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Abstract

We describe simulations of a community of
agents who live in an environment which has some
structure that the agents can learn to identify and
subsequently about which they learn to commu-
nicate. Each agent has two entirely separate arti-
ficial neural networks which learn to perform the
two tasks: identification of the structure in the
environment and communication to others about
the environment’s structure. We show that a com-
munity of agents with similar representation ca-
pabilities is most successful in generating a com-
mon language and further that a community with
different representation capabilities will evolve so
that all members have the same representation
capabilities.

1 Introduction

This paper will investigate issues involved in the origin
of a new language within a community of users of the
language. We describe simulations involving agents sit-
uated within a common environment. These agents each
have two entirely separate artificial neural networks:

1. The first encodes the environment by finding those
sources which are creating the environment. This
is done in an unsupervised way which leads to each
agent having an unique internal representation of the
environment. We shall see that it is beneficial to the
community to have all agents within the environment
sharing a common capacity for representation though
not necessarily sharing a common representation.

2. The second takes the output of the first neural net-
work and encodes this in a way that is agreed by the
community of agents. This second encoding is the
shared communication in the community of agents.

No agent can investigate the internal representation of
the environment held by any other agent. Each agent
however exists within the shared environment and can
perceive the output/communication of the other agents.
Because of this we can view

e the external environment as objective

e the internal representation as subjective

e the language as an inter-subjectively agreed entity
existing within the common social environment of the
community of agents.

The remainder of this paper is organised as follows: sec-
tion 2 identifies in more detail the prerequisites for a lan-
guage community; section 3 discusses representation of
the environment; section 4 deals with aspects of learning
a language and we then have 3 sections of experimental
work before completing with a discussion of what has
been learned.

2 A Language Community

There has been much recent research into the evolution
of communication using simulations. Most simulations
(e.g. [7]) are predicated on the assumption that there
is a need for the behavior of the receiver of the commu-
nication to be changed in some way by the communica-
tion. We, on the other hand, perform simple simulations
to investigate the development of a joint communication
language which is formed when the sender alone is forced
to adapt to conform to the society in which it finds it-
self. We do however agree with [7] that such simulation
should be grounded in the environment in which each
agent finds itself. Therefore each agent uses a simple ar-
tificial neural network to extract information about the
environment. We deliberately use a set of parameters for
this network (particularly a fast learning rate) such that
this information extraction is not 100% accurate and in-
vestigate the knock-on effect this inexactness has for the
development of a common language.

It has been stated [6] that “learning is more a trans-
fer of skills than a discovery”. While this may be true
about the acquisition of language it is certainly not true
about the acquisition of concepts about the environment.
Thus, since we insist on grounding our agents’ languages
in environmental experiences, we must maintain a strict
segregation between the acquisition of information about
the environment and the task of learning a language to
describe the environment.

Therefore we believe that there are several distinct pre-
requisites which must be met before the development of



a language is possible:

1. There must be some regularity in the environment
to make communication worthwhile. If the environ-
ment were to be totally random - such as a maxi-
mum entropy environment - the only useful language
would have to describe each and every event sepa-
rately. There would be no advantage to be gained in
describing sets of events. This constraint is specific
to the environment and is external to any agent or
group of agents.

2. Each agents must be able to identify separately indi-
vidual features in the environment. Notice that this
does not necessitate similar internal representations
of the environment. This constraint is on the agent
acting as an individual existing in an external (to the
agent) environment.

3. A language must be shared by two or more agents
in an environment: this does require that the agents
share common external representations. This con-
strains the joint behaviour of the agents.

Thus we maintain separate constraints on the environ-
ment, on the representation capabilities of the agents and
on the language which the community of agents use to
communicate.

We describe a set of experiments in which a group of
agents exist in an environment which has some redun-
dancy. Each agent is able to learn, in an unsupervised
manner, to identify and represent the independent fea-
tures of the environment. Each agent’s internal repre-
sentations of the common global environment are unique
to itself. However each agent also lives in a social com-
munity of agents which is learning to communicate with
each other. Thus there exists in the environment an
intersubjective agreement on the use of language - the
convergence to a common language is supervised by the
language itself.

We show that

e Such a community can learn a common language re-
gardless of how many different internal representa-
tions of the environment exist.

e The accuracy of the coding between the features of
the environment and the internal representations of
the environment determines the accuracy of coding
between the representation of the environment and
the communication scheme.

e There exists a regularity in the process of trans-
forming the internal representations to an externally
agreed language which determines the language.

e A population with initially differing representation
capabilities can evolve to a population of similar rep-
resentation capabilities (though not necessarily with

similar representations) when the impetus for conver-
gence is at the communication level not the represen-
tation level.

