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Abstract

The aim of our research is to understand and au-
tomate the mechanisms by which language can
emerge among artificial, knowledge-based and ra-
tional agents. We want to design and implement
agents that, upon encountering other agent(s) with
which they do not share an agent communication
language, are able to initiate creation of, and fur-
ther are able to evolve and enrich, a mutually
understandable communication language. Our re-
search is supported by the principled methodology
of designing rational, socially competent artificial
agents based on Bayesian probability and decision
theories, and on the research in linguistics and cog-
nitive psychology that addresses the issues of func-
tion, mechanisms, development, and evolutionary
history of natural languages. In our work, we ex-
press some of the key insights obtained in linguistics
and cognitive science in formal terms of decision
theory and game-theoretic mechanism design. We
propose that the evolution of an agent communi-
cation language can be accomplished by the mech-
anism of negotiation, developed in economics and
game theory, and automated in recent work in ar-
tificial intelligence. Negotiation is suitable because
it can be mapped to settings in which rational in-
teracting agents could use communication for their
mutual, yet selfish, benefits. The agents can make
mutually beneficial agreements that will allow ef-
ficient communication, but they have a conflict of
interest about which language constructs to use —
each would prefer a communication language that
is easier and less costly to use from their own indi-
vidual perspective.

Introduction

The aim of our research is to understand and au-
tomate the mechanisms by which language can
emerge among artificial, knowledge-based and ra-
tional agents that interact in open, heterogeneous,
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and distributed environments. We want to design
and implement agents that, upon encountering other
agent(s) with which they do not share an agent com-
munication language, are able to initiate creation of,
and further able to evolve and enrich, a mutually un-
derstandable agent communication language (ACL).
Unlike the approaches that seek to centrally design
a communication language before hand, like KQML
and FTIPA, we want to give the agents themselves
the ability to enrich and evolve a language that best
suites their needs.

We define communication as the phenomenon of
one agent (speaker) producing a signal that, when
responded to by another agent (hearer), confers
some advantage (or the statistical probability of it)
to the speaker. This definition is supported by nu-
merous approaches to study of communication in
cognitive science and linguistics (Burghardt 1977;
Dunbar 1998). Simply, the communicative act must
be purposeful and beneficial to the speaker, or else a
rational speaker would not bother to produce it. Us-
ing the the framework of decision theory, a commu-
nicative act must lead to an increase of the speaker’s
assessment of it’s own expected utility.!

Our research builds on results of our previous
work (Durfee, Gmytrasiewicz, & Rosenschein 1994;
Gmytrasiewicz & Durfee 2001; 2000; Gmytrasiewicz,
Noh, & Kellogg 1998; Noh & Gmytrasiewicz 1998;
1999) on coordination protocols and on value of
communication, but addresses the issue of language
creation and evolution. Given that the ability to
communicate can be advantageous, the agents may
want to enrich their communicative capabilities, if
they are insufficient. For example, if two inter-
acting agents do not share a common agent com-
munication language, it may be in their interest

!This approach allows one to treat communication as
action (see Austin’s postulate in (Austin 1962)), since
it is defined by its effects on the state of knowledge of
hearer and speaker.



to initiate creation and enrichment of a common
ACL to allow mutually beneficial communication.
This is the driving force behind evolution of lin-
guistic competence: Improving communication al-
lows the agents to interact more efficiently, and con-
veys an advantage which can be quantified as an
increase in the agents’ expected utilities. This ap-
proach complements one taken by Luc Steels (Steels
1998b) in which agents, playing a “language game”,
are directly rewarded for successful communication,
rather than the reward being assessed by the agents
based on how communication helps them solve a
task at hand.

We propose that initiation and enrichment of an
agent communication language can be accomplished
by the mechanism of negotiation, developed in the
fields of economics and game theory (Raiffa 1982;
Rasmusen 1989), and automated in recent work in
artificial intelligence (Kraus, Wilkenfield, & Zlotkin
1995; Sandholm 2000; Schwartz & Kraus 1997). We
think negotiation is a suitable mechanism because
the elements of the formal theory of negotiation can
be precisely mapped to the settings in which ratio-
nal interacting agents could use communication for
their mutual, yet selfish, benefits. On the one hand
the agents can make mutually beneficial agreements
that will allow efficient communication, but on the
other hand, they have a conflict of interest about
which language constructs to use — each would pre-
fer a communication language that is easier and less
costly to use from their own individual perspective.
The fact that negotiation over language is isomor-
phic to formal settings of negotiation and bargaining
allows us to take advantage of numerous results de-
scribing equilibria, convergence, efficiency and sta-
bility known in game theory.

