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e Negotiation Protocol

The model of negotiation used is similar to the model
of Alternative Offers[17].

o Commitment

If an agreement is reached, then the agents honor it.
The commitment is not long term; that is, the agent
cannot commit itself to any future encounters.

e Identity

The agents can accurately identify each other.

We further assume that there are time steps, during
which each agent puts forth its offer. Therefore, time is
divided into a set T' = 0,1,2,..... . There are N >= 2 agents,
randomly designated 1,2,...,N. In each time step t, if the ne-
gotiation has not terminated earlier, the agent whose turn it
is to make an offer at that time step will put forth its sugges-
tion. The possible responses available to the agent during
negotiation are {Yes,No,Opt}. That is, the agent can either
accept the offer, reject the offer, or opt out of the negotia-
tion process. If an offer is accepted by all the agents, then
negotiation ends, and the agreement is implemented. If any
agent opts out, then the negotiation ends; this may happen
if one of the agents determines that a proposed solution is
not worth the cost of implementing it. If none of the agents
opts out but at least one agent has rejected the offer, the
negotiation proceeds to time step t+1, the next agent makes
its offer, and the same process continues. The utilities the
agents will take into account are the costs of implementing
the agreement, a time discount factor, as well as a positive
reward equal to the expected value of messages that can be
transmitted if the agents agree on a solution.

At any time step during negotiation the agent whose
turn it 1s will put forth its offer. Simultaneously, all agents
will compute their utilities at this stage of negotiation. For
negotiations over the lexicon, the utilities are combinations
of the following factors:

e The cost of implementation, is a measure of effort to
implement the proposed common label in the agent’s
KB. We assume that a greater relative change to the
KB carries a greater implementation cost.

e A time discount. We assume that this is a constant
discount factor applied at each time step of the nego-
tiation. This factor quantifies the fact that the agents
would like to reach the agreement earlier rather then
sooner, and is dictated by the urgency of the tasks at
hand to each of the negotiating agents.

e The cost of opting out and not being able to commu-
nicate with others.

e The gain obtained by arriving at a common lexicon.
The gain in our case is the benefit derived from being
able to communicate, quantified as the expected utility
of messages that can be transmitted.

While negotiating over the rules of grammar, the agents’
are trying to arrive at a more powerful grammar that will
enable them to convey more information to each other. This
time, the agents negotiate over the possible improvements
that could be made to the present ACL rules at each time
step. The additional factors that influence the utility in this
case are the cost of implementing a new rule (in case the
agents come up with a new rule), the cost of parsing, and the

cost of coming up with a translation pair in the translation
relation for that grammar rule. Further, the gain obtained
by arriving at a common rule stems from the agents’ ability
to convey new kinds of information to each other; as such,
it may be substantially higher than that of arriving at a
common lexicon.

3 Conclusions and Future Work

We have outlined an approach that autonomous agents can
use to enrich and evolve their agent communication lan-
guage. We postulated the existence of a knowledge rep-
resentation language, KRL, that each of the agents uses to
implement its own KB. The language generating module
and the language analysis module translate the statements
from KRL into and from the agent communication language,
ACL, that the agents share and can communicate in.

We proposed the formal model of negotiation as a mech-
anism the agents can use to improve the ACL they share
with other agents. The costs considered in the negotiation
are associated with the changes to the agents’ KBs and ad-
ditional parsing and translation. If the agents happen to
start out with identical knowledge representation languages
and share the same labels, the ACL they arrive at will nat-
urally be the same as their KRL. If there are discrepancies
between the lexicon or the rules of grammar of their KRL’s,
the agents will negotiate an ACL that bridges the differences
and allows the agents to communicate, while minimizing the
costs of translation and implementation of the new rules of
grammar.

