differentiation or psychological factors like 
fads and fashions. However, linguistic factors like the 
mutual understanding and some restrictions on human 
communication system, such as different communication 
procedures or distance restrictions, are already sufficient 
to increase or decrease the chances for communications 
and adjust individual or group similarities (Nettle 1999). 
These linguistic factors may take place much earlier along 
with the emergence of language, and later, other 
nonlinguistic factors may cast their influences on cultural 
dissemination via these linguistic factors.  

Evolutionary modeling provides a methodology with 
which to explore these questions. Our model exemplifies 
two processes: 1) domain-general abilities (e.g., 
sequencing ability, recurrent pattern extraction ability) and 
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evolutionary mechanisms (e.g., rule competition, indirect 
feedback) can be used by a population of interacting 
agents to develop a simple language with a common 
lexicon and dominant word order; 2) communicational 
restrictions can gradually cause to emerge multiple speech 
communities, each community having a distinct language 
that is unintelligible to members of other communities.  

Compared with previous models on language evolution 
(e.g., Kirby’s Iterated Learning Model (ILM) 2002), our 
model implements a more realistic communication process 
with an indirect meaning transference, in which the 
comprehension of a perceived utterance is based on both 
linguistic and nonlinguistic information, and the feedback 
to the speaker is a variable of confidence, not a direct 
meaning check. The model is also inspired by some 
concepts in Learning Classifier Systems (LCS) (Holland 
2001) (e.g., parallelism, learning through back-tracing) 
and modifies them by introducing a buffer, which extends 
the back-tracing mechanism.   

In addition to the linguistic problem addressed, this 
model also explores some issues in evolutionary 
computation. The language emergence process in this 
model can be viewed as an optimization process whose 
aim is to develop a shared communication system. In this 
optimization task, it is difficult to define a global fitness 
function. The linguistic information is distributed into 
multiple linguistic rules, some of which come to be shared 
among agents. Our results show that certain evolutionary 
mechanisms (e.g., indirect feedback, strength-based 
competition) based on local information can still achieve 
the optimization, which extends the traditional view of 
optimization. These mechanisms, together with other 
general evolutionary mechanisms, can be adopted by other 
models on robot learning and optimization. 

The remainder of the paper briefly describes the model 
(§ 2), summarizes the results of our experiments on 
language emergence and the formation of culture (§ 3), 
and discusses some of the mechanisms that we have 
adopted and introduces some future directions (§ 4).  

2 Model Description 

The major components of the model, like linguistic rules, 
agent’s abilities and communication, are introduced here. 
A detailed description is given in Gong and Wang (2005).  

2.1 Meaning, Utterance and Linguistic Rules 
Language in this model is treated as a set of meaning-
utterance mappings (M-U mappings). Agents (language 
users) express and comprehend 2 types of atomic 
sentence: “Predicate<Agent>”, “Predicate<Agent, Patient>”. 
For example, in the English sentence “dogs chase cats”, 
“chase” is the predicate, “dogs” is the agent, and “cats” is 
the patient. Agents communicate with each other by 
exchanging utterances that encode atomic sentences. An 
utterance consists of a string of utterance syllables chosen 
from a signal space. Utterance syllables are combinable, 

and can be mapped to either a complete atomic sentence or 
to a partially specified atomic sentence with one or more 
variable elements (predicate, agent or patient).  

The agent’s linguistic knowledge includes bi-
directional M-U mappings between atomic sentences and 
utterance syllables, and regulation methods for combining 
syllables that are mapped to atomic sentences with 
variable elements. This knowledge is represented by 
linguistic rules, which include lexical rules (M-U 
mappings + strength) and word order rules (sequencing 
orders + strength). The strength of each rule numerically 
indicates its fitness, i.e., the probability of successful use 
of that rule. Rule strengths are modified by self-
organization mechanisms such as strength-based 
competition and usage-based avoidance (discussed in § 
2.2, and § 2.3).  