In proposing negotiation as the main component
of language evolution we are also motivated by richly
analyzed accounts of language development among
humans that have to interact with others coming
from different linguistic backgrounds (see (Bickerton
1982; Perkinson 1984; Pinker & Bloom 1990) and
references therein). Under such circumstances peo-
ple were found to create a primitive language called
pidgin, and further enrich it to more syntactically
sophisticated creole. During this process, people
are frequently said to negotiate among themselves
the lexicon and the rules of grammar that become
accepted as a part of a shared communication lan-
guage. Our effort presents a way of formalizing the
process naturally occurring among people, and uses
the resulting formal model to enhance capabilities
of artificial agents.

As a point of departure, our work makes a num-
ber of assumptions about the agents involved. First,

the agents we are interested in are knowledge-based.
This means that they have a representation of facts
about the world, expressed as a set of sentences
in some (hopefully well defined) knowledge repre-
sentation language (KRL), for example first order
logic, description logic, Classic, KL-One, probabilis-
tic logic, or similar (Borgida et al. 1989; Brachman
& Schmoltze 1985; Russell & Norvig 1995). The
fact that agents, operating in an open multiagent
environment, may encounter other agents equipped
with a different KRL is the main motivation of our
work. In such cases the agents cannot simply use
their KRL’s to communicate with each other, and
the issue of evolving a commonly shared ACL arises.

Second, the agents are purposeful. This means
that the agents have well defined goals, i.e., the
precise description of states of the world they are
trying to bring about. The possibility that agents
may have different goals brings up the notion of self-
interested agents, which we allow. We further allow
a more expressive representation according to which
an individual agent’s purpose, or preferences, are
expressed in terms of a utility function, as postu-
lated by the utility theory (Russell & Norvig 1995;
Wellman 1991).

Third, the agents are rational. This means that
the agents perform actions chosen so as to fur-
ther their preferences, or goals, given what they
know. We follow the operationalization of ratio-
nality postulated by decision theory (Doyle 1992;
Russell & Norvig 1995), according to which a ra-
tional agent executes the action with the highest
expected utility.

Finally, we make some simplifying assumptions
about the agents’ shared ACL that is to evolve dur-
ing the interactions. The grammar of the ACL will
be assumed to be context-free, and the language it-
self to be free of ambiguity. Indeed, ambiguity tends
to decrease the expected values of messages, and
there are good indications (Harrison 2001) that se-
mantic ambiguity? and attachment ambiguity® can
be avoided. Also, it has been shown (Morneau 1992)
that context-free syntax, likely with no more than
two dozen productions, is powerful enough to per-
form a vast majority of communicative tasks needed
in a human language.

2More than one terminal label per meaning, or more
than one meaning per terminal label.

3Take a phrase “Little girls’ school”; due to attach-
ment ambiguity it is unclear whether the adjective “lit-
tle” modifies ¢ ‘girls”, or “school”, or, possibly, both
items.



Overview of the Design

The agents we consider are endowed with a knowl-
edge base (KB) and can make decisions about what
action to execute based on their expected benefits. If
they decide to communicate, then the speaker needs
to use a translator to convert a sentence from its
knowledge representation language into a mutually
understood agent communication language. If the
speaker succeeds in this KRL to ACL translation
task, it uses a mutually shared communication chan-
nel to execute the communicative act. The hearer
uses its own translator to translate the received mes-
sage from the ACL into its KRL, and incorporates
the information into its own KB. It may happen that
a potential speaker finds that some piece of informa-
tion is worthwhile to transmit, but it cannot be ex-
pressed in the shared ACL, because the ACL is not
expressive enough or it is nonexistent all together.
The failure of the ACL-KRL translation signals to
the agents that their ACL could be enriched to the
agents’ mutual benefit. They can engage in nego-
tiation which, if successful, results in new elements
(lexicon or rules of grammar) being added to the
ACL. We provide more details on the elements of
our design in the subsections below.