We are currently implementing the above approach for
agents interacting in the simulated Wumpus environment,
introduced in [25]. Our current implementation rests on all
of the assumptions mentioned in this paper. Since some of
these assumptions are quite strong we will be looking for
ways to relax them during our future work.
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different backgrounds that find themselves sharing the same
environment and need to communicate. Our aim is to cre-
ate a mechanism by which a lexicon, i.e., the terminals of
the ACL, can evolve to encompass the categories of objects
encountered in the agents’ environment, and residing in the
agents’ knowledge bases. The example grammar below has
a simple structure to begin with, but it will become more
complex, as we outline in the next section:

S — Object at location L 1s a C

L — 0|1|2| Ce

C — clle2|c3....

Here c1, c2 etc are the labels of classes, say “missile”
or “agent” that the agents can use to communicate. The
process we propose here is one which results in the agents’
finding labels denoting the classes of objects present in the
agents’ knowledge bases but absent from the ACL gram-
mar, and adding them to the shared ACL.? Intuitively, the
agents can propose to each other the new labels for the dif-
ferent classes until they agree on a common set of labels and
enhance the lexicon of their communication language.

For example, one of the agents can execute a commu-
nicative act in the ACL specified above by pointing to an
object at a specific location and uttering a proposed label
for a class this object belongs to, possibly followed by asso-
ciating this label with other objects as well. The action of
pointing can be executed is various ways, but, as we men-
tioned, we assume that the common coordinate system is
sufficient to uniquely identify the object. Uniquely identi-
fying one particular object may not be sufficient to identify
the concept, however, because many objects belong to more
than one class; for example Object3 in Figure 1 is a mem-
ber of Interceptors, Inanimate Objects, as well as Physical
Objects. Here, as sensible way to proceed is for the agents
to assume that the proposed label refers to the most specific
superclass to which all of the objects pointed to belong.

Given the label and the concept it is to refer to suggested
by one agent, the other agent can either accept this label, or
propose a different one. The process can go through a num-
ber of iterations, and, if it proceeds according to the negoti-
ation model we describe in the next section, it is guaranteed
to terminate with a unique label agreed upon, or with one
of the agents opting out of negotiation all together.

In this case, the agents are cooperative in that it is in
both of their interests to arrive at the common ACL and reap
the benefits of effective communication. At the same time,
the agents are self-motivated in that each of them would like
to minimize the effort involved in implementing the reached
agreement. As we mentioned, some of the models of bargain-
ing investigated in the field of game theory [15, 26, 27, 18]
guarantee termination and convergence if both of the parties
stand to gain as a result.

2.4.2 Enriching the ACL Grammar

The pidgin-like ACL grammar specified above allowed for
only very limited kind of statements to be made. While mes-
sages that can be produced in this ACL can be useful, it is
likely that agents will find they need to convey more sophis-
ticated information. Say that the decision making module
determined that the optimal message in the given situation
is one that relates one object to another, as in “object in

2This amounts to introducing the assumption that the agents’ KBs
contain the same classes, or concepts. This is a strong assumption,
but we think it can be relaxed by allowing uncertainty in this respect.
We proceed here with this assumption for simplicity.

location L1 is next to object in location L2”. Given this
content returned by the decision making module, the sen-
tence generation module will have to return failure since the
ACL grammar above is not expressive enough.

In this case the agents engage in another negotiation pro-
cess, resulting in adding a new rule “S — Object at L1 and
Object at L2 are related by P”, and rules “P — r1 |12 |...”
to their shared ACL. Here rl, r2, ... are the labels for rela-
tions contained in the agents’ knowledge bases. The process
of arriving at the common labels for the relations can be
identical to the one outlined above for ACL’s lexicon. For
example, it can be executed by an agent pointing to the two
objects and uttering the label for the relation holding be-
tween them, thus proposing it as a label to be agreed upon
in the negotiation process.

The process of arriving at the common rule of the form
“S — Object at L1 and Object at 1.2 are related by P” can
also be implemented by the negotiation model. In this case,
the agents propose to each other new rules, drawn from a
pool of all possible context free grammar rules, to arrive at
ones that they agree on, which they then add to their shared
ACL. In human language development a similar process has
been observed taking place among children of native pidgin
speakers. The children seem to engage in the process of
negotiation that enriches the grammar of pidgin and evolves
into Creole.

