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Abstract 

In this paper, a multi-agent computational model is pro-

posed to simulate the co-evolution of compositional 

proto-language and social structure from a holistic signal-

ing system through iterative interactions within a hetero-

geneous population. We implement an indirect meaning 

transference based on both linguistic and nonlinguistic in-

formation in communications, together with a feedback 

without direct meaning transfer. The emergent social 

structure, triggered by two locally selective strategies, 

friendship and popularity, has small-world (Watts 1999) 

characteristics. The influence of these selective strategies 

on the emergent language and the emergent social struc-

ture are discussed. 

1. Introduction 

Recently, computational modeling of language evolution 
has grown rapidly, as exemplified by many anthologies 
and reviews (Standish et al 2003; Cangelosi and Parisi 
2001; Luc Steels 1999; Wagner et al. 2003). Many com-
putational models, based on evolutionary or artificial life 
theories, have been reported, such as the neural network 
models (Batali 1998; Munroe and Cangelosi 2002), the 
vocabulary coherence model (Ke et al. 2002), and the 
iterative learning framework (Kirby et al. 2003). These 
“emergent” models (Schoenemann 1999) share several 
assumptions related to language development. However, 
there are still several limitations. 

First, most of them assume direct meaning transference 
(not Munroe and Cangelosi (2002)) in the interactions 
among agents, i.e., the intended meanings encoded in 
linguistic utterances and sent by speakers are always ac-

curately available to listeners. However, it is obvious that 
expression and interpretation are independent in speakers’ 
and listeners’ minds, and that there are at least no direct 
connections among them. Other channels, such as point-
ing while talking or primitive feedback, can only provide 
a certain degree of confirmation. Interpretation is a com-
plex process requiring linguistic and nonlinguistic infor-
mation. It is unrealistic to assume direct meaning trans-
ference. 

Second, these models either fail to model syntax (e.g., 
Ke et al. 2002), build in the syntactic features (e.g., Mun-
roe and Cangelosi 2002), or else do not adopt a co-evolu-
tionary view of the emergence of syntax and the lexicon 
(e.g., Batali 1998; Kirby et al. 2003). However, syntax in 
language is likely to become conventionalized through 
language use, rather than as the result of an innate, 
grammar-specific module (Schoenemann 1999). The 
syntax is assumed to owe to a pre-adapted cognitive ca-
pacity reflected in other cognitive processes, i.e. the se-
quencing ability, which can be attested in other primates 
and pre-language infants (Christiansen 2000). The emer-
gence of the lexicon and the convergence of syntax 
should be interwoven, i.e. they should co-evolve. 

Third, these models often use random interactions, 
which disregard the influence of social structure. Al-
though sociological research has studied structures that 
have emerged based on stable or global factors, very little 
research has touched upon the emergence of structure 
based on the evolution of language. Mutual understanding 
based on the evolving language can be a factor to trigger 
change in the social structure and so is worth studying.  



Fourth, most current models are based on homogene-
ous populations. However, sociolinguists have shown 
there to be dramatic variations in the speech community 
and various dichotomies in the learning styles of children 
(Shore 1995). Heterogeneity of natural characteristics and 
linguistic behaviors among agents should therefore be 
considered in the computational models that are adopted. 

Addressing these limitations and based on the “emer-
gent” theory of Wray (2002), we present a computational 
model which uses an indirect meaning transference and 
simulates the co-evolution of lexicon and syntax (simple 
word order) during the transition from a holistic signaling 
system to a compositional language. Importing two lo-
cally selective strategies, this model also simulates the 
emergence of social structure based on the mutual under-
standing of the evolving language. In Section 2, we de-
scribe the model. Results and discussions are presented in 
Section 3. Finally, we draw some conclusions and point 
out some future directions in Section 4. 

2. Description of the model 

The model is basically a linguistic communication game 
among independent agents in a population. Agents ex-
press and interpret two types of meanings: “predi-
cate<agent>”, such as “run<tiger>”, and “predicate<agent, 
patient>”, such as “chase<tiger, wolf>” or “eat<tiger, 
meat>”. Nonlinguistic information1 is used to assist the 
meaning interpretation, especially meanings like 
“chase<tiger, wolf>”. Without cues, it is not clear who is 
chasing whom, especially in the early stages of the lan-
guage evolution. 