Lexical rules include holistic and compositional rules. 
Holistic rules map complete atomic sentences to complete 
utterances, e.g.,  

“run<dog>”  ↔  / a b c /  (0.4) 
where 0.4 is the rule strength. One holistic rule can only 
express one complete atomic sentence. Compositional 
rules map atomic sentences with variable elements to 
partial utterances, for example,  

WORD RULES: “run<#>”  ↔  / d e /  (0.3)
 “cat”  ↔  / f /  (0.5)

PHRASE RULE: “chase<dog, #>”  ↔  / c * f /  (0.4)
where “#” represents a variable argument in the atomic 
sentence, and “*” represents a variable syllable in the 
utterance. To construct a complete atomic sentence, 
several compositional rules must be combined so that all 
variable elements are specified, or a holistic rule that 
encodes the required atomic sentence must be used. For 
instance, the above 2 word rules can be combined to form 
an atomic sentence “run<cat>” ↔ / d e f /; furthermore, the 
second word rule can be combined with the phrase rule to 
form “chase<dog, cat>” ↔ / c f f /. The combination of a 
limited number of compositional rules allows many 
complete atomic sentences to be expressed. 

The combination of utterance syllables is regulated by 
word order rules. To express the two types of atomic 
sentence, 8 word orders are required, VS, SV, VSO, VOS, 
OVS, SVO, SOV, OSV; here, S represents the utterance for 
Agent, V for Predicate and O for Patient. On the one hand, 
multiple word orders may be used to regulate some 
compositional utterances. For example, under VS order, 
the utterance for “run<cat>” is / d e f /; under SV order, the 
corresponding utterance might be / f d e /. On the other 
hand, the specific conditions of utterance syllables may 
restrict the permissible word orders. For example, based 
on the example word and phrase rules shown above, the 
utterance / c f f /, which encoded the atomic sentence 
“chase<dog, cat>”, can only be formed under the 
regulation of SOV and VOS orders because the syllables 
that correspond to the patient “cat” must appear sentence 
medial. All these show that the lexicon and syntax (word 
order) are inter-related. In this model, all 8 orders evolve 



independently. When multiple orders are permissible, 
agents prefer the one having the higher fitness (rule 
strength).  

The aim of this model is to determine that with some 
domain-general abilities and evolutionary mechanisms, 
whether a compositional language may emerge, after 
many iterative communications, from a holistic signaling 
system. A holistic signaling system is a system consisting 
of holistic rules only. Starting from such a system, 
following Wray’s language emergence scenario (2002), all 
agents share a small set of holistic rules (6) to express a 
limited number of atomic sentences (6). These atomic 
sentences contain a total of 12 atomic sentence elements. 
In total, these elements can form 48 complete atomic 
sentences. Initially, there is no dominant word order in the 
holistic system, all 8 orders are treated equally (initialized 
with same strength). Such a holistic system, to a certain 
degree, represents the communication systems of some 
animals (Hauser 1996; Wray 2002). In a compositional 
language system, agents combine common compositional 
rules under the regulation of word order to express atomic 
sentences. Compositionality is one of the key features in 
human language (Hockett 1960). 

2.2 Agent and His Linguistic Abilities 
Agents in this model are autonomous entities with an 
internal memory system for storing linguistic rules, the 
ability to communicate with each other, and the ability to 
learn based on past experience. 

The memory system (see Fig. 1) includes a buffer for 
storing “previous experience” — the M-U mappings 
comprehended in previous communications — and a rule 
list for storing lexical rules extracted from these mappings. 
These rules are used to express and comprehend complete 
atomic sentences in future communications. The buffer 
stores information obtained from not only the immediately 
previous step but also from several steps back, thereby 
extending the single-step back-tracing mechanism used in 
LCS. 