Knowledge Base and Value of
Communication

Our design of the knowledge base (KB) is based on
work on frame-based (Brachman & Schmoltze 1985;
Karp, Myers, & Gruber 1995) and object-oriented
(Patel-Schneider 1990; Yelland 1993) knowledge
representation formalisms (see also (Brachman &
Levesque 1985) and references therein). These for-
malisms postulate that the KB be organized as a
set of interrelated frames representing classes, i.e.,
sets of entities, and instances, i.e., the individual
entities themselves. The frames representing the
classes form a superclass/subclass hierarchy allow-
ing for usual inheritance of properties, while the

leafs of the hierarchy are occupied by instances of
classes identified in the agent’s environment. Syn-
tactically, the language that expresses the informa-
tion in the KB, the knowledge representation lan-
guage (KRL), is the agent’s “language of thought”.
The possible KRLs are, as we mentioned, first or-
der predicate calculus, Classic, Loom, and oth-
ers. QOur assumption that the agents have a pre-
existing knowledge base complements much of the
related work in artificial life and neural network
based approaches to language creation and evolution
(see (Batali 1998; MacLennan 1991) and references
therein), genetic algorithms based work (Werner &
Dyer 1991), and recent work in AT by Luc Steels
(Steels 1998b; 1998a).

Figure 1 is a high-level graphical depiction of a
simple KB we constructed for one of the agents (here
called Agentl) interacting with another agent in the
Wumpus environment (Russell & Norvig 1995) (in
Figure 1 ovals denote classes, while rectangles de-
note individual objects.) While, as we mentioned,
we cannot assume that the agents use the same
KRLs to represent the concepts and objects in their
environment, all of the knowledge representation
schemes we are familiar with employ the notions
of classes (sets, or unary predicates), objects that
belong to known classes, and predicates of higher
arity.*

PHYSICAL OBJECTS

\

ABSTRACT OBJECTS

Location:

BINARY RELATIONS

ANIMATE OBJECTS INANIMATE OBJECTS

Mobile: Yes Mobile: No

ADJACENT

AGENTS WUMPII PITS GOLD

Objectt

Name: Agentl
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KB:
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Name: Agent2
Location: (1,1)
KB: (KB2KB3)
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Name: Pitl
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Name: Goldl
Location: (3,5)

Objects
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Objects

Name: Adj3
Elem:
(Pit1,Gold1)

Agent2 € AGENTS GOLD ¢ INANIMATE OBJECTS

Location(Agent2) = (1,1) ADJACENT(Wumpusl, Pit1)
Figure 1: Graphical View of the Knowledge Base of
Agentl in the Wumpus Environment, and Example
Statements in KRL1.

Figure 2 is a depiction of a KB of another agent
(Agent2) operating in the same environment. It is
not our purpose to go into the details of the knowl-
edge representation (and hence both figures are sim-
ple, and not very realistic, examples), but we would
like to point out some issues relevant from the per-
spective of this work. First, since the physical ob-
jects residing in the agents’ KBs (depicted in Fig-
ure 1 and Figure 2) represent objects in the agents’
shared environment there may be a fair amount of
overlap between them; here the agents know about
each other, and they both know about the object lo-
cated at (3,4). However, the agents’ knowledge rep-
resentation languages could use different vocabulary

4The construction of our KB assures that the con-
cepts are grounded, in the sense used by Steels in (Steels
1998a).



and grammar, as shown by example statements in
Figure 1 and Figure 2. Also, the physical objects in
the agents’ KBs are uniquely identified by their lo-
cations that the agents can refer to (in the simplest
case, for example by pointing to an object in a spe-
cific location). We will assume a presence of unique
identifiers (say, unique keys) for some objects if the
agents reside in a non-physical environments.