This model uses a rule-based system to represent the 
language, including lexicon rules (meaning-utterance 
(M-U) mappings), such as holistic, phrase and word rules, 

and word order rules which cover all possible sequences 
to express the two types of meanings, such as “agent first, 
predicate last, patient in middle”. A self-organizing strat-
egy for rule competition adjusts the rule strengths, which 
indicate numerically the frequency of successful use of 

                                                           
1 Cues are pragmatic meanings available from the environ-

ment, and are all assigned the same strength, e.g., “fight<dog, 
cat>”/(0.5); 0.5 is the strength. Cue Reliability (CR) manipulates 
the probability that the intended meaning is one of the cues. 

the rules. The presence of a common set of rules shared 
by all agents indicates the convergence of the language. 

A memory system, inspired by a model (Holland 2001) 
based on the Classifier System, is used to handle M-U 
mappings. It includes a buffer (storing “previous experi-
ences” — M-U mappings obtained in previous commu-
nications) and a rule list (storing rules generalized from 
M-U mappings in the buffer). Rules in the rule list are 
used to express meanings and interpret utterances in fu-
ture communications. 

Two mechanisms are used to acquire new rules: ran-
dom creation in meaning expression (as in Kirby et al.’s 
model), and generalization, a flexible detection of recur-
rent patterns (recurrent meanings and utterances in two 
M-U mappings) without syntax or location restriction. 
Generalization happens when the buffer is full. Some 
examples of rule generalization are given in Fig. 1. By 
extracting recurrent patterns as new compositional rules, 
some holistic rules are decomposed. 

Synonymic and homophonic rules emerge inevitably 
during the execution of these two mechanisms because 
there is no clear access to other agent's language, and rule 
generalization is flexible and doesn’t consider the existent 
rules. Due to the lack of context (meanings expressed in 
communications are independent of each other) and the 
unreliability of cues (otherwise, it would still be direct 
meaning transference), homophone avoidance, in which 
the “successfully” used form is reinforced and others are 
weakened, is built in. As for synonyms, agents randomly 
learn one form from a set of synonymic rules based on the 
principle of contrast (Clark 1987). 

This model implements an indirect meaning transfer-
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Figure 1: Examples of rule generalization. (#, *: matching prag-

matic meaning items and syllable(s)) 



ence in communication. Communication proceeds as fol-
lows (summarized in Fig. 2). First, the speaker selects a 
meaning to express. The speaker expresses the selected 
meaning using the utterance that has the highest com-
bined rule strength, CSspeak, calculated from the formula 
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The utterance, built up accordingly, is transferred to the 
listener, who attempts to interpret the utterance. The lis-
tener sometimes also receives cues from the environment. 
Interpretation involves a more complex process of rule 
competition in the listener’s mind, based on the combined 
rule strength CSlisten: 
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The listener interprets the meaning based on the winning 
rules. If the listener’s winning rules’ CSlisten exceeds a 
threshold, a positive feedback is sent to the speaker indi-
cating the listener’s confidence in the interpretation. Oth-
erwise, a negative feedback is sent, meaning that the lis-
tener was either unable to infer a meaning or else was not 
confident of inferring the intended meaning. Finally, 
based on this feedback rather than on a direct meaning 
check, both the speaker and the listener adjust their own 
rules, increasing the strengths of the winning ones and 
decreasing those of the losing ones. 

Mutual understanding based on the evolving language 
can influence the possibility of future communication 
between these two agents. A fully-connected weighted 
network is used to indicate the social relationships among 
members; see Fig. 3. The connection weight, adjusted in 

both successful and failed communications, indicates the 
cumulative probability of successful communication be-
tween the two agents. Once the connection weight ex-
ceeds a threshold, a permanent edge is built. Agents per-
manently connected to each other are linguistic “friends”, 
and have a higher chance to understand each other. The 
number of permanent edges of one agent indicates his 
linguistic “popularity”, i.e., his propensity to communi-
cate successfully with other agents. These factors are lo-
cal factors focusing on individual agents. 