2.5 The Negotiation Model

We defined the process of arriving at the common lexicon
and the grammar rules to be a process of negotiating over
the lexicon and rules. The need for negotiation also arises
in a multiagent environments where cooperation between
the agents may be beneficial, as well as in an environments
where there are conflicts between the agents [14]. Kraus pro-
posed it as a mechanism for autonomous agents which need
to reach an agreement on some resource allocation [13]. One
negotiation model, proposed in [18] considers the agents’ al-
ternative proposals to be moves in a non-cooperative game.
In our case, the agents negotiate, and try to arrive at a
common ACL lexicon and rules to be able to convey more
information to each other.

The main solution concept studied in game theory is the
Nash equilibrium. Intuitively, given some strategy, labeled
’1°, of Agent A, and some other strategy, ’2°, of Agent B, no
strategy that Agent A can choose will result in an outcome
that is preferable to the outcome generated by (1,2), and
similarly for agent B. The problem with this approach is
that there could many such equilibria. The model of negoti-
ation proposed for our agents here is similar to Rubintstein’s
model of Alternative Offers [17]. This negotiation process
may need several iterations to arrive at some solution. The
agents are assumed to be self-motivated but cooperative.
Each agent has its own utility function and is rationally
maximizing its expected utility. The utilities of the differ-
ent agents may or may not be the same. Some assumptions
made about the negotiation process and the agents are [15]:

e Negotiation

The negotiation process is considered to multilateral.
That is, at a given time, any number of agents can
interact with each other.

o Rationality

The agents are rational, and they seek to maximize
their utilities according to their preferences.



Object2

simple slot: name - Battery2
facet: type string

simple slot: location - (13, 20)
facet: type (R,R)

simple slot: intention - A
facet: type string

function slot: utility - f(damages)
facet: type R

simple slot: mobility - no
facet: type { yes, no}

multivalued complex slot: ammunition {}
facet: type Interceptors
facet: import-list [range]

number slot: num(ammunition)
facet: type{0, 1, 2, 3, 4, 5, >=6}
facet: distribution {0.2, 0.4, 0.4, O, O, O, O}

quantifier: >= 1 (ammunition.range: long)
facet: type { yes, no}

facet: distribution {0.8, 0.2}

facet: parents [num(ammunition)]

facet: CPT1

quantifier: >= 1 (ammunition.range: short)
facet: type { yes, no}

facet: distribution { 0.4, 0.6}

facet: parents [num(ammunition)]

facet: CPT2

indirect complex slot: KB

facet: type {KB1, KB2, KB3}

facet: distribution {0.4, 0.4, 0.2}

facet: parents [>= 1(ammunition.range: long), >= 1(ammunition.range: short)]
ref(KB)