 
An agent’s other abilities include rule acquisition and 

communication with other agents. 
Agents have two mechanisms to acquire lexical rules, 

which are similar to the mechanisms used in ILM but 
different in detail:  

• Random creation in production. When a speaker has 
insufficient rules with which to express a complete 
atomic sentence, he may, with certain probability, 
randomly select some syllables to map either the 
complete atomic sentence or the elements that his 
current rules cannot specify.  

• Rule extraction through detecting recurrent patterns 
among M-U mappings in the buffer (see Fig. 2). 
Recurrent patterns are repeated elements that appear 
in 2 atomic sentences and their associated utterances, 
e.g., the repeated element (“dog”) and the syllables 
(/ a b /) are repeated in the following two M-U 
mappings: 

“run<dog>”  ↔  / a b c / 
“fight<dog, cat>”  ↔  / a b d c a / 

This pattern is mapped as a compositional rule with a 
default initial strength (0.5) and inserted into the 
listener’s rule list: “dog” ↔ / a b / (0.5). A phrase rule, 
e.g., “chase<dog, #>” ↔ / c d * g/ (0.5), is created in a 
similar way. The detection of recurrent patterns that 
appear by chance triggers the segmentation of complete 
atomic sentences into atomic elements, and holistic 
utterance into compositional syllables. This internal 
mechanism results in the horizontal transmission of 
compositional language among agents.  

“fight<dog, fox>”

“chase<bear, dog>”

Meaning Utterance
a   b   c   d

a   b   d   e 

New Lexical Rules

“dog” 

“dog” 

a   b

d 
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“fight<dog, bear>”

c   d   f   g

c   d   l   g
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c   d  *  g
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e   f   c   d
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e   f
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rules

Homonymous
rules
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M-U mappings

Fig. 2. Examples of Rule Extraction 
 

In our model, rule extraction results in many 
synonymous (the same atomic element mapped to different 
syllables) and homonymous rules (the same syllable(s) 
mapped to different atomic element). For example, the 
presence in the buffer of multiple recurrent syllables but a 
single recurrent atomic element causes the emergence of 
synonymous rules in an agent’s rule list (see Ex. 2 in 
Fig. 2). Synonymous rules increase the speaker’s load for 
searching rules in production and occupy more space in 
the rule list; homonymous rules may cause ambiguity in 
the listener’s comprehension. Some internal mechanisms 
for avoiding ambiguities caused by homonyms have been 
suggested based on some empirical research. For example, 
according to the Principle of Contrast (Clark 1987), 
children tend to avoid mapping syllables that are already 
mapped to an extant element to novel ones. In our model, 
a similar usage-based homonym-avoidance mechanism is 
adopted, i.e., if the chosen combination of rules helps the 
listener’s comprehension then, besides the normal rule 
strength modification, an additional penalty is applied to 
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Fig. 1. Memory System 



the rule strengths of other rule combinations that are 
homonymous to the chosen one. The definition of 
successful or failed communication is given in § 2.3. 

The memory system and rule acquisition abilities 
discussed above are not restricted to the linguistic domain. 
For example, the memory system makes possible a 
“learning from experience” strategy. The buffer can store 
useful information experienced by agents for future 
reference in the rule extraction. Such an information 
extraction mechanism based on temporary or historical 
inputs simulates a common way of learning in humans and 
some animals. In addition, the recurrent pattern extraction 
is similar to the general logic operation “AND”, which can 
extract the common features among multiple instances. 
This extraction mechanism associates common semantic 
concepts with common phonological elements. Such 
cross-domain association is a general way to extract 
information and build up new knowledge, and is widely 
used in signal processing as well as other learning 
systems. 

2.3 Communication 
An indirect meaning transference is implemented in 
communications, which includes multi-source information 
processing and inexplicit feedback.  

