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Evolving Compositionality in
Evolutionary Language Games

José Fernando Fontanari and Leonid I. Perlovsky, Senior Member, IEEE

Abstract—Evolutionary language games have proved a useful
tool to study the evolution of communication codes in communities
of agents that interact among themselves by transmitting and inter-
preting a fixed repertoire of signals. Most studies have focused on
the emergence of Saussurean codes (i.e., codes characterized by an
arbitrary one-to-one correspondence between meanings and sig-
nals). In this contribution, we argue that the standard evolutionary
language game framework cannot explain the emergence of com-
positional codes—communication codes that preserve neighbor-
hood relationships by mapping similar signals into similar mean-
ings—even though use of those codes would result in a much higher
payoff in the case that signals are noisy. We introduce an alter-
native evolutionary setting in which the meanings are assimilated
sequentially and show that the gradual building of the meaning-
signal mapping leads to the emergence of mappings with the de-
sired compositional property.

Index Terms—Complexity theory, game theory, genetic algo-
rithms, simulation.

I. INTRODUCTION

THE CASE FOR the study of the evolution of communi-
cation within a multiagent framework was probably best

made by Ferdinand de Saussure in his famous statement:

“language is not complete in any speaker; it exists only
within a collectivity only by virtue of a sort of contract
signed by members of a community” [1].

Translated into the biological jargon, this assertion means that
language is not the property of an individual, but the extended
phenotype of a population [2]. More than one decade ago,
seminal computer simulations were carried out to demonstrate
that cultural [3] as well as genetic [4] evolution could lead to
the emergence of ideal communication codes (i.e., arbitrary
one-to-one correspondences between objects or meanings and
signals), termed Saussurean codes, in a population of inter-
acting agents. Typically, the behavior pattern of the agents was
modeled by (probabilistic) finite-state machines. The work by
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Hurford [3], in particular, set the basis of the Iterated Learning
Model (ILM) for the cultural evolution of language, the typical
realization of which consists of the interaction between two
agents—a pupil that learns the language from a teacher [5]. In
those studies, language is viewed as a mapping between mean-
ings and signals. The communication codes that emerged from
the agents’ interactions are, in general, noncompositional or
holistic communication codes, in which a signal stands for the
meaning as a whole. In contrast, a compositional language is
a mapping that preserves neighborhood relationships—similar
signals are mapped into similar meanings. If there is a nontrivial
structure in both meaning and signal spaces then, in certain
circumstances, making explicit use of those structures may
greatly improve the communication accuracy of the agents. The
emergence of compositional languages in the ILM framework
beginning from holistic ones in the presence of bottlenecks
on cultural transmission was considered a breakthrough in the
computational language evolution field [5]–[7]. The aim of
this contribution is to understand how compositional commu-
nication codes can emerge in an evolutionary language game
framework [3], [4], [8], [9].

The way we introduce the structure of the signal space (i.e.,
the notion of similarity between signals) into the rules of the lan-
guage game is through errors in perception: the signals are as-
sumed to be corrupted by noise so that they can be mistaken for
one of their neighbors in signal space [8]. Similarly, the structure
of the meaning space enters the game by rewarding the agents
that prompted by a signal, infer a meaning close to the meaning
actually intended by the emitter. Of course, the reward for in-
correct but close inferences must be smaller than that granted
for the correct inference of the intended meaning (see [9] for a
similar approach). Hence, the role played by noise in this con-
text is similar to the role of the bottleneck transmissions in the
ILM framework, since both make advantageous the exploration
of the detailed structure of the meaning-signal mapping. In par-
ticular, we show that once a Saussurean communication code is
established in the population, i.e., all agents use the same code,
it is impossible for a mutant to invade, even if the mutant uses
a better code, say, a compositional one. This is essentially the
Allee effect [10], [11] of population dynamics that asserts that
intraspecific cooperation might lead to inverse density depen-
dence, resulting in the extinction of some (social) animal species
when their population size becomes small. Of course, this ef-
fect is germane to the outcome of biological invasions involving
such species. We note that most realizations of the ILM circum-
vent this difficulty by assuming that the population is composed
of two agents only, the teacher and the pupil, and that the latter
always replaces the former. However, according to de Saussure
(see quotation above), this is not an acceptable framework for
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language. In addition, a bias toward compositionality is built
in the inference procedure used by the pupil to fill in the gaps
due to transmission bottlenecks, in which some of the meanings
are not taught to the pupil. This bias towards generalization, to-
gether with cultural evolution, seems to be the key ingredients
to evolve compositionality in the ILM framework.