3 Coding the Environment

Barlow [1] has developed a theory of learning based on
the neuron as a “suspicious coincidence detector”: if in-
put A is regularly met in conjunction with input B this
represents a suspicious coincidence; there is something in
the neuron’s environment which is worth investigating.
A crude example might be the coincidence of mother’s
face and food and warmth for a young animal.

The types of codes which are required are sometimes
known as “factorial codes”: we have lots of different sym-
bols representing the different parts of the environment
and the occurrence of a particular input is simply the
product of probabilities of the individual code symbols.
So if neuron 1 says that it has identified a sheep and
neuron 2 states that it has identified blackness, then pre-
senting a black sheep to the network will cause neurons
1 and 2 to both fire. Also such a coding should be in-
vertible: if we know the code we should be able to go to
the environment and identify precisely the input which
caused the code reaction from the network. So when we
see neurons 1 and 2 firing we know that it was due to a
black sheep.

We will maintain a close connection with psychological
principles which requires that we are using a biologically
plausible rule such as the Hebb rule (see e.g. [5]).

The benchmark experiment for this problem - due to
Foldidk [2]- is shown in Figure 1. The top line shows sam-
ple input data which consists of a square grid of input
values where z; = 1 if the it* square is black and 0 oth-
erwise. However the patterns are not random patterns:
each input consists of a number of randomly chosen hor-
izontal or vertical lines. The important thing to note is
that each line is an independent source of blackening a
pixel on the grid: it may be that a particular pixel will
be twice blackened by both a horizontal and a vertical
line at the same time but we wish our agents to identify
both of these sources.

We will use a 4*4 grid on which each of the 8 possible
lines (4 horizontal and 4 vertical) may be drawn with
a fixed probability of % independently from each of the
others. The data set then is highly redundant in that
there exists 216 possible patterns and we are only using at
most 28 of these. We will initially have 8 output neurons
whose aim is to identify (or respond optimally to) one
of the input lines. Thus from any pattern composed of
some of the set of 8 lines, we can identify exactly which
of the 8 lines were used to create the pattern. Note the
factorial nature of the coding we are looking for: for
example, neurons a, b and c will fire if and only if the
input is composed of a pattern from sources 1, 3 and 8.
Note also the code’s reversibility: given that neurons a,
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Figure 1: The top line shows sample data (input values)
presented to the network. The second layer shows the
independent sources which we hope will also be the net-
work’s response. If this is so, it has clearly identified the
suspicious coincidences of lines.

b and c are firing we can recreate the input data exactly-
it has come from sources 1, 3 and 8.

Note also that the factorial nature of the coding is
unaffected by which neuron responds to which source:
we do not care whether it is neuron 1 or neuron 5 which
has identified the first horizontal line. We only care that
it is identified accurately.

3.1 The Neural Network

It has been shown [3] that a layer of neurons whose
weights are modified using simple Hebbian learning can
be used to extract maximum information from a set of
environmental data (they perform a Principal Compo-
nent Analysis(PCA) of the input data) provided the net-
work uses a negative feedback of activation.

Let the inputs to the network be denoted by the vec-
tor x, the outputs by y and the weights between inputs
and outputs by the matrix W. The operation of the net-
work(Figure 2) is given by

y = W'x (1)
X + x—Wy (2)
AW = pxy” (3)

where 7 is a learning rate which must satisfy the usual
conditions for convergence for stochastic approximation
algorithms. There is no explicit weight decay, normali-
sation or clipping of weights in the model. If we write
the i*" input at time t as z;(t) etc. then we have

yi = Y wie (4)
j
zi(t+1) « z(t) =Y wegy (5)
k
Therefore,
Awij = nyiz;(t+1)

n(z;(t) = Y wijyr)yi (6)
k

X1 — o
xz ;\\ i1

X3 —= 0
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Figure 2: Activation is fed forward from inputs x through
weights W to outputs y. It is then returned as inhibition
through the same weights before simple Hebbian learning
changes the weights.

This last formulation of the learning rule is exactly
the learning rule for Oja’s Subspace Algorithm [8]: the
weights then will not converge to the actual Principal
Components but will converge to a basis of the subspace
spanned by these components. Experimental results on
both real and artificial data have previously been given
to substantiate this (e.g. [3]).