One type of nonlinguistic information, cues, is 
introduced in this model. Cues consist of complete atomic 
sentences, modeling an agent’s perception of events that 
are ongoing or salient in his local environment, e.g., 
“chase<fox, dog>” (0.5), where 0.5 is the cue strength. 
Cues can assist the listener’s comprehension in 
communications. In each communication, multiple cues 
comprising different atomic sentences are simultaneously 
available to the listener, all cues having the same strength. 
Cues, as semantic hints for comprehension, are sometimes 
ambiguous, and may be unreliable because there are 
situations where a speaker might not always describe an 
ongoing event in the listener’s immediate environment or 
the listener may pay attention to the wrong event. To 
simulate this ambiguity, reliability of cues (RC) is used to 
manipulate the probability that one cue that is available to 
the listener corresponds to the speaker’s atomic sentence. 

Build utterance based on winning rules 

Meaning selection 

Environmental
cues 

Listener obtains utterance and cues

Rule competition 

Adjustment of winning rules of Speaker and Listener

Rule competition  

Speaker 

Listener 

  
 

Feedback to Speaker 

Fig. 3. Information exchange during communication

 

 
One information exchange in a communication event is 

summarized in Fig. 3. In production, the speaker selects a 
complete atomic sentence to produce. Among his related 
linguistic rules, the speaker determines his winning rules 
based on their combined rule strength, CSProduce, and builds 
up an utterance accordingly. CSProduce is calculated based 
on both his lexical and syntactical information: 
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In comprehension, the listener receives the utterance 
produced by the speaker and, sometimes, some cues. 
Then, the lexical rules in the listener’s rule list whose 
syllables partially or fully match the perceived utterance 
are activated. The rule competition in comprehension 
considers not only the strength of the listener’s activated 
lexical and word order rules, but also the cues whose 
atomic sentences may assist the listener to comprehend the 
utterance. For example, a listener’s linguistic rules might 
only allow an utterance to be comprehended as 
“eat<dog, #>”. However, if the cue “eat<dog, meat>” were 
available, the strength of this cue would be included in the 
calculation of the combined strength, CSComprehend, of these 
linguistic rules. CSComprehend, is calculated based on both 
linguistic and nonlinguistic information: 
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After comprehension, the listener sends back a 
confidence feedback to the speaker. If the CSComprehend of 
his winning rules exceeds a certain threshold (we use 0.5), 
the feedback is positive, indicating a strong confidence in 
the comprehension. Otherwise, the feedback is negative, 
meaning that the listener is either unable to comprehend 
the utterance or else is not confident of his comprehension 
(whether or not the listener comprehends the meaning 
intended by the speaker is not considered). Then, based on 
this confidence feedback, both the speaker and the listener 
adjust their rules. Under a positive feedback, both agents 
increase the strengths of their winning rules and decrease 
those of the losing rules; otherwise, the opposite operation 
is executed. Inexplicit feedback is common both in the 
primitive and modern stages of language use. For 
example, observing that another person nods their head 
might not give the speaker a strong confidence as to 
whether they clearly understand what he says. Based on 
the feedback after each information exchange, we can 
define successful (most of the feedbacks in one 
communication are positive) or failed communications, 
which can indirectly indicate the linguistic similarities 
among agents. Each communication event consists of an 
exchange of multiple (20) atomic sentences. 

During the whole communication event, the speaker’s 
production and the listener’s comprehension are 
independent and the comprehension is based on the 
interaction of linguistic and nonlinguistic information. 
This communication process modifies the unrealistic 



assumption adopted in ILM that in every communication, 
the listener always acquires the meaning intended by the 
speaker. The speaker and the listener update their language 
based only on listener’s feedback, which is not directly 
represented by linguistic information, but can nevertheless 
assist mutual understanding at a certain level. The multi-
source information processing simulates the real 
comprehension process in the listener’s mind during 
linguistic communication. The incorporation of multiple 
forms of feedback is important in robot learning tasks 
where the supervising information is usually indirect.  