Figure 2: Details of the Representation Batteryl has about

Battery2.
KB1
777777777777777777777777 = PhysicalObjects
i
| Animate Inanimate
! Objects Objects,
I / \i\
I
| Agents Intercéptors Missiles DefenseArea
I
I
! AA-DefenseAgents LongRange ShortRange [ Objects | [ Object6 | [ Object7 |
' name: A | [ name:&_| [ name DA
I loc' () | | loc (g ® | | damages 5
i Object2 Objects [ objecte | [ objectao | SGR || £556D | | pares
| [ "name: Battery2 name: Batteryl name: LR2| | name: sr2
1| 1ocation: (13,20) location: (7.20) range: 10 range: 3
1| intention: & intention: A
1| utitity: f(damages) utility: f(damages)
1| mobility: no mobility: no
| | ammo: {obis.oni10)| | ammo:
I | betief: -, | | belief: No-Info *
[ B [ —
KB2
———————————————————————— = Physical Objects
i
| Animate Inanimate
! Objects Objects,
I
I
I Agents Intercéptors Missiles DefenseArea
i
‘ v
! AA-DefenseAgents LongRange ShortRange | Objects | [ Object6 | [ Object7 |
! name: A | | name: B e DA
| " ioc: (25 | | ioc:(9,8) | | damages: 5|
I Objectz Objects [ objecto | Sze 200 | | swe 300 | | poprao
i
| [ name: Battery2 name: Batteryl name: LR2
! | tocation: (13,20) location: (7,20) range: 10
1| intention: B intention: A
! | wtility: f(damages) utility: f(damages)
1| mobitiey: ro obitiey: 1o
| | ammo: {objectey ammo: {}
|| betier:—, | belier: No-info
[ B 1
KB3
777777777777777777777777 = PhysicalObjects
i
| Animate Inanimate
! Objects Objects,
I / \i\
I
| Agents Intercéptors Missiles DefenseArea
I
I
! AA-DefenseAgents LongRange ShortRange [ Objects | [ Object6 | [ Object7 |
' name: A | [ name:B | [ name: DA
I loc'(z) | | loci (g ® | | damages 5
! Object2 Objects 52308 | | S%e300 | | pop-d0
| [ name: Battery2 name: Batteryl
i | 10cation: (13,20) location: (7,20)
i | intention: & intention: A
1| wility: fedamages) utility: f(damages)
| mobility: no mobility: no
|| ammo: (3 ammo:
|| petief: -, belief: No-Info
| T

Figure 3: Details of the Representation Batteryl has about

Battery2.

his/hers intentions. We have implemented this calculation
and described it in [10, 20, 21]. From the point of view of
language development using negotiation, it is important to
note that the best message that the agent can communicate
has a well-defined value to the speaker agent. The output of
the decision-making module is a fragment of the KB to be
communicated, expressed in terms of KRL. This approach
ensures that all messages are meaningful.

2.3 Translation

Given that the agent decided what it wants to commu-
nicate, represented as a KB fragment in KRL, the agent
needs to translate it from the “language of thought” into the
agent communication language (ACL). This process uses the
grammars of the KRL and ACL, as well as a set of transla-
tion rules. The high-level view of the design is in Figure 4.

Source Expression

Trangdlation Rules
Trandator

i

Target Expression

Figure 4: The High-Level View of the Sentence Generation
Module.

It is possible that the translation of a statement from
KRL to ACL results in a failure. Typically, the failure at
this stage signals the fact that the agent communication lan-
guage 1s not as expressive as the knowledge representation
language, and the agent finds itself wanting to communicate
content for which the ACL is insufficient. This, and the
fact that the agent is then unable to achieve the higher ex-
pected utility that would result from having communicated
the message, drives the negotiation process that enriches the
existing ACL to enable it to express new content.

2.4 Negotiation over the Agent Communication Language

As we mentioned, the evolution of the agent communica-
tion language involves building up its lexicon, as well as
equipping its grammar with more powerful rules. In our
approach, both processes are modeled as negotiation taking
place between cooperative agents [18].

2.4.1 Acquiring Common Lexicon

As we mentioned, we are motivated by the evolution of natu-
ral languages, like pidgin, usually arising among people from



ous work [7, 8, 9, 10, 20].

Given that the ability to communicate can be advanta-
geous, the agents may want to enrich their communicative
capabilities. Specifically, if it happens that two interacting
agents do not share a common agent communication lan-
guage (ACL), they may want to initiate its creation and en-
richment to allow mutually beneficial communication. This
insight 1s what we interpret as a driving force behind evolu-
tion of linguistic competence: Improving communication al-
lows the agents to interact (with the world and among them-
selves) more efficiently, and conveys an advantage which we
measure as an increase in the agents’ expected utilities. This
approach is different from one taken by Luc Steels [28] in
his language game, in which agents are directly rewarded
for successful communication, rather than the reward being
assessed by the agents based on how communication helps
them solve a task at hand. Our employing the nested men-
tal models and the knowledge-base approach further sets
our work apart from Steels’ work, as well as from related
research reported in [2, 30].