AbstractObject

Physical Object
Location:

Second, we assume that the class structures con-
tained in the agents’ KBs are partially isomorphic.
We define two KB’s as partially isomorphic as ones
that contain some of the same individual objects (for
example objects at locations (1,1), (2,3) and (3,4) in
Figure 1 and Figure 2) with the class structures em-
anating from these objects (i.e., from the leafs to the
root of the KB) being isomorphic. Note that there
may be objects and classes in the agents’ KB’s that
the agents do not share. The assumption of partial
isomorphism of the agents’ KB’s is necessary for ne-
gotiation over communication language: when the
agents negotiate on how to express certain content
they both have to know what this content refers to.

Given the information in its knowledge base, an

{An.ma,eob,m J {\nmumaeobject J BinanyPaaion agent can decide on the content of the message to be
Hople Y Mole Mo communicated. Given the KBs in Figure 1 and Fig-
[—Ré [%m Next ure 2 for example, Agentl could find it useful to in-

form Agent2 that there is a piece of gold in location
Ghctt o Otjectt Ot Ohjecs (3,5). In general, following the formalism and tech-
Name: Robot2 Name Grincht Name: HoleL Name: Adi1 Name: Adi2 niques described in (Gmytrasiewicz & Durfee 2001;
i Focaton 83 Location: (34 Someiraen| | comeiay|  Noh & Gmytrasiewicz 1998; 1999), it is possible to

Object2

Name: Robot1
Location: (2,3)
KB: (KB2,KB3)

Robot1 isaRobot every Treasure is an I nanimateObject

Location of Robotl is 2.3 Grinchl is next to Holel
Figure 2: Graphical View of the Knowledge Base of
Agent2, and Example Statements in KRL2.

For the purpose of the current discussion we need
to point out two further assumptions. First, the
representation an agent uses for its own knowl-
edge can express what the agent knows about the
states of knowledge of other agents. For exam-
ple, to represent the available information about
Agent2’s state of knowledge, Agentl has an instan-
tiation of the Agent class, labeled Object2 in Fig-
ure 1, which contains this information. For exam-
ple, Agentl can realize that Agent2 does not know
about the existence of the gold piece at location
(3,5), while Agent2 could know that Agentl does
not know about the grinch (wumpus) located at
(3,3). In general, the models agents have of each
others’ knowledge states have to be capable of rep-
resenting uncertainty (we use a probabilistic frame
formalism due to Koller (Koller & Pfeffer 1995;
1998)).5

®Note that the models of the other agent’s state of
knowledge are all expressed in the original agent’s knowl-
edge representation language, which may be different
from the representation used by the other agent.

compute the values of various messages based on
their content and depending on how they impact
the hearer’s state of knowledge and possibly change
its intentions. From the point of view of language
development using negotiation, it is important to
note that the best message that the agent can com-
municate has a well-defined value. The result of the
above computation is a fragment of the KB to be
communicated, expressed in terms of the speaker’s
KRL.®

The values of the potential communicative acts
(or their expected cumulative future values, if the
agents are non-myopic) are needed for the agents to
determine the maximum costs of implementing the
new addition to the agent communication language
they are willing to agree to during negotiation. For
example, our agents in the Wumpus environment
could agree on a common lexical term denoting the
pieces of gold, but only if the cost of using this term
does not supersede the benefits of communicative
acts containing it. We will come back to this point
when we discuss the negotiation model in more de-
tail.

Translation

Due to space limitations we give only a high-level
overview of the translator design. Given that the
agent decided what it wants to communicate, which
is a KB fragment expressed in KRL, the genera-
tion of a communicative act involves the transla-
tion of the fragment from the “language of thought”

5This approach ensures that all messages are
meaningful.



into the agent communication language (ACL). This
process uses the KRL and ACL grammars, and a
set of translation rules. Our idea is to design the
translator as a finite state transducer. The trans-
lation process starts by parsing the sentence in the
source language (say, KRL) using usual techniques,
followed by a process of stage-wise transformation
of this parse tree by the transducer. This results in
a parse tree in the target language (say, ACL), if the
translation process is successful. The yield of the re-
sulting parse tree is the ACL sentence to be commu-
nicated. Our initial design of the translator follows
transducer designs used in natural language trans-
lation systems (Alshawi, Srinivas, & Douglas 2000;
Knight 1997; Knight & Graehl 1998), but is simpler
since, as we mentioned, the evolved ACLs will not
be as complex as natural languages. The transition
function of the transducer is implemented using a
set of translation rules, which summarize the steps
required to convert a parse tree in the source lan-
guage to a parse tree in the destination language.
According to our design, the computational cost in-
volved in translation is polynomial in the size of the
parse trees involved, in the number of the transla-
tion rules, and depends on the length of terminal
labels.