3 Simulation Results 

Several parameters are defined to trace the emergence of 
language:  
• Rule Expressivity (RE) — the average number of 

complete atomic sentences that each agent can 
express; 

• Understanding Rate (UR) — the average proportion 
of complete atomic sentences understandable by each 
pair of agents based on linguistic information only. 
UR evaluates the real representation of the emergent 
language, which concerns not only the RE, but also 
whether such expressions are understandable by other 
agents using linguistic information only, even when 
those expressions do not refer to events that are on-
going in the immediate environment, a property 
known as displacement (Hockett 1960). UR can also 
test similarities among the languages of different 
groups of agents. 
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With these indices, the emergent process of language is 
traced. Moreover, heterogeneity within a community and, 
later, between linguistic communities can be traced by 
introducing communicational restrictions.  (a) 

 

3.1 Language Emergence: Lexicon-Syntax Coevolution 
The intrinsic relationship between the lexicon and syntax 
during language emergence is studied by analyzing the 
performance of the model for one set of parameter values 
(other reasonable parameters give qualitatively similar 
results): P (Population size) = 10, RC (Reliability of 
Cues) = 0.7, BS (Buffer size) = 40, 
RS (Rule list size) = 40, and Ncom (Number of rounds of 
communication) = 300. A concurrent communication 
scenario is used in which, in each communication round, 
each agent communicates randomly with one other agent. 
In total, there are 1,500 (Ncom × CP

2) communication 
events, or 30,000 (1,500 × 20) information exchanges.  

(b) 

 

The coevolution of the lexicon and syntax is traced by 
the Rule Expressivity (RE), Understanding Rate (UR) and 
the average rule strength of all 8 order rules after each 
round of communication (see Fig. 4). In Fig. 4(a), the 
decrease of the RE of holistic rules and the increase of the 
RE of compositional rules indicate a transition from the 
initial holistic signaling system to a compositional 
language. The UR-curve exhibits a sudden increase (at 
about 160 rounds of communication), which suggests that 
the understandability of the emergent compositional 
language undergoes a phase transition (Monasson et al. 
1999). Figs. 4(b–c) trace the gradual forming of the 
preference for certain word orders. Two dominant orders, 
one for each type of atomic sentence, emerge from the 8 
initial orders. No prior bias is conferred to any particular 
order; each order is a priori equally likely to be the 
dominant one. Combining Figs. 4(a–c), the sharp increase 
of UR is almost synchronized with the sharp increase of 

(c) 

Fig. 4. Lexicon-syntax coevolution:  
(a) Rule Expressivity (RE) and Understanding Rate (UR); 
(b) Emergence of dominant order for “Predicate<Agent>”  
atomic sentences; (c) Emergence of dominant order for 

“Predicate<Agent, Patient>” atomic sentences.  
The abscissa is Ncom, the ordinate is Natomic sentence (and UR in 

brackets) in (a), and the rule strength in (b) and (c). 



the strengths of the dominant orders. This suggests that the 
use of common compositional rules and the preference of 
the dominant orders boost each other; in other words, the 
lexicon and syntax coevolve during the emergence of 
language. This coevolution process weakens the traditional 
linguistics’ claim of the predominance of innate syntax as 
a driving force for the emergence of the lexicon.  

This lexicon-syntax coevolution is a self-organizing 
process, driven by mutual understanding and achieved by 
evolutionary computational mechanisms. At the beginning, 
agents can only communicate with each other using the 
initially shared holistic rules. Additional holistic rules are 
slowly introduced by random creation allowing agents to 
express more atomic sentences. This gradually increases 
the RE of holistic rules. As more holistic rules are added, 
so more recurrent patterns among the M-U mappings in 
the buffer are extracted, leading to an increase in the RE of 
compositional rules — the competition between holistic 
rules and compositional rules begins. In communications 
using compositional rules, mutual understanding can be 
achieved with the help of occasional accurate cues. The 
preference for compositional rules over holistic ones is 
then gradually formed by the usage-based avoidance and 
strength-based competition mechanisms.  