Understanding as well as demonstrating how innovations that
increase the expressive power of individuals can spread through
a population is the essence of any evolutionary explanation to
language evolution [9]. Accordingly, the solution we propose to
the problem of evolving a compositional code in a population of
agents that exchange signals with each other and receive rewards
at every successful communication event is the incremental as-
similation of meanings, i.e., the agents construct their commu-
nication codes gradually, by seeking a consensus signal for a
single meaning at a given moment. Only after a consensus is
reached, a novel meaning is permitted to enter the game. This se-
quential procedure, which dovetails with the classic Darwinian
explanation to the evolution of strongly coordinated system, al-
lows for the emergence of fully compositional codes, an out-
come that we argue is very unlikely, if not impossible, in the tra-
ditional language game scenario in which the consensus signals
are sought simultaneously for the entire repertoire of meanings.

II. MODEL

Here, we take the more conservative viewpoint that language
evolved from animal communication as a means of exchanging
relevant information between individuals rather than as a
byproduct of animal cognition or representation systems (see,
e.g., [12] and [13] for the opposite viewpoint). In particular,
we consider a population composed of agents who make
use of a repertoire of signals to exchange information
about objects. Actually, since the groundbreaking work of
de Saussure [1], it is known that signals refer to real-world
objects only indirectly as first the sense perceptions are mapped
onto a conceptual representation—the meaning—and then this
conceptual representation is mapped onto a linguistic represen-
tation—the signal. Here, we simply ignore the object-meaning
mapping (see, however, [14] and [15]) and use the words
object and meaning interchangeably. To model the interaction
between the agents, we borrow the language game framework
proposed by Hurford [3] (see also [8]) and assume that each
agent is endowed with separate mechanisms for transmission
(i.e., communication) and for reception (i.e., interpretation).
More pointedly, for each agent we define a transmission
matrix whose entries yield the probability that object
is associated with signal , and a reception matrix
the entries of which, , denote the probability that signal is
interpreted as object . Henceforth, we refer to and as the
language matrices. In general, the entries of these two matrices
can take on any value in the range [0,1] satisfying the con-
straints and , in conformity with
their probabilistic interpretation. In this contribution, however,
we consider the case of binary matrices, in which the entries
of and can assume the values 0 and 1 only. There are
two reasons for that. First, in the absence of errors in language
learning, the evolutionary language game will eventually lead
to binary transmission and reception matrices, regardless of

the values of and , and of the initial choice for the entries
of those matrices [16]. Therefore, our restriction of the entry
values to binary quantities has no effect on the equilibrium
solutions of the evolutionary game. In addition, these deter-
ministic encoders and decoders were shown to perform better
than their stochastic variants [17]. Second, by assuming that
the transmission and reception matrices are binary, we recover
the synthetic ethology framework proposed by MacLennan [4],
a seminal agent-based work on the evolution of communication
in a population of finite state machines (see also [18]).

Although the reception matrix is, in principle, independent
of the transmission matrix , results of early computer simu-
lations have shown that in a noiseless environment, the optimal
communication strategy is the Saussurean two-way arbitrary re-
lationship between an object and a signal, i.e., the matrices
and are linked such that if for some object-signal
pair , then [3]. These matrices are associated to the
Saussurean communication codes introduced before, provided
there are no correlations between the different rows of the ma-
trix , i.e., the assignment object-signal is arbitrary.

A. The Evolutionary Language Game

Given the transmission and reception matrices, the commu-
nicative accuracy or overall payoff for communication between
two agents, say and , is defined as [3], [8], [19]

(1)

from which we can observe the symmetry of the language game,
i.e., both signaler and receiver are rewarded whenever a suc-
cessful communication event takes place. By assuming such a
symmetry, one ignores a serious hindrance to the evolution of
language: passing useful information to another agent is an al-
truistic behavior [20], [21] that can be maintained in human
societies thanks to the development of reciprocal altruism, in
which unrelated individuals mutually benefit by exchanging the
donor and the receiver roles multiple times [22]. However, the
scarcity of empirical demonstrations of reciprocal altruism in
nature, except for modern humans, motivated an alternative sce-
nario for the evolution of language, namely, that human lan-
guage evolved as a “mother tongue”—a communication system
used among kin, especially between parents and their offspring
[23].

