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Abstract

The distribution of living languages is investigated and scaling relations are

found for the diversity of languages as a function of country area and popula-

tion. These results are compared with data from Ecology and from computer

simulations of fragmentation dynamics where similar scalings appear. The

language size distribution is also studied and shown to display two scaling

regions: (i) one for the largest (in population) languages and (ii) another one

for intermediate-size languages. It is then argued that these two classes of

languages may have distinct growth dynamics, being distributed on sets of

different fractal dimensions.
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I. INTRODUCTION

A great deal of effort has been made to know the Earth’s biodiversity [1]. In spite of this,

only about 1.7 million of an estimated 13.6 million species have been identified to date. The

diversity of languages, on the other hand, is much better known: there are 228 countries in

the world with a total of approximately 5000 ethnic groups speaking about 6500 different

languages [2,3]. In this Paper we report a quantitative analysis of how language diversity

increases with country area and population. A study of the language size distribution is also

presented.

The concept of diversity plays an important rôle in an increasing number of contexts

in the scientific literature in connection with biological problems [4], cellular automata [5],

diffusion processes [6], ecological [7] and evolutionary [8] problems, fractals [9], and fragmen-

tation phenomena in general [10], including nuclear fragmentation [11]. Scaling relationships

between diversity and the system size has been reported in a number of studies on fragmen-

tation [6,10,12,13] and Ecology [7,14–16]. For example, it has now been firmly established,

from both ecological field data [14] and computer models [7,15], that the number of species

or diversity D in a ecosystem of area A increases with A as a power law: D ∼ Az, where

the exponent z varies from 0.1 to 0.45 [14,15].

Here we report a scaling relationship between language diversity and area that is akin

to the relation above observed in Ecology. A scaling relation has also been found between

language diversity and population. The diversity distribution, meaning the number of coun-

tries with a given diversity, displays composite power-laws, and an argument is presented to

account for the existence of these two distinct scaling regimes. We also study the language

size distribution and show that it has two scaling regions corresponding, respectively, to (i)

the largest (in population) languages and (ii) intermediate-sized languages. It is then argued

that the existence of distinct scaling behaviors for these two classes of languages imply that

they have distinct growth dynamics, leading to different patterns of space occupation, such

as different fractal dimensions.

2



II. RESULTS AND DISCUSSION

Our study was based on the thirteenth edition of the Ethnologue [3], published in 1996,

which lists more than 6700 languages spoken in 228 countries. We divided the countries

in 12 groups (bins) according to area and then calculated the average diversity D of living

languages in each bin. In Fig. 1 we plot our results for language diversity as a function of

area. As one sees in this figure, the data points are well fitted by a power law:

D ∼ Az, (1)

with z = 0.41 ± 0.03, an exponent close to the largest values found in Ecology [7]. It

should be emphasized that the power law shown in Fig. 1 extends over almost six decades,

the only deviation occurring for countries with area smaller than 30 km2. The density of

living languages, ρD = D/A, thus scales as ρD ∼ A−0.59, implying that larger areas have

proportionately less diversity of languages.

We have also studied how language diversity varies with population. In Fig. 2 we show

the dependence of the average language diversity D as a function of the average population

N within each area bin. In this case we find a power-law of the type:

D ∼ Nν , (2)

where from a best fit we obtain ν = 0.50± 0.04. It is interesting to note that similar scaling

(with ν = 1/2) between diversity and population has been found in computer simulations

and experiments on fragmentation dynamics [6,10,12,13] as well as in insect populations

[16,17]. Figure 2 also shows that on average a group of about 15,000 people is needed to

maintain one single language alive. This might be of relevance vis-à-vis the potential danger

of extinction of several languages [18] whose number of native speakers are presently well

below this threshold.

From Eqs. (1) and (2) it follows that the (average) population grows with the (average)

country area as a power law:
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N ∼ Az/ν . (3)

From the values for z and ν above we thus obtain that N ∼ A0.82. (This result could

also have been obtained directly from the data on country areas and populations without

referring to the language distribution). In other words, the (average) population density

on Earth, ρN = N/A is not constant but rather decreases with area as ρN ∼ A−0.18. Thus

countries with large areas are proportionately less populated than smaller ones, as is widely

known. Moreover, from Eq. (3) and the fact that A ∼ L2, where L is a linear length scale,

it then follows that

N ∼ Ld, (4)

where d = 2z/ν = 1.64, thus indicating that the human population is distributed over the

surface of the earth on a fractal set of dimension d = 1.64. Note also that from Eq. (1) and

the fact that A ∼ L2 it follows that language diversity scales with linear size as

D ∼ Lδ, (5)

where δ = 2z = 0.82, meaning that living languages are distributed on a set of dimension

close to unity.