To enhance the realism of the model, we introduce a 
local-view assumption, i.e., in one communication, one 
agent can only view several agents (local-view) instead of 
all group members and communicate with some of them. 

We run two types of simulation. Simulation 1: Each 
generation, each agent selects the agents in his local-view, 
those to whom he is permanently connected having a 
higher chance to be chosen. Agents communicate with a 
subset of agents in their local-view, preferring to commu-
nicate with agents having higher popularity. A new gen-
eration begins after all agents have executed this process. 
Simulation 2: Each generation, agents randomly select 
the agents in their local-view and randomly attempt to 
communicate with some of them. 

In this model, heterogeneities, such as different buffer 
or rule list size, different random creation and generaliza-
tion rates (simulated by the Gaussian distribution), and 
different mechanisms to acquire new rules (simulated by 
random assignment), are allowed to make the model more 
realistic. 

Finally, several major factors are used to study the per-
formance: a) the understanding rate (UR), defined by 
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Figure 3: Social network used in this model. 
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Figure 2: Indirect meaning transference. 



indicates the average number of meanings understandable 
by every pair of agents in the population based on lin-
guistic information only — this tests the real representa-
tion ability of the acquired language, considering not only 
the expressivity, but also the understandability of the 
emergent language; b) the degree distribution (Pk) indi-
cates the distribution of the number of permanent connec-
tions (degree) versus the number of agents having such 
degree; c) the number of sub-clusters of connected agents, 
indicating the divergence within the population. Other 
parameters, such as the rule expressivity (RE), conver-
gence time (CT) (the number of rounds of communication 
by which the highest UR is reached), the average degree 
(AD), the clustering coefficient (C), and the average 
shortest path length (L) are also considered. 

3. Results2 and Discussion 

Co-evolution of lexicon and simple syntax 

Co-evolution of the lexicon and syntax is simulated in 
this model, as shown in Fig. 4. Fig. 4(a) shows the RE of 
both holistic rules and compositional rules; the decrease 
of the former and the increase of the latter show the tran-
sition from initially holistic signals to a compositional 
language. The UR in Fig. 4(a) shows the convergence to a 
common lexicon. The UR undergoes an S-shaped evolu-
tion, matching the result of Ke et al.’s model (2002). The 
RE of compositional rules used in combination increases 
rapidly, but the use of compositional rules may cause 
some meanings understandable when expressed by holis-
tic rules to be misunderstood, causing the UR to briefly 
drop slightly. However, the recurrence of these composi-
tional rules in successive communications allows them to 
win the competition with the holistic rules, which finally 
makes possible the emergence of a common lexicon. 

Figs. 4(b–c) show the convergence of the syntax from 
all possible sequential order rules; the curves trace the 
average strength of each of the eight order rules. Mutual 
understanding requires not only common lexicon rules 
but also a shared syntax to combine compositional rules. 
Two dominant word orders emerge from the initial state 
of no syntax, one for each of the two meaning types. 

                                                           
2 Simulation conditions: 50 agents, 500 generations, RC=0.8. 

There is no prior bias conferred to any particular word 
order; each is initially equally likely. Finally, combining 
Figs. 4(a–c), we observe the co-evolution of the lexicon 
and syntax: the use of compositional rules triggers the 
convergence of the syntax, which in turn boosts the con-
vergence of the lexicon; the sharp increase of the UR and 
the dominant order’s rule strengths are almost synchro-
nized. 

The emergence of social structure 

During the emergence of language, the selective strategies 
trigger a global social structure based on the mutual un-
derstanding of the evolving language. The AD and C, also 
following an S-curve, trace the emergence of the social 
structure (see Figs. 5(a–b)). Due to the restriction of the 
selective strategies, the AD and C of Scenario 1 is smaller. 
Besides, these strategies have their own influences. For 
example, the local, “self-centered” strategy of friendship 
can trigger an earlier increase of AD and C compared 
with Simulation 2. It also triggers an earlier emergence of 
sub-clusters (see Fig. 5(c)). The high C and low L indicate 
the emergent social structures of both simulations have 
small-world characteristics. But their structure is different 
due to the influence of the friendship and popularity 
strategies (see Fig. 5(d)). In Simulation 2, a network that 

 
(a) 

 
 (b) (c) 

Figure 4: Co-evolution of Lexicon and Syntax (local-view=10, 

com. of each agent=5, Simulation 1 (Simulation 2 is similar)). 