In this contribution, we assume the validity of (1) and simply
ignore the costs of honest signaling [20]. Hence, we take for
granted the existence of special social conditions to foster re-
ciprocal altruism among the agents or, alternatively, a mother
tongue scenario in which the agents are related to each other. In
this vein, it is interesting to note that although in the work by
MacLennan [3] communication is defined following Burghardt
[24] as “the phenomenon of one organism producing a signal
that when responded to by another organism, confers some ad-
vantage to the signaler or his group” (see [25] for alternative
definitions of communication), the actual implementation of the
simulation rewards equally the two agents that take part in the
successful communication event. In the case where only the re-
ceiver is rewarded, Saussurean communication fails to evolve
[26].
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Assuming, in addition, that each agent interacts with every
other agent in the population, we can
immediately write down the total payoff received by

(2)

in which the sole purpose of the normalization factor is to elim-
inate the trivial dependence of the payoff measure on the pop-
ulation size . Following the basic assumption of evolutionary
game theory [27] this quantity is interpreted as the fitness of
agent . Explicitly, we assume that the probability that con-
tributes with an offspring to the next generation is given by the
relative fitness

(3)

which essentially implies that mastery of a public communica-
tion system adds to the reproductive potential of the agents [3].

There are several distinct ways to implement the lan-
guage game. For instance, MacLennan [4] and Fontanari and
Perlovsky [18] stick to the genetic algorithm approach (see,
e.g., [28]) in which the offspring acquires both the transmission
and reception matrices from its parent, assuming clonal or
asexual reproduction. The offspring is identical to its parent
except for the possibility of mutations that may alter a few rows
of the language matrices. However, here we take a different
viewpoint and reinterpret this genetic model within a learning
context. We assume, in particular, that the offspring actually
learns the language from its parent but that the learning is not
perfect—there is a probability that the communication code
it acquires is slightly different from its parent’s. This very
framework has been used to study the emergence of universal
grammar and syntax in language [2], [29], [30].

An alternative learning scenario used by Nowak and
Krakauer [8] assumes that the offspring adopt the language
of its parent by sampling its response to every object times.
This approach makes sense only if the language matrices are
not binary, though, as mentioned before, in the long run those
matrices must become binary. For , the offspring is
identical to its parent, which corresponds then to in the
previous learning scenario, whereas differences between parent
and offspring arise in the case of finite . This sampling
effect is qualitatively similar to the effect of learning errors
in the scenario introduced before. For , already the first
generation of offspring communicates through binary language
matrices and so the sampling procedure is rendered ineffective.
The reason is that a binary matrix assigns each object to a
unique signal (though this same signal can be used also for a
distinct object), and so sampling the responses of the parent
to the same object will always yield the same signal. As a
result, the evolutionary process based on learning by sampling
halts—the offspring become identical to their parents.

A similar but more culturally inclined approach is that fol-
lowed by Hurford [3] and Nowak et al. [16]: instead of sampling
the parent’s responses, the offspring samples the responses of a
certain number of agents in the population or even of the en-
tire population. In this case, the hereditary component is lost
since the offspring, in general, will not resemble its parent, and

so natural selection has no say in the outcome of the dynamics.
In the case of Hurford [3], there is still a strong genetic com-
ponent as the offspring inherits from its parent its strategy of
inference. Similarly, the ILM for the cultural evolution of lan-
guage (see [5] and [7] for reviews) in its more popular version
consists of two agents only, the teacher and the pupil who learns
from the teacher through a sampling process identical to that
just described. The pupil then replaces the teacher and a new,
tabula rasa pupil is introduced in the scenario. This procedure
is iterated until convergence is achieved. In this case, the payoff
(2) plays no role at all in the language evolutionary process and
the stationary language matrices will depend strongly on the in-
ference procedure used by the pupil to create a meaning/signal
mapping from the teacher responses. Of particular interest for
our purpose is the finding that compositional codes emerge in
the case that the learning strategy adopted by the pupil supports
generalization and that this ability is favored by the introduc-
tion of transmission bottlenecks in the communication between
teacher and pupil. Such a bottleneck occurs when the learner
does not observe the signal for some objects. This contrasts with
the sampling effect mentioned before in which the learner ob-
serves the signals to every object. In this contribution, we study
whether and in what conditions compositional codes emerge in
an evolutionary language game.

B. The Meaning-Signal Mapping

As already pointed out, language is viewed as a mapping be-
tween objects (or meanings) and signals and compositionality
is a property of this mapping: a compositional language is a
mapping that preserves neighborhood relationships, i.e., nearby
meanings in the meaning space are likely to be associated to
nearby signals in signal space [5]. At first sight, this notion looks
contradictory to the well-established fact that the relation be-
tween a word (signal) and its meaning is utterly arbitrary. For
instance, as pointed out by Pinker [31],

“babies should not, and apparently do not, expect cattle
to mean something similar to battle, or singing to be like
stinging, or coats to resemble goats.”