It is possible that the translation of a statement
from KRL to ACL results in a failure, for exam-
ple due to the lack of an applicable translation rule.
Typically, this signals that the agent communica-
tion language is not as expressive as the knowledge
representation language, and the agent finds itself
wanting to communicate content for which the ACL
is insufficient.” This, and the fact that the agent is
then unable to achieve a higher expected utility that
would result from having communicated the mes-
sage, drives the negotiation process that enriches
the existing ACL to enable it to express the new
content.

The addition of new lexical and grammatical con-
structs to the ACL necessitates the expansion of the
ability of the translator — new translation rules, as
well as states and transitions among them, have to
to be added to the transducer automatically to han-
dle the new language features. To allow this, our ap-
proach uses methods of unsupervised learning of fi-
nite automata and transducers(Alshawi et al. 2000;
Alshawi, Srinivas, & Douglas 2000; Angluin 1987;
Carmel & Markovitch 1996).

Given a newly enriched ACL and the enlarged set

"We would like to remark that the ACL to KRL
translation, performed when an incoming message has
to be understood, is unlikely to fail for that same reason,
since the agents would not agree to incorporate into the
ACL features that they cannot express in their KRLs.

of translation rules, the computational cost of trans-
lating a KRL sentence into ACL and of producing a
communicative act is the cost of implementing the
newly agreed on addition to ACL. As we mentioned,
rational agents will prefer to negotiate so as to min-
imize their own costs of implementing the reached
agreement. For example, if the ACL were to be iden-
tical to an agent’s KRL, the KRL-ACL translation
would not be needed and the cost of using the ACL
would be minimized.

Evolving the Agent Communication
Language

The evolution of the agent communication lan-
guage involves building up its lexicon (resulting in
“pidgin”), as well as equipping its grammar with
more powerful rules (i.e., creolization.) In our ap-
proach, both processes involve negotiation taking
place between cooperative but self-interested agents
(Kraus, Wilkenfield, & Zlotkin 1995; Myerson 1991;
Sandholm 1999; 2000). The agents are cooperative
since it is in the interest of both of them to be able
to communicate and reap the benefits more efficient
interactions. However, they are self-interested and
prefer agreements that are less costly to implement
from their own perspective.

Building up the Lexicon

This section describes a mechanism by which a lex-
icon of an ACL, i.e., the set of terminal labels, can
evolve to encompass the categories of objects en-
countered in the agents’ environment and residing
in the agents’ knowledge bases. This subsection de-
scribes this process intuitively; we show the map-
ping to formal negotiation frameworks later. Let us
consider two example ACL grammars below:

Gacra:

S — object at location Lis a C
L — (D, D)
D—-0[1]2]...]9

C — Robot | Hole | Grinch

and

G acro:
S — <pointing action> C

Grammar G 4cr1 is a simple example that pro-
duces sentences by identifying an object at a given
location in the environment (here, location is a pair
of digits) and by uttering a mutually agreed-on ter-
minal label denoting the class this object belongs
to (the labels belong to the KRL of Agent2 in our
examples earlier, so this ACL is not very realistic.)



Grammar G 4o o can be a more realistic example
of a grammar describing the ACL the agents have
available at the beginning of their interactions — the
language generated by G a¢ o is empty since there
are no terminal labels associated with the nonter-
minal C (a concept) that are agreed upon. Thus,
Gacro cannot be used for communication. Nev-
ertheless this language is well-defined and assumes
that the agents can execute an action of pointing to
a specific location in the environment they share and
identifying an object there, as we mentioned before.