3.2  Finding Independent Codes

If we use such a principal component net on the bar data
described in the last section, our first principal compo-
nent will be a small magnitude uniform vector over all
16 positions. i.e. we get a global smearing of the pat-
terns which does not reveal how each pattern came to be
formed. Therefore a PCA network will not be useful in
identifying the individual sources.

The Subspace Algorithm will find a rotation of the
principal components and will be similarly unable to
identify any of the individual sources. However we make
one simple change to the learning rule in the last section:
we do not allow the weights to change from positive to
negative. If a weight should be made to change sign be-
cause of the learning rule, we simply set its value to 0. It
can later move from this value because of future learning
but we will never allow any weight to become 0.

We have previously shown [4] that operating this sim-
ple Non-negative Weight Algorithm on Fo6ldidk’s data
causes the weights of the network to converge to find
the independent sources. The weights into each output
neuron will be large in those sections of the input space
corresponding to a single source and each output neuron
will be optimally placed to respond to one and only one
of the independent sources.

However we cannot specify in advance which output
neuron will capture which source. This is the agent’s



internal representation of the environment. So as not to
bias the internal representation in any way, the initial
values of the weights are all set to small random values
and each agent learns its internal representation on a
different data set (though each data set is drawn from
the same distribution of input data).

In terms of equation (4), the representation layer is a
set, of floating point numbers which in some way identify
the particular set of sources which were used to create
the current environment. The vector of outputs from
this layer, y, codes as floating point numbers the agents
belief as to which sources have been firing to create the
current environment. The weights from the environment
to the representation layer have been adjusted so that
the representation neurons can code the environment in
such a way that the individual independent sources are
identifiable by means of which neurons are firing to their
maximum values.

In the following, we will use the notation y? =
{y¥, 48, ...,yE.} to refer to the vector of representations
or meanings of agent p on the current environment.

4 Learning a Language

We now however ask all agents to learn to communicate
with each other: at this stage the whole population of
agents exists in a shared environment and must learn to
find a common language to describe this environment.
We use a language comprising floating point numbers (as
in [10]) rather than a discrete alphabet of terms since it
is more easily extensible than a discrete representation
would be.

Each agent has a (perhaps different) representation of
the environment. It also has the means to express to the
others in the community its view of the environment. Its
communication network has output s where

s=Vy (7

or for a single word s,
s=vly =Y vy ®)
i

where y is the agent’s internal representation of the cur-
rent environment and v is its vector of weights joining the
representation vector to the communication word. We
have omitted the superscript p for agent identification in
order to render the equations more comprehensible.

We require the internal representation to be commu-
nicable to the others in the community. It would be
possible to model a community of language users who,
as they meet each other, interact in such a way as to
bring each user’s language closer to the other. For ex-
ample when agent A, meets agent A; we could change
the v-weights of each by

Avf = n(sk — sy

Avl; = (s} —sh)y)
where vfj is the weight between agent p’s representation
layer output y;’ and its communication output s? and
similarly with agent k. 7 is a small learning rate which
remains constant for the course of the simulation.

However, we have preferred to make a type of mean
field approximation in that, rather than model each in-
dividual interaction, we have assumed that each agent is
equally likely to interact with every other agent in the
shared environment and so we may change each agent’s
language to make its language closer to the average lan-
guage being used in the community.

This is performed by supervised learning where such
supervision is performed by the language itself: the lan-
guage at all times exists as the mean (floating-point)
word describing the current environment where such
mean is taken over all the agents currently existing
within the environment.

Therefore if an agent has independent state y due to
extraction and coding of the independent sources of the
currently-viewed external environment E, we adapt the
weights of the language module

Aty = (B, — s0)y! (9)
where Ej, is the mean word in the environment describ-
ing the current environment. We also perform explicit
normalisation after the learning step to ensure that the
length of the vector into any one language neuron is al-
ways 1. This ensures that no single agent has an over-
bearing influence on the language.

We see that equation 9 will move the weights of an
individual’s language units so that its output (its spoken
word based on the current environmental input) is more
likely to be closer to the mean of its peers’ spoken output
based on the current environmental input. Clearly learn-
ing in (9) only stops when the agent is responding to the
environment with a word which is exactly equal to the
mean of all agents’ responses to the current environment.

Notice that the language, while it exists externally to
any one agent, is itself a function of the language (the
output) of each agent. Thus the language itself is not rei-
fied; the language is responsive to the community which
creates the language and is thus indirectly driven by the
environment in which it is to be used. Therefore the lan-
guage is potentially a moving target driven by both the
environment and the interpretation of the environment
by the community which uses the language.