A consistent word order is necessary for agents to be 
able to use compositional rules to produce and 
comprehend meanings — the competition of dominant 
order begins. With no prior bias conferred to any order, the 
rule strengths of all orders tend to be increased. Then, due 
to the strength-based competition (indicated by the drastic 
fluctuations of the average strength of the order rules in 
Fig. 4 (b–c)), certain orders gradually come to be preferred 
by all agents. Along with the acquisition of more 
compositional rules and the emergence of winning 
dominant order rules that are shared among agents, there is 
a sharp increase of the UR. Such sharing of the 
compositional lexicon and word order is gradually 
finalized. The UR approaches 100% in some simulations, 
indicating that the shared lexicon is sufficient to accurately 
produce and comprehend almost all 48 atomic sentences. 

3.2 Cultural Dissemination: Global Polarization, Local 
Convergence (Axelrod 1997) 

 

In this section, the influence of language use on the 
emergence and stability of cultural differences is studied. 
We put all agents in a 2D world in which they could freely 
move (see Fig. 5). Two communicational restrictions are 
introduced:  
• a distance restriction — communication may only 

occur between agents separated by a limited Euclidian 
distance;  

• mutual understanding — successful communication 
can link the speaker and the listener in a speech 
community, a subgroup of agents who can understand 
each other and whose members tend to move about 
the world together. A speech community can be 
broken in the future if communication fails repeatedly.  

By tracing the UR of the each speech community that 
emerges and the UR of the whole population, the 
emergence and maintenance of cultural dissemination, 
indicated by the mutual intelligibility of each community’s 
language, can be traced.  

In this simulation, we double the population size 
(P = 20), and increase the number of communication 
rounds accordingly (Ncom = 2,000). The size of the world is 
set to 180 × 80 cells, the distance restriction is 5, and at 
each round of communication, each agent may move from 
its current position to one of its 9 neighboring positions. 
Two randomly chosen agents are set as tagged agents. 
Fig. 6(a) traces the community size of each of the tagged 
agents, and the average community size of the whole 

 
(a) 

 
(b) 

Agent Movement 
Geographic restriction 

Successful Communication
Failed Communication

2D world 

Fig. 5. Agent’s movement tendencies in a 2D world

Fig. 6. Community sizes (a) and URs (b) of the tagged 
agents (Agents a, b) and of the whole group. The abscissa 

is Ncom, the ordinate is Natomic sentence (and UR).



population. Fig. 6(b) traces the UR of each tagged agent 
community, and the average UR in the whole population. 
Multiple speech communities gradually emerge and attain 
stable states with fixed sizes after many rounds of 
communication. Within each community, a common 
language with high UR emerges. However, inter-
community linguistic heterogeneity is maintained, 
indicated by the low UR of the whole population. After a 
common language emerges within each community, the 
community sizes of the tagged agents and the average 
community size of the whole population become stable, 
indicating that the further merging or splitting of speech 
communities is rare; in other words, the linguistic 
heterogeneity among speech communities is maintained.  

This simulation traces the emergence and maintenance 
of inter-community heterogeneity during language 
emergence. Both the mutual understanding and the 
distance restriction contribute to the emergence and 
stability of community differences. On the one hand, they 
play the role of intra-community cohesion: agents within 
limited a Euclidian distance have more chances to 
communicate with each other. Once mutual understanding 
is built up, these agents tend to communicate more, and 
develop their own common language. On the other hand, 
these factors play the role of inter-community repulsion. 
The tendency for agents to move apart as a result of failed 
communication increase the distance between them, and 
reduces the chances for future communication, so allowing 
their linguistic difference to increase as each agents enters 
into speech communities with other agents. The interaction 
of these two contradictory effects triggers “global 
polarization, local convergence” during the language 
evolution, paving the way for the future emergence and 
stability of cultural heterogeneity. 