We think that initiation and enrichment of an agent com-
munication language can be accomplished by the mechanism
of negotiation, developed in the fields of economics and game
theory [23, 24], and automated in recent work in artificial
intelligence [15, 26, 27]. Here, we are motivated by the de-
velopment of languages among humans that do not share a
language to begin with, and on their way of creating a pidgin
and enriching it to Creole, are frequently said to negotiate
among themselves the lexicon and the rules of grammar that
then become widely accepted and part of a shared commu-
nication language. Below, we give a further overview of how
our approach can be implemented, and how negotiation can
be used by the agents to build up lexicon and rules of gram-
mar of agent communication languages.

2 Overview of the Design

The agents we consider are endowed with a knowledge base
and can make decisions about what action to execute based
on their expected benefits. Below we briefly outline basic
elements of our design that allow the agents to decide on
communication, and we go on to issues of enriching the agent
communication language.

2.1 Knowledge Base

Our design of the knowledge base (KB) is based on work
on frame-based [4, 12] and object-oriented [22, 31] knowl-
edge representation formalisms (see also [3] and references
therein). These formalisms postulate that the KB be or-
ganized as a set of interrelated frames representing classes,
i.e., sets of entities, and instances, i.e., the individual enti-
ties themselves. The frames representing the classes form a
superclass/subclass hierarchy allowing for usual inheritance
of properties, while the leaves of the hierarchy are occu-
pied by instances of classes identified in the agent’s environ-
ment. The language that expresses the information in the
KB, the knowledge representation language (KRL), is the
agent’s “language of thought”. Other possible KRL’s are,
as we mentioned, FOPC, Classic, Loom, etc.

Figure 1 depicts a high-level outline of a simple hierar-
chical KB we constructed for one of the agents (here called

reason about models of others nested up to four levels deep. Mon-
keys (and some autistics) lack these abilities, which manifests itself
in much poorer communicative abilities.

Batteryl) acting as defense units an example anti-air do-
main, which we described in more detail in [21].

For the purpose of the current discussion it is important
to point out two issues. First, an important part of the
information about particular objects in the KB is their lo-
cation. For physical environments location can be expressed
in one of many possible coordinate systems quite naturally.
But even if the agent lives in a non-physical environment, we
will assume that there is a coordinate system that uniquely
identifies any object within this environment. During our
further discussion about communicating agents, we will also
assume that they share the same environment, and can use
the coordinate system to identify the individual objects to
each other.

Thing
PhysicalObjects AbstractObjects
Animate Inanimate
Objects Objects
Agents Interceptors Missiles DefenseArea

/N VAN

AA-DefenseAgents LongRange ShortRange | Object5 Object10 | | Objectll

name: A name: F name: DAL
loc: (33) |...| loc: (16,10) |damage: 5
size: 470 size: 450

Objectl Object2 Object3 | | Objectd | | SPeed:1 speed: 1

name: Batteryl name: Battery2 | |name LR1| |name SR1
location: (7,20) | | location: (13,20)| |range:10 | jrange:3

Figure 1: High Level View of the Knowledge Base.

Second, our representation is recursive in that the same
representation an agent uses for its own knowledge can be
used to express what the agent knows about the states of
knowledge of other agents. For example, to represent the
available information about Battery2, Batteryl has an in-
stantiation of the AA-DefenseAgent class, labeled as Ob-
ject2 in Figure 1, and presented in more detail in Figure 2.
The information about the state of knowledge of the other
agents 1s represented by a probabilistic slot called KB. The
value of this slot is a probability distribution over possible
states of knowledge of the other agent. Example states are
depicted in Figure 3.

In each of the alternative KB’s of Battery2 in Figure 3
there is an instantiation of AA-Defense Agent class that rep-
resents the model that Battery2 has of Batteryl. The fact
that Batteryl may realize that Battery2 has a model of Bat-
teryl leads to the nesting of models which are recursively
solved by dynamic programming in the Recursive Modeling
Method [11, 19]. Note that the models of the other agent’s
state of knowledge are all expressed in the original agent’s
knowledge representation language, which may be different
from the representation used by the other agent itself.