In fact, Pettito demonstrated that the arbitrariness of the rela-
tion between a sign and its meaning is deeply entrenched in
the child’s mind [32]. On the other hand, sentences like John
walked and Mary walked have parts of their semantic repre-
sentation in common (someone performed the same act in the
past) and so the meaning of these sentences must be close in the
meaning space. Since both sentences contain the word walked
they must necessarily be close in signal space as well. Following
Pinker, we acknowledge a significant degree of arbitrariness at
the level of word-object pairing. This might be a consequence
of a much earlier (prehuman) origin of this mechanism, as com-
pared with seemingly distinctly human mind mechanisms for
sentence-situation pairing. From a mathematical modeling per-
spective, however, such a distinction is not essential for our pur-
poses, since the signals (sentences or words) can always be rep-
resented by a single symbol—only the “distance” between them
will reflect the complex inner structure of the signal space. For
instance, suppose there are only two words that we represent,
without lack of generality by 0 and 1. Hence, a binary sequence
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Fig. 1. Example of a mapping meaning-signal for n = m = 4. The integers
here may be viewed as labels for complex entities (e.g., sentences). The large
circles indicate cyclic boundary conditions so that, e.g., signal 1 is 1 unit distant
from signals 2 and 4. The code represented in the figure has compositionality
C = 1.

or, equivalently, its decimal representation can represent any
sentence in this language. Here, the relevant distance between
two such sentences is the Hamming distance rather than the re-
sult of the subtraction between their labeling integers. This no-
tion, of course, generalizes trivially to the case when the sen-
tences are composed of more than two types of words.

For simplicity, in this paper, we consider the case where both
signals and meanings are represented by integer numbers and
the relevant distance in both signal and meaning space is the
result of the usual subtraction between integers. Fig. 1 illus-
trates one of the possible meaning-signal mappings.
A quantitative measure of the compositionality of a communi-
cation code is given by the degree to which the distances be-
tween all the possible pairs of meanings correlates with the dis-
tance between their corresponding pairs of signals [7]. Explic-
itly, let be the distance between meanings and , and

the distance between the signals associated to these two
meanings. Introducing the averages and

, where the sum is over all distinct pairs
of meanings, the compositionality of a code is

defined as the Pearson correlation coefficient [7]

(4)

so that indicates a compositional code and an un-
structured or holistic code. This definition applies only to codes
that implement a (not necessarily arbitrary) one-to-one corre-
spondence between meaning and signal.

Strictly, here we do not address directly the emergence of
compositionality, defined as the property that the meaning of
a complex expression is determined by the meanings of its parts
and the rules used to combine them. Rather, we focus on the
emergence of structured communication codes, which preserve
the topology of the meaning-signal mapping, in that similar
meanings are associated with similar signals and vice versa. It
seems that an important aspect of joint evolution of composi-
tional cognition and compositional language is their evolution
along with structural metric (or approximately metric) spaces

of cognition and meaning. In this contribution, we assume that a
metric space exists, and explore the consequences for the emer-
gence of compositionality. The connection between structured
and compositional meaning-signal mappings can be made ex-
plicit if we consider an artificial scenario for which there is a pre-
scription to derive the meaning of the whole given the meaning
of the elementary parts. (Such prescription is clearly ruled out
in real language since context and previous knowledge play a
crucial role in our understanding of any situation.) In this case,
the distance between any two composite meanings could be in-
ferred by comparing their components and, consequently, by in-
troducing a metric in the meaning space.

Our approach ties in with the view that properties of language
such as compositionality are emergent characteristics of the ex-
plosion of semantic complexity occurred during hominid evolu-
tion [33]. Semantic complexity means not only a large number
of cognitive categories (meanings) but also an increase in their
perceived interrelationships, which are inherent properties of
the topology of the meaning space. In fact, the number of ob-
jects for which a person has separate words is not too large:
a recent estimate suggests a vocabulary of around 60,000 base
words for well-educated adult native speakers of English [34].
This is a not a very big number, and so it is reasonable to assume
that object-word associations can be learned from examples, one
by one. The number of situations that are combinations of ob-
jects, on the other hand, is larger than the number of all elemen-
tary particle events in the history of the Universe. This supports
a need for the assumption of compositionality in language. As
hinted in [33], a natural avenue to study the evolution of com-
plex features of language (e.g., compositionality) is the increase
of the complexity of the meaning space, which is exactly the ap-
proach we offer in this contribution.