The learning rule then is the simple LMS algorithm
which will have converged when the output of the lan-
guage output module equals the expected value of the
language modules of all agents. This provides for the
convergence of the whole community to a common lan-
guage.



Input Al/6  A2/7 A3/8 A4/9 A5/10

hl1 h2 h3vlv2 | 3.10 3.06 3.08 3.06 3.15
3.12 3.05 3.11 3.12 3.03
h0 h3 1.68 1.66 1.68 1.66 1.65
1.76 1.69 1.67 1.67 1.62
hO h2 h3 v3 2.77 2.73 2,74 2.77 2.70
3.07 2.72 2.74 2.77 2.68

hl h2 v1 1.99 1.95 1.96 1.96 1.95
2.05 1.94 1.97 2.03 1.98

hl v0 v2 2.55 2.53 2.55 2.55 2.58
2.31 2.55 2.58 2.57 2.54

h2 0.94 0.91 0.90 0.93 0.88
1.01 0.89 0.90 0.93 0.91

hl 0.81 0.81 0.83 0.81 0.85
0.85 0.83 0.83 0.86 0.84

h0 h2 v1 2.00 1.97 1.99 1.97 1.94
2.06 2.02 1.97 2.02 1.98

h3 0.84 0.82 0.82 0.83 0.81
0.87 0.78 0.84 0.82 0.77

v0 0.68 0.69 0.69 0.67 0.66

Source Lower Bound Upper Bound
h0 0.88 0.92
hl 0.95 1.00
h2 0.96 1.00
h3 0.86 0.92
v0 1.28 1.36
vl 0.58 0.61
v2 1.24 1.28
v3 0.56 0.59

0.77 0.66 0.67 0.68 0.65

Table 1: Examples of common floating point communi-
cation about the environment where lines are labelled
h0-h3 and v0-v3 and agents A1-A10. For compactness
we have agents A1-A5 in one line and A6-A10 in the
next.

5 Experiment 1 - Learning a language

We use a population of 10 agents, each of which learns an
internal representation of the environment using 8 out-
put neurons. If we have a fairly leasurely time in which
each agent can learn its own internal representation, such
representation can be learned so accurately that we could
as easily simulate the situation with a look-up table. We
have therefore used a simulation for the learning of the
input representation which is so fast that it introduces
inaccuracies into the agent’s learning of the environment
and their learned common language. We see the results
in Table 1 where the left hand column shows typical sets
of input data: h1,h2,h3,v1,v2 represents three horizontal
and two vertical lines. The agents do clearly learn to
share a common language - their individual responses to
the input h1,h2,h3,v1,v2 are clustered round 3.1 while
their responses to h0,h3 are clustered round 1.7 etc.
However it appears that Agent 6 is a little out of step
with its community. Investigation of the details of its
learning (its weights) shows that the problem occurs at
the first stage i.e. with its encoding of the environment.
We have deliberately used a high learning rate which in
some cases (dependent on initial weights and the order
in which environments were seen) causes convergence to
non-optimal solutions. Agent 6 has in fact not identi-
fied all sources uniquely: the weights into its represen-
tation layer show that one neuron is identifying a par-
ticular pixel rather than the 4 pixels which comprise a

Table 2: The agent language has synonyms for h0 and
h3, hl and h2 and, to a lesser extent, v1 and v3.

source and has thus disrupted the learning which sur-
rounds two sources. This has caused the language output
corresponding to some environments to be higher than
it should and that for others to be lower.

Also we note that, while there must inevitably be dif-
ferent weight vectors in the representation-to-language
layer in different agents, there is a commonality between
them: we find that e.g. if the weight to the neuron repre-
senting source 6 is emphasised (has larger absolute value)
in one agent, all agents will emphasise the same source
even though each has different representations of source
6. It does not matter to the agents that one source has
more emphasis since they can still communicate about
the source.

Thirdly, we report that our agent community is capa-
ble of puns: it has a set of synonyms as shown in Table 2:
we see that the common output for h0 and h1 has a great
deal of overlap! as do h1 and h2 and, to a lesser extent,
vl and v2. It should be emphasised that these results
were achieved by a community which was not trained
on the independent sources: environments were chosen
randomly with each source having equal probability of
being in any single environment. So typically any pre-
sentation of an environment to the community of agents
would contain more than one single source yet the com-
munity still manages to create the language to describe
the individual sources.