The process of negotiation over the terminal la-
bels is one which results in the agents’ finding labels
denoting the classes of objects present in the agents’
knowledge bases but absent from the ACL grammar,
and adding them to the shared ACL. To begin nego-
tiation, one of the agents (say, Agentl) could point
to the object at location (3,4) and uttering a pro-
posed label for a class this object belongs to, say
“PITS”. Uniquely identifying one particular object
may not be sufficient to identify the concept, how-
ever, because many objects belong to more than one
class. For example, object located at (3,4) in Fig-
ure 2 belongs to the class Agent2 calls “Hole”, but
also to “InanimateObject” and “PhysicalObject”. A
convenient convention that allows disambiguation is
for the agents to identify numerous objects and to
assume that the proposed label refers to the most
specific superclass to which all of the objects pointed
to belong. Thus, if Agentl points to Pitl and, say,
to Agent2, then the class referred to is “PHYSICAL
OBJECTS”, if Agentl and Agent2 are pointed to
then the class is “AGENTS”. If, during the negotia-
tion process, only Pitl is being pointed to, then the
agreed on terminal label is assumed to refer to the
singleton set containing Pitl, i.e., to Pitl itself.

Given the label, and the concept it is to refer to,
suggested by one agent, the other agent can either
accept this label, or propose a different one. The
process can go through a number of iterations, and,
if it proceeds according to the negotiation model we
describe in the next section, it is guaranteed to ter-
minate with a unique label agreed upon, or with one
of the agents opting out of negotiation all together.
The alternative offers during the negotiation can be
seen as a cooperative search defined on the space
of all possible labels, with the agents’ initial labels
(say, PITS and Hole) as the starting points. During
the search, agents use their estimates of implemen-
tation costs to make offers that progressively move
toward the offer of the other agent, or to opt out if
the cost is too high.

During our experiments in the Wumpus world our

agents used a simple numerical measure based on the
ASCII character set as their cost estimate. Another

good choice for the cost function is the edit distance,
i.e., the minimum number of substitutions, deletions
and insertions required to transform one string into
the other. Other measures are also possible, de-
pending on implementation. Using the simple cost
measure above, our simulated agents were able to
agree on some common lexical labels. For example,
while negotiating over a label for the concept of a
pit, the initial offer of Agentl was “PITS”, while
the initial offer of Agent2 was “Hole”. The agreed
on label for this concept was, under the assumed
cost function, the label “Llp”. The label for wum-
pus become “Otkolm” when the agents started from
“WUMPII” and “Grinch”, respectively.

The enriched ACL grammar resulting from the
example negotiation above, containing the names of
concepts and individual objects in the corresponding
classes, is:

S — O atlocation Lis a C
L —» (D, D)
D—-0]1]2]...|9

C — Otcolm | Llp

O — Otcolml | Llpl

We have to point out that the agents’ alter-
nating offers during the negotiation is mot part
of the process of communication using the above
ACL. The negotiation should be thought of as pre-
communication protocol — one that builds the shared
ACL, but not as one that uses the ACL. The offers
that the agents exchange are not valid ACL sen-
tences, they do not contain information about the
external environment, and they are executed under
different epistemic conditions. Using the examples
of KBs in Figure 1 and Figure 2, the agents can only
negotiate by pointing to objects that they know are
present in both of their KBs (like objects located
at (1,1), (2,3) and (3,4)). They cannot use objects
like the gold piece at (3,5) or the Grinch at (3,3),
which are not mutual knowledge, but which could
be contained in useful communication.

Enriching the ACL Grammar

The pidgin-like ACL grammar example above allows
only limited kind of statements to be communicated.
While messages that can be expressed in this ACL
can be useful, it is likely that agents will find they
need to convey more sophisticated information, and
need more complex grammatical forms to do so. As
we mentioned, in human language development a
process of enriching a common grammar has been
observed taking place among children of native pid-
gin speakers. The children, usually during play,
seem to engage in the process of negotiation that
enriches the grammar of pidgin and evolves it into



creole.

To make our discussion more concrete let us as-
sume that the decision making module of Agentl
determined that the optimal message that should
be transmitted in the given situation is one that
relates one object to another, as in “ADJA-
CENT(Wumpusl, Pit1)”. Given this content, re-
turned by the decision making module, the transla-
tion module will return failure since the ACL gram-
mar above is not expressive enough.