C. Errors in Perception

So far as the communicative accuracy introduced in (1) is
concerned, the structures of the meaning and signal spaces are
irrelevant to the outcome of the evolutionary language game:
the total population payoff is maximized when all agents adopt
a code that implements a one-to-one correspondence between
meanings and signals. Such a code is, of course, described by
any one of the permutation language matrices. The fact that
ultimately all agents adopt the same communication code is a
general result of population genetics related to the effect of ge-
netic drift on a finite population [35]. To permit the structures of
the meaning and signal spaces to play a role in the evolutionary
game and so to break the symmetry among the permutation ma-
trices so as to favor the compositional codes, we must introduce
a new ingredient in the language game, namely, the possibility
of errors in perception [8]. In fact, it is reasonable to assume
that in the earlier stages of the evolution of communication the
signals were likely to be noisy and so they could be easily mis-
taken for each other. The relevance of the structure of the signal
space becomes apparent when we note that the closer two sig-
nals are, the higher the chances that they are mistaken for each
other. This aspect of the model can be described by an agent-in-
dependent confusion matrix , the entries of which
yield the probability of signal being observed as signal due
to corruption by noise [8], [9].
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To introduce the structure of the meaning space in the lan-
guage game, we note first that (1) has a simple interpretation
in the case of binary, but not necessarily permutation, language
matrices: both signaler and receiver are rewarded with 1/2 unity
of payoff whenever the receiver interprets correctly the meaning
of the emitted signal. Otherwise, there is no reward to any of
the two parts, no matter how close the inferred meaning is from
the correct one. This gives us a clue as to how to modify the
model in order to take into account the meaning structure—just
ascribe some small reward value to both agents if the inferred
meaning is close to the intended one. In fact, giving value to de-
cisions which are not the best ones is a common assumption in
decision and game theory [36] and seems to be consistent with
what is actually observed in nature since, clearly, not every mis-
interpretation is equally harmful [9]. Consider for instance the
Vervet monkey alarm calls [37]: misinterpreting a snake alarm
for a leopard one, and hence running to a tree instead of standing
up and looking in the grass, is clearly much better than misin-
terpreting it for an eagle call.

Following Nowak et al. [8] and Zuidema [9], we can for-
malize the notion of meaning similarity by introducing another
agent-independent matrix, the value matrix , so that
yields the payoff attributed to an agent which infers meaning
when the actual meaning the signaler intended to transmit was
. Hence, the overall payoff for communication between agents
and becomes [9]

(5)

where stands for the usual matrix multiplication. Note that (1)
is recovered in the case that both value and confusion matrices
are diagonal.

In particular, here we will consider the simple case in which
there is a nonzero probability that a signal, say signal
, be mistaken for one of its nearest neighbors only,

and . Of course, the probability that a signal
is not corrupted by noise is . If signal is in the
boundary, or , then we use the cyclic structure
of the signal space to set and

. So, in the example of Fig. 1, signal 4 can be mis-
taken only for signals 3 or 1 with probability . Similarly, agents
are rewarded only if the inferred meaning is one of the nearest
neighbors of the intended meaning. For example, if the intended
meaning is , then the only nonzero entries of the value matrix

are , , and . Meanings in
the boundary, and , are treated using the cyclic
boundary conditions as explained for the signal space. Here,

is a parameter that measures the advantage, in terms
of payoff, of using a compositional communication code rather
than a Saussurean one.

Together with the presence of noise, this last ingre-
dient—nonzero reward for inferring a meaning close to
the correct one—should favor, in principle, the emergence of
compositional communication codes in an evolutionary game
guided by Darwinian rules. In what follows, we will show that

the problem of evolving efficient communication codes within
an evolutionary framework, whether in the presence or not of
noise, is more difficult than previously realized [4], [16], [18].
This problem differs from usual optimization problems tackled
with evolutionary algorithms in that the maximization of the
average population payoff requires a somewhat coordinated
action of the agents. It is of no value for an agent to exhibit the
correct “genome” (i.e., the transmission and reception matrices)
if it cannot communicate efficiently with the other agents in the
population because they use different language matrices.