Finally, we stated that our language/output could be
a vector of floating point numbers rather than a sin-
gle floating point number. An example of the language
weights of an individual agent with three language out-
puts are shown in Table 3. We see that two outputs
will be identical since two sets of weights have converged
to identical values. This is a somewhat surprising result
since the randomness of the initial weights would suggest
that three separate languages would be created. In this
simulation, we find that every agent had two identical
languages and a third different. Simulations have shown
that e.g. with 7-dimensional language we often get two
languages - one of which gives a positive output for each
environment while the other gives a negative. Occasion-

IThe results if we ignore the outlying neurons are even closer.



Agent

v1

Language v1 v2 U3 (n
1 0.794652  0.296743  0.247789  0.0501685
2 0.355686  -0.365324 -0.341216  0.307368
3 0.355686  -0.365324 -0.341216  0.307368
Language vs Ve U7 Ug
1 0.259856 0.16591 0.137537  0.320294
2 -0.377908  0.347575  0.371135  -0.357434
3 -0.377908  0.347575  0.371135  -0.357434

A1(9)
Aa(8)
A3(9)
A4(8)
Ap(8)
Ag(9)
A7 (7)
Ag(9)
Ag(9)

A10(7)

0.91
0.94
0.89
1.02
0.96
0.88
0.92
0.93
0.94

0

Table 3: The three set of weights connecting the repre-
sentation layer of an agent with its communication layer.
Two languages (2 and 3) are equivalent.

Table 5: The outputs of a community of 10 agents la-
belled A; — A;¢ on the independent sources in their en-
vironment. The figure in brackets after each agent refers
to the number of neurons in its representation layer.

Agent

ho

hl

h2

h3

v0

v1

v2

v3

A1(6)
Aa(7)
A3(7)
A4(6)
Ap(7)
Ag(7)
A7 (5)
Ag(8)
Ag(5)

A10(5)

0.92
1.29
1.23
1.26
1.25
1.27
1.30
1.25
1.29
1.28

0.76
0.69
0.93
0.64
0.76
0.71
0.93
0.74
0.65
0.83

0.93
0.68
0.71
0.63
0.76
0.77
0.86
0.76
0.61
0.98

1.31
1.24
1.02
1.24
1.18
1.05
0.78
1.19
1.26
0.79

0.87
0.88
0.80
0.90
0.91
0.81
0.83
0.89
0.95
0.81

1.30
1.23
1.27
1.22
1.20
1.17
1.36
1.23
0.88
1.37

0.85
0.88
0.89
0.85
0.93
0.89
0.86
0.92
0.92
0.84

0.91
0.91
0.92
0.81
0.91
0.93
0.83
0.90
1.05
0.86

Table 6:

Language V1 V2 v3 2
1 0.284492  0.0477801  0.270426  0.330045
2 0.355767  -0.34443 0.333977  0.363784
3 -0.355767 0.34443 -0.333977  -0.363784
Language Vs Ve v7 U8
1 0.135112  0.272097  0.166876  0.783953
2 -0.381219  0.328808  -0.371822 -0.345289
3 0.381219  -0.328808  0.371822  0.345289

Table 4: The three sets of weights connecting the repre-
sentation layer of an agent with its communication layer.
One language is redundant in that the second is the neg-
ative of the third.

ally we see one set of weights converging to the negative
of the other (Table 4). Both of these results suggest a
limited number of possible languages, perhaps based on
a deep structure of our artificial language. We believe
that this last point is an extension of that discussed in
[9] and is worthy of future investigation.

6 Experiment 2 - Different Forms of Life

The above set of experiments assumed that all the agents
were equally capable of extracting the same independent
sources from the environment: each agent had the same
number of representation neurons and so had equivalent
capacity to find the independent sources. However, we
noted that some agents appeared out of step with their
community because they had erred in their representa-
tion of the environment.

We continue this investigation by creating a commu-
nity which have differing capabilities at the representa-
tion layer i.e. which have different number of neurons at
that layer. We report on the results with different num-
bers of neurons in Tables 5 and 6. The number of neu-
rons available to each agent in the population is drawn
randomly from a uniform distribution on {7,8,9} in Ta-
ble 5 and from a uniform distribution on {5,6,7,8} for
the population in Table 6. These tables suggest that,
when the community has differing capabilities, the de-
velopment of a common language is difficult though not
impossible since there is a general agreement about the
value of the floating point number which best describes

The outputs of a community of 10 agents la-
belled A; — A;g on the independent sources in their en-
vironment. The figure in brackets after each agent refers
to the number of neurons in its representation layer.

the environmental input. Note that when we compare
Table 5 with Table 6, we see that in the latter the spread
of outputs is greater i.e. there is less agreement on the
shared language. This suggests that the wider the range
of representational capabilities, the harder it is to build
that common language.