Our idea is to use negotiation, but now aimed at
adding a new grammar rule capable of expressing
the binary relation ADJACENT. The process of ar-
riving at a common grammatical form expressing
relations among objects is similar to the one above
for ACL’s lexicon. While the lexicon is constructed
by pointing to objects that belong to a particular
set (class, or concept), we can proceed by observing
that binary relations are also sets. For example, the
binary relation ADJACENT is a set of pairs of ob-
jects that are adjacent to each other, as depicted in
Figure 1. This relation can be identified by an agent
pointing to the two objects (or naming them, if their
names belong to the previously established lexicon)
and uttering the relation holding between them. Let
us further note that the relation does not have to be
explicitly represented as a set in the agents’ KBs, as
ADJACENT is in Figure 1.

During the negotiation over more complex rules of
grammar, the agents alternatively propose to each
other new possible context free productions that can
be used to express complex relations among objects.
If the agreement is reached and they arrive at a new
grammar rule they add it to their shared ACL. For
example, Agentl could start by proposing “ADJA-
CENT(Otcolm1, Llpl)”, while Agent2 could start
off suggesting “Otcolml is next to Llpl”. In an ex-
ample run in our simulated environment, the nego-
tiated syntax allowing the expression of this binary
relation ended up as “Ki Llpl, Otcolml i”. The ad-
dition of this production to the ACL grammar could
result in the grammar below:

S — O at location Lisa C
S—KiO,0i

L —» (D, D)
D—-0]1]|2]...]19

C — Otcolm | Llp

O — Otcolml | Llpl

The Negotiation Model

In this section we show that the formal frame-
works of negotiation previously investigated in game
theory and distributed AI (Kraus, Wilkenfield,
& Zlotkin 1995; Myerson 1991; M.J.Osborne &

A Rubinstein 1990; Sandholm 2000; Schwartz &
Kraus 1997) can be applied to agents negotiating
over their agent communication language. This al-
lows us to take advantage of numerous results ad-
dressing convergence, efficiency, stability, and fair-
ness known in game theory and mechanism design.

Following the usual treatment in the literature,
we assume that there are time steps during which
each agent puts forth its offer. Therefore, time is di-
vided into a set T = {0,1,2,.....} . In general, there
are N > 2 agents, randomly designated 1,2,...,N.
In each time step t, if negotiation has not termi-
nated earlier, the agent whose turn it is to make
an offer at that time step will put forth its sugges-
tion. The possible responses available to the other
agents are {Yes,No,Opt}. That is, the agent can ei-
ther accept the offer, reject the offer, or opt out of
the negotiation process. If an offer is accepted by
all the agents, then negotiation ends, and the agree-
ment is implemented. If any agent opts out, then
the negotiation ends; this may happen if one of the
agents determines that a proposed solution is not
worth the cost of implementing it. If none of the
agents opts out but at least one agent has rejected
the offer, the negotiation proceeds to time step t+1,
and the next agent makes its offer. The utilities the
agents take into account are the costs of implement-
ing the agreement, a time discount factor (or a cost
of delay), as well as a positive reward equal to the
expected value of messages that can be transmitted
if the agents agree on a solution.

Some of the main assumptions about the ne-
gotiation process and the agents involved (Kraus,
Wilkenfield, & Zlotkin 1995; M.J.Osborne &
A Rubinstein 1990) are:

e Rationality
The agents are rational; they seek to maximize
their utilities and act accordingly. This assump-
tion is fulfilled since, as we mentioned, we are
considering interaction and communication taking
place among rational, utility maximizing agents.

e Value of the Agreement

The value of an agreement is quantified as the dif-
ference between the utility gain due to a new rule
of ACL grammar and the cost of implementation
and translation. The computation of the utility
gain is based on our earlier work (Durfee, Gmy-
trasiewicz, & Rosenschein 1994; Gmytrasiewicz &
Durfee 2001; 2000; Noh & Gmytrasiewicz 1998)
which shows how to compute the expected utilities
of messages that the agents could exchange. The
utility gain of a new feature of the shared ACL is
the value of messages this feature enables (com-
puted cumulatively if the agents are non-myopic
with a given time horizon.)