Another interesting pattern concerns the distribution of language diversity among the

various countries. We show in Fig. 3 the cumulative diversity distribution, N (>D), corre-

sponding to the number of countries with a language diversity greater than D. We see from

this figure that N (>D) displays composite power-laws: N (>D) ∼ D−B, with B = 0.6 for

6 < D < 60 and B = 1.1 for 60 < D < 700 (each power-law in this case extends over one

decade or more.) Now, why should the diversity distribution have two scaling regimes with

N (>D) decreasing faster for larger D? A possible answer is that it is difficult in general to

preserve the unity of large countries with great language (and hence ethnic) diversity, since

they will tend to break up into smaller ones. This process could thus account, at least in

part, for the fact that the cumulative diversity distribution N (>D) crosses over to a faster

decay as D increases.
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Scaling relations (1) and (2) above were obtained averaging the language diversity and

the population over countries of similar area. To obtain a better estimate of the exponents

z and ν one should ideally count the language diversity and total population contained

in concentric regions, say, circles, of increasing size, as is costumary in statistical physics.

Unfortunately, this procedure would be quite cumbersome here, if possible at all, and so we

had to resort to the data reported in the Ethnologue [3] for individual countries. We believe,

however, that the persistence of scaling behavior over several decades in Figs. 1 and 2 is an

indication that our estimates are statistically reliable.

We have also studied the language size distribution—a quantity that does not directly

depend on geopolitical boundaries. In Fig. 4 we show the cumulative size distribution,

n(>N), corresponding to the number of languages with a population greater than N . We

see from this figure that n(>N) displays composite power-laws:

n(>N) ∼ N−τ , (6)

with τ = 0.5 for 5 × 104 < N < 6 × 106, and τ = 1.0 for 2 × 107 < N < 1 × 109. Note that

each of these power laws is valid for about two decades.

The fact that the exponents τ for the largest and intermediate-sized languages differ

might be seen as an evidence that these two classes of languages possess distinct growth

dynamics, leading to different patterns in the occupation of space. To see this, we first

introduce the fractal dimension D defined by [9]:

n(>L) ∼ L−D, (7)

where n(>L) is the number of languages that occupy a region of linear size greater than L.

From Eqs. (4), (6), and (7) one then immediately finds :

D = dτ. (8)

Thus, the languages with largest populations, for which τ = 1, may be regarded as ‘space

filling’ in the sense that D = d, i.e., they are distributed on a subset of dimension equal to
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the dimension of the set on which the entire population is distributed. On the other hand,

languages with smaller populations (τ = 0.5) are more ‘tenuously’ distributed on the surface

of Earth, since they occupy a subset of dimension (D = d/2 = 0.82) considerably less than d.

Note also that in this case D = δ [see Eq. (5)], thus showing that the dominant contribution

to language diversity comes, as expected, from languages with small to intermediate-sized

populations. The results above conform with the obvious fact that languages with large

populations tend to be more widely spread, whereas languages with smaller populations are

in general restricted to small areas (most of the languages in the region with τ = 0.5 in

Fig. 4 are indeed confined within a single country). It is also interesting to notice that the

exponent τ = 1 for languages with large populations is similar to what is usually found in

classical critical phenomena [19]. Of course, a more detailed model for population dynamics

is required if one wishes to explain, in a more quantitative fashion, the interesting features

revealed by the present analysis. We are currently working on this direction.

III. CONCLUSIONS

We have presented a quantitative analysis of the diversity of human languages. We

have studied how language diversity increases with area and population and found scaling

relations in both cases. The language size distribution was also analyzed and shown to

display two distinct power laws: (i) one with the exponent τ = 1 for the top 50 languages

by population and (ii) another one with τ = 0.5 for languages with population between fifty

thousand and six million. The corresponding fractal dimension D for these two classes of

languages was obtained, and it was found that the largest languages are ‘space filling’ (D =

d = 1.64) with respect to the set available for the entire population, whereas intermediate-

sized languages are more thinly distributed (D = d/2 = 0.82) but give the main contribution

to language diversity.

This work was partially supported by Conselho Nacional de Desenvolvimento Cient́ıfico

e Tecnológico and Financiadora de Estudos e Projetos (Brazilian Agencies).
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FIGURES

FIG. 1. Average diversity of languages as a function of area. The straight line is a best fit

whose slope gives the exponent z = 0.41 ± 0.03.

FIG. 2. Average diversity of languages as a function of average population within a bin area.

The solid line is a best fit with slope ν = 0.50 ± 0.04.

FIG. 3. Number of countries with a language diversity greater than D as a function of D. The

straight lines give the exponents B = 0.6 for 6 < D < 60 and B = 1.1 for 60 < D < 700.

FIG. 4. Number of languages with population greater than N as a function of N . The straight

lines give the exponents τ = 0.5 for 5× 104
< N < 6× 106 and τ = 1.0 for 2× 107

< N < 1× 109.
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