(a) Lexicon convergence; (b) Syntax convergence for “predi-

cate<agent>” meanings; (c) Syntax convergence for “predi-

cate<agent, patient>” meanings. 



is almost fully-connected emerges, with most agents hav-
ing the same, high degree. However, in Simulation 1, the 
degree distribution is more uniform. Although almost all 
members can understand each other, some agents’ degrees 
don’t increase much. This is because friendship restricts 
the agents belonging to the local-view, and the popularity 
only triggers a local convergence inside the local-view. 
Agents within the local-view might have intensive con-
nections with one another, but they don’t connect to out-
siders frequently. This local centralization prevents some 
agents’ degrees from increasing greatly. 

On the other hand, different local-view sizes in the se-
lective strategies can influence the language that emerges. 
With the increase of the local-view size, the influence of 
friendship is gradually reduced, which breaks down the 
local convergence. Then, the degree of every agent in-
creases gradually. This can be seen from the social struc-
ture that emerges (see Fig. 6(a)). 

As for the language that emerges, with the increase of 
the local-view size, the centralization is more global; 
there seems to be an optimal centralization for peak UR 
(Fig. 6(b)) — too much “democracy” or too much “dicta-
torship” cannot achieve the best UR. Actually, centraliza-
tion around some agent(s) has two effects. First, popular 
agents connects to many unpopular agents, like a network 
hub. Centralization around it can increase the chances for 
unpopular agents to exchange information, and then ac-

celerate the convergence of linguistic rules. On the other 
hand, effective information transference between two 
agents (say, Agent1 and Agent2) requires direct connec-
tion or connection through a “stable” intermediary (say, a 
popular agent, whose internal rules do not change much, 
so that the information received by Agent2 via the popular 
agent does not change much from the original informa-
tion sent by Agent1). However, with the increase of global 
centralization, other agents have higher chances to con-
tact the popular agent and influence his rules. This makes 
the popular agent unstable, i.e., although the input infor-
mation is the same, the output information differs greatly 
from time to time. It greatly affects the information trans-
ference and the convergence of linguistic rules between 
Agent1 and Agent2 through the popular agent. Compro-
mising these two contradictory factors, the optimum per-
formance happens at an intermediate level of centraliza-
tion. 

Finally, the structure of Simulation 1 is triggered by the so-

cial strategies which are based on the evolving language. The 

evolution of the language has its influence on the final result; 

these social strategies, if based on a non-evolving language, can 

trigger a local-world (Li and Chen 2003) (see Fig. 6(c)) or a 

scale-free (Barabási 1999) structure (if local-view is the whole 

group). However, the result of this model has no such structures. 

This shows that when using language-related factors to trigger 

structure, one should consider the evolution of language. 

  
(a) (b) 
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 Figure 6: Local-view size effects. (a) Pk; (b) UR; (c) Pk of local 

world structure (based on Li and Chen (2003)’s model) 

 
 (a) (b) 

  
 (c) (d) 

Figure 5: The emergent social structure. (a) AD and L of the two 

simulations; (b) C of the two simulations; (c) Sub-Clusters; (d) Pk.



4. Conclusions and Future Directions 

Considering the evolutionary point of view and real 
communication situations, the co-evolution and indirect 
meaning transference are more realistic. Social strategies 
(friendship and popularity), based on the mutual under-
standing of the evolving language, trigger a social struc-
ture showing small-world characteristics during the 
emergence of language. The results are different if the 
evolving property is not considered, which proves the 
influence of the evolving property on the emergent social 
structure.  

This model has been introduced to study the emergence 
of social structure based on evolving factors. Artificial 
life modeling is an appropriate tool to simulate and 
study the influences of these evolving factors. 

Several future directions are promising. First, the cur-
rent model can be “situated” in an artificial world, and the 
Genetic Algorithm (GA) used to evaluate the fitness of 
using language or not. Second, it is worth comparing the 
structures triggered by linguistic communication with 
those triggered by other nonlinguistic communications. 
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