2.2 Decision Making and Value of Communication

Given the information in it’s knowledge base, the agent has
to decide on the content of the message to be communi-
cated. This is done by computing the values of various mes-
sages based on their content, which determines how they
impact the hearer’s state of knowledge and possibly change
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Abstract

The goal of this research is to understand and automate the
mechanisms by which language can emerge among artificial,
knowledge-based and rational agents. We use the paradigm
of rationality defined by decision theory, and employ the
formal model of negotiation studied in game theory to allow
the emergence and enrichment of an agent communication
language.

1 Introduction

The aim of our research is to understand and automate the
mechanisms by which language can emerge among artificial,
knowledge-based and rational agents. Our ultimate goal is
to be able to design and implement agents that, upon en-
countering other agent(s) with which they do not share an
agent communication language, are able to initiate creation
of, and further able to evolve and enrich, a mutually un-
derstandable agent communication language (ACL). This
paper outlines the overall approach we are taking, and iden-
tifies some of the basic concepts and tools that we think are
necessary to accomplish our goal.

First, the agents we are interested in are knowledge-based.
This means that they have a representation of facts about
the world, expressed as sentences in some (hopefully well
defined) knowledge representation language (KRL), for ex-
ample first order logic, description logic, Classic, KL-One,
probabilistic logic, or similar [25].

Second, the agents are purposeful. Usually, this is taken
to mean that the agents have well defined goals, i.e., the
precise description of states of the world they are to bring
about. The possibility that agents may have different goals
brings up the notion of self-interested (or selfish) agents,
which we allow. We further allow a more expressive repre-
sentation according to which an individual agent’s purpose,
or preferences, are expressed in terms of a utility function,
as postulated by the utility theory [25, 29].

OThis research is supported by the Office of Naval Research grant
N00014-95-1-0775, and by the National Science Foundation CAREER
award TRI-9702132.

Third, the agents are rational. This means that the
agents perform actions chosen so as to further their pref-
erences, or goals, given what they know. We follow the
operationalization of rationality postulated by decision the-
ory [25], according to which a rational agent ranks actions
in terms of the expected utility of their results, and executes
the action with the highest expected utility. The decision-
theoretic notion of rationality can be related to terms of
belief, desire and intention (BDI); it postulates that the in-
tention of a rational agent (the plan the agent chooses for ex-
ecution) be a rational consequence of what the agent knows
and desires.

Given the context of the above notions, we define com-
munication as the phenomenon of one agent (speaker) pro-
ducing a signal that, when responded to by another agent
(hearer), confers some advantage (or the statistical proba-
bility of it) to the speaker. This definition paraphrases the
definition in [5], and is supported by numerous approaches
to study of communication in cognitive science [6, 16]. Tt
says that the communicative act must be purposeful and
beneficial to the speaker. Given the framework of above, it
can be readily interpreted as a condition that a communica-
tive act lead to an increase of the speaker’s assessment of
it’s own expected utility. Further, is allows us to treat com-
munication as action (see Austin’s postulate in [1]), since it
is defined by its effects (on the state of knowledge of hearer
and speaker), and allows us to apply the notion of rationality
to it: The rational communicative action is one that leads
to the biggest increase in the speaker’s expected utility.

The definition of purposeful communicative activity above
says what a necessary function of communication is, but
not how it is accomplished. An intuitive explanation of the
“how” is simple: A communicative act is beneficial to the
speaker by changing the state of knowledge, and thereby
possibly intentions, of the hearer. Thus, just as with any
other rational action, the speaker needs to assess the effects
of various communicative acts, rank them in their desirabil-
ity (i.e., expected utility) and execute the best one. To do
that the speaker needs to represent the effects of a com-
municative act on the hearer’s mental state. The fact that
models of other agents’ mental states are necessary for ef-
fective communication is well known in the cognitive science
literature (see [6] and references therein). Cognitive scien-
tists were able to confirm the role and importance of mental
models, including nested models, of other agents, and how
the ability to form and process these models sets humans
apart from other primates', and we used them in our previ-

!For example, adult humans can reliably (with 5-15% error rates)