The cost of implementation is a measure of effort
to implement the proposed common rule of gram-
mar and to translate the statements in KRL into
ACL and vice versa. For terminal labels a reason-
able estimate may be the edit distance between
the new ACL label and the existing label in the
agent’s KRL. For more complex rules of grammar,
the cost of translation is a polynomial function of
the length of the right-hand-side of the proposed
rule (indicating the size of the parse tree) and of
the number of translation rules needed to handle
the new production.

The cost of opting out is computed as the agent’s
expected utility without being able to communi-
cate with the other agent(s).

e Time is valuable

Value of an agreement reached earlier is no smaller
than the value of the same agreement reached
later. The fact that time is valuable motivates
the agents to proceed with the negotiation and
make concessions to each other. In the context of
communication, the value of time is the measure
of the urgency of the tasks that the agents could
accomplish using communication, and of the accu-
mulating utility loss when communication is not
possible. One way to model this is to assume time
discount factor, § (0 < d < 1), so that if an agree-
ment reached at the first time period is valued at
V, its value at the second time step is reduced to
0V, at the third time step it is 6V, and so on.
The time discount factors can be different for dif-
ferent agents; the agents that lose more over time
usually end up making more concessions during
negotiation and carry more of the cost of imple-
menting the agreement. The usual way of making
time valuable to the agents is to equip them with
a time dependent utility functions. In the Wum-
pus world, for example, the time dependent util-
ity function quantifies the directive that the gold
pieces should be gathered as soon as possible.

e Commitment
If an agreement is reached, then the agents honor
it. The commitment is not long term; that is, the
agent cannot commit itself to any future encoun-
ters.

o Identity
The agents can accurately identify each other.

The main solution concept studied in game the-
ory is the Nash equilibrium. Intuitively, given some
strategy, labeled ’1’, of AgentA, and some other
strategy, '2’, of AgentB, no strategy that AgentA
can choose will result in an outcome that is prefer-
able to the outcome generated by (1,2), and simi-
larly for AgentB. One problem with this approach

is that, in some cases, there could many such equi-
libria.

If the agents know each others’ time discount fac-
tors and valuations they can reach an agreement on
the first round of negotiation. The following theo-
rem illustrates this:

Theorem. Rubinstein Bargaining Solution

In a discounted infinite negotiation setting, the sub-
game perfect Nash equilibrium is unique. AgentB
carries (1 — d2)/(1 — 0102) fraction of the cost of im-
plementing the agreement, where ¢; is AgentA’s dis-
count factor, and &9 is AgentB’s. AgentA’s cost frac-
tion is one minus this. The agreement is reached in
the first round (M.J.Osborne & A.Rubinstein 1990).

The more realistic cases, when the agents do not
know each others’ message valuations and time dis-
count factors, are treated in (Chatterjee & Samuel-
son 1987) and, to some extend, in (Kraus, Wilken-
field, & Zlotkin 1995) and other related work.

Conclusion

We have outlined an approach that autonomous
agents can use to enrich and evolve their agent com-
munication language. We postulated the existence
of a knowledge representation language, KRL, that
each of the agents uses to implement its own KB.
The language generating module and the language
analysis module translate the statements from KRL
into and from the agent communication language,
ACL, that the agents share and can communicate
in.

We proposed the formal model of negotiation as a
mechanism the agents can use to improve the ACL
they share with other agents. The costs considered
in the negotiation are associated with the changes to
the agents’ KBs and additional parsing and transla-
tion. If the agents happen to start out with identical
knowledge representation languages and share the
same labels, the ACL they arrive at will naturally
be the same as their KRL. If there are discrepan-
cies between the lexicon or the rules of grammar of
their KRL’s, the agents will negotiate an ACL that
bridges the differences and allows the agents to com-
municate, while minimizing the costs of translation
and implementation of the new rules of grammar.

We are currently implementing the above ap-
proach for agents interacting in the simulated Wum-
pus environment, introduced in (Russell & Norvig
1995). Our current implementation rests on all of
the assumptions mentioned in this paper. Since
some of these assumptions are quite strong we will
be looking for ways to relax them during our future
work.
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