4 Discussion, Conclusions and Future 
Directions 

Computational simulation has gradually come to be 
accepted as a productive method for exploring 
evolutionary systems for which theoretical argumentations 
alone are not sufficiently reliable, or for which incomplete 
empirical data prevent a thorough understanding of the 
behavior of the system. In this paper, some evolutionary 
problems regarding the relationship between the lexicon 
and syntax, as well as between language use and cultural 
dissemination are studied in a multi-agent computational 
model. A lexicon-syntax coevolution process is traced, 
and, for particular communicational restrictions, a “global 
polarization, local convergence” phenomenon emerges 
during the emergence of speech communities. These 
results lead us to question the hypothesis of the intrinsic 
syntactic capability of humans proposed by Chomsky, and 
exemplify the influences of mutual understanding and 
distance restrictions on language emergence and the 
maintenance of cultural heterogeneity.  

In addition to these linguistic conclusions, the model 
can be viewed as an optimization process, in which mutual 
understanding in communication is gradually achieved 
through the acquisition of common linguistic rules. In 
traditional optimization tasks, fitness is often assessed 
globally. However, many mechanisms adopted in this 
model are based on local information. It is difficult to 
develop an appropriate global fitness function for a 
linguistic communication system because the degree of 
mutual understanding between any pair of agents is 
determined by the local linguistic knowledge of each 
agent. Each linguistic rule has its own fitness value (its 
strength). The strength-based competition and usage-based 
avoidance mechanisms guide agents to choose winning 
rule combinations based on their combined strengths. 
These mechanisms act to gradually increase the strengths 
of rules that are used successfully. And these mechanisms 
are not explicitly oriented to increase mutual 
understanding; a successful communication does not 
necessarily mean that the listener understood the meaning 
intended by the speaker, just that the listener gave a 
positive feedback. 

Regarding the communication aspect, agents are 
selected to communicate with each other randomly 
without any centralized guidance. The communicational 
restrictions act locally, cast their influence on the 
communications between specific pairs of agents. These 
mechanisms are not designed specifically to trigger 
cultural heterogeneity. Nevertheless, cultural heterogeneity 
emerges as an emergent property of the local interactions 
and restrictions among agents.  

The model described here provides a method for 
optimization tasks that involve complex phenomena such 
as language, music, and personal preference (e.g., one may 
prefer communicate with others who share common 
interest with him or can understand him very well). In fact, 
approaches to optimization based on local, uncentralized 
mechanisms are already used in many popular methods, 
such as the Ant Colony Optimization (ACO) (Dorigo and 
Stützle 2004). 

Based on this computational model, further discussions 
of the lexicon, syntax and culture are possible. First, 
although the current model weakens the claim that syntax 
regulates the development of the lexicon, exactly how 
syntax co-evolves with the semantic elements and 
phonological structures is not addressed. The predicates, 
agents and patients that combine to form atomic sentences 
are built into the model a priori. How the human cognitive 
system acquires these semantic concepts, and whether the 
acquisition process depends upon domain-general abilities, 
as the syntax might do (shown in our model), are not 
certain. Therefore, future models will necessitate adopting 
pragmatic mechanisms to acquire semantic concepts and 
studying the interactions between pragmatic and syntactic 
operations. If the pragmatic mechanisms might also be 
adapted from domain-general abilities, it will be 
reasonable to claim that syntax might not be language-
specific, but a set of mechanisms that have developed 



from domain-general abilities to serve some linguistic 
functions.  

Second, sociolinguists have observed dramatic 
variations in various linguistic abilities across speech 
communities, and studies on language acquisition have 
revealed various dichotomies in children’s learning styles 
(Shore 1995). Agent-based modeling can be used to study 
such heterogeneity. Furthermore, the theory of complex 
networks (Newman 2003) can be introduced to study 
social structure and its influence on language evolution 
and use. Finally, in order to generalize and implement the 
evolutionary mechanisms adopted in this model to study 
other evolutionary phenomena or carry out other 

optimization tasks, an in-depth analysis and comparison 
with other popular optimization methods, such as GA and 
ACO, is required. 
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