This leads to the investigation in Experiment 3: we
now posit that, in a community whose agents’ fitness is
dependent on the ability to communicate, those agents
who have similar representational capabilities as their
peers are at an evolutionary advantage compared to
those who have differing representational capabilities
even when such agents have superior capabilities. Thus
we investigate whether there may be an evolutionary
drive towards common capacities if the ability to com-
municate with one’s community is a measure of one’s
fitness in one’s community.

7 Experiment 3 - Evolving a population
with common language capabilities

Finally we wish to experiment with a population to in-
vestigate whether aptitude for a common language will
in fact favour evolution to a common representation ca-
pability. We use a simple genetic algorithm to determine
the number of representation neurons which we define in
a four bit vector. Therefore the number of representation
neurons may vary between 0 and 15. We use one point
crossover and no mutation which with this very small
population (10 agents) is liable to lead to very fast con-
vergence. Our fitness function, though, is not directly
a function of the representation layer but is measured



in terms of how close the individual’s language is to the
population’s language on average.
Therefore the fitness of agent A; is given by

1
4) = ——
f( z) a + error;
where error; = E |Ei; — s

seS

where a is a constant, set to 0.5 in the simulation re-
ported here and as before we are using the mean field
approximation Ej, as the average representation of the
current environment in the it* symbol.

Beginning with that population whose responses to
the various independent components of their common
environment are shown in Table 6, we find that after
one generation our population has 5,5,5,13,7,5,5,9,5 and
5 representation neurons respectively while after 2 or
more generations, the entire population is composed of
agents whose representation layer is composed of 5 neu-
rons. This community has a common ability to represent
the environment, though of course they do so in very dif-
ferent ways depending on the actual environments which
they met while the representation layer was learning and
the initial conditions of their weights.

Repeat experiments with larger populations of 50, 100
and 1000 agents similarly converge within a small num-
ber of generations to populations of agents with uniform
numbers of neurons in the representation layer.

In the experiment detailed above, and in some of the
repeat experiments, we note that the representation ca-
pacity is not optimal - we actually require 8 represen-
tation neurons to identify the 8 sources. However, the
populations were evolved according to the view that the
fitness of an individual was inversely proportional to his
inability to communicate with his community. A more
sophisticated fitness function would take account of both
the representational capability of each agent as well as
its capacity to communicate.

8 Conclusion

We have reported simulations which have investigated
the creation of a language in a population of simple
agents existing in an environment which has some sta-
tistical regularity. In our simulations, we have enabled
the agents to learn about the environment from sam-
ples drawn from the environment. Therefore each agent
learns a different representation of the environment de-
pending on both the initial values of the weights of the
representational layer and the actual samples of the envi-
ronment met while this representational layer was learn-
ing. We have shown that when such agents share a
common ability to represent the environment, they can
quickly learn to communicate about the environment,
even though they do not have identical representations
about the environment.

We have further shown that when there is a difference
between the capabilities of the agents, they can commu-
nicate about the environment but the communication
becomes vaguer/more diffuse. We have used this fact
to allow a population of agents to evolve under condi-
tions where the fitness of the agent is determined by
the agent’s ability to agree a common communication
code with its peers. Such populations evolve to share a
common representation capability though not a common
representation.

We believe that there are a number of potentially fruit-
ful extensions to the work described herein. Future work
will include

e We have described the development of a small num-
ber of possible languages for any given community in
a given environment. It is of great interest that there
seems to be a small number of possible convergence
points for the language.

e Our simulation of the evolution of a population con-
verging to a population sharing a common represen-
tation capability could be enhanced by adding an ad-
ditional constraint that the population should have as
strong a representational capacity as possible.

o We have required each agent to have a transmission
capability without considering a corresponding recep-
tion capability. i.e. we have viewed the emission of
a communication signal as the essential requirement
thereby implicitly suggesting that the receipt of such
a signal is a separate issue. It would clearly be simple
to create a separate (third) decoding network to make
the intersubjective communication to internal repre-
sentation mapping. However we believe that we could
more fruitfully amend our language creating network
by using a backpropagating type algorithm which au-
toassociates with an objective function which both
minimises the mean square reconstruction error and
also has a Lagrange multiplier for the criterion of op-
timising representation.
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