The emergent view of compositionality adopted here differs
from the approach followed by Nowak et al. [29] to study the
evolution of syntactic (or combinatorial) communication. In that
work, the conditions at which syntax is advantageous over non-
syntactic or holistic languages were determined, namely, when
the number of required signals to express the relevant meanings
exceeds some threshold value. (It should be noted that combina-
torial communication has its disadvantages too, since it boosts
the potential for deception [38].) However, the finding that the
adoption of a particular communication code is better for the
population, in that it yields a higher overall payoff, is no guar-
antee that such code will actually spread in the population. On
the contrary, in this contribution we show that the Allee ef-
fect will prevent its spreading. Additional assumptions, such as
the semantic continuity of incremental learning proposed here,
seem to be necessary to guarantee the emergence of composi-
tional codes.

III. POPULATION DYNAMICS

We assume that the offspring learn their languages from their
parents. Were it not for the effect of errors during learning,
which results in small changes in the language matrices, the off-
spring would be identical to their parents. Like mutations in the
genetic setup, these learning errors allow for the variability of
the agents, and thus for the action of natural selection.

We start with agents (typically ) whose binary
language matrices are set randomly. Explicitly, for each agent
and for each meaning , we choose randomly an in-
teger and set and for .
Similarly, for each signal , we choose an integer

and set and for . This
procedure guarantees that initially and are independent
random probability matrices. Note that, in general, they are not
permutation matrices at this stage. To calculate the total payoff
of a given agent, say agent , we let it interact with every other
agent in the population. At each interaction, the emitted signal
can be mistaken for one of the neighboring signals with prob-
ability . According to (5), at each communication event (an
interaction) agent receives the payoff value 1/2 if the receiver
guesses the intended meaning of the signal that has emitted,
the payoff value if the receiver guessing is one of the nearest
neighbors of the intended meaning, and payoff value 0, other-
wise. Of course, the receiver obtains the same payoff accrued
to agent . Once the payoffs or fitness of all agents are tab-
ulated, the relative payoffs can be calculated according to (3),
and then used to select the agent that will contribute with one
offspring to the next generation.
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To keep the population size constant, we must eliminate one
agent from the population. To do that we will use two strate-
gies: 1) to choose the agent to be eliminated at random, regard-
less of its fitness value and 2) to use an elitist strategy which
eliminates the agent with the lowest fitness value. In both cases,
the recently produced offspring is spared from demise. The first
selection procedure is Moran’s model of population genetics
[35]. Both procedures differ from the standard genetic algorithm
implementation [28] in that they allow for the overlapping of
generations, a crucial prerequisite for cultural evolution which
may be relevant when learning is allowed. In practice, however,
Moran’s model does not differ from the parallel implementation
in which the entire generation of parents is replaced by that of
the offspring in a single generation. We define the generation
time as the number of generations needed to produce off-
spring with the consequent elimination of the same number of
agents.

Finally, to allow for the appearance of novel codes (or lan-
guage matrices) in the population, changes are performed in-
dependently on the transmission and reception matrices of the
offspring with probability . Explicitly, the transmis-
sion matrix is modified by changing randomly the signal as-
sociated to an also randomly chosen meaning with probability

. A similar procedure updates the reception matrix . Hence,
the probability that the same offspring has its transmission and
reception matrices simultaneously altered by errors is and
the probability that it will differ somehow from its parent is

. Henceforth, we will refer to as the proba-
bility of error in language acquisition.

To facilitate comparison between different evolutionary algo-
rithms, we define a properly normalized average payoff of the
population

(6)

so that . The maximum value is reached for
Saussurean codes in the case of noiseless communication.

In Fig. 2, we present the effect of the inaccuracy in language
acquisition on the average payoff of the population for the sim-
plest situation, namely, (the receiver always gets the orig-
inal signal) and (only inference of the correct meaning
is rewarded). The results show a stark difference between the
elitist and the usual evolutionary strategy regarding the form
they are affected by learning errors. Whereas the performance
of Moran’s model is degraded for high error rates [39], reaching
the payoff of random binary matrices for , the elitist
strategy actually benefits from those errors and gets to the max-
imum payoff for the highest possible error rate. In fact, for small
but nonzero values of the error rate, the communication accu-
racy of the elitist strategy is practically constant and starts to in-
creases only after crosses some threshold value . The
performance of Moran’s model, on the other hand, indicates the
existence of an optimum value of the learning error for which
the communication accuracy is maximum. Longer runs do not
show any significant change of the pattern illustrated in Fig. 2.
What enables the elitist strategy to take advantage of errors is the
overlapping of generations together with the immediate removal

Fig. 2. Normalized average payoffG of the population as function of the prob-
ability of error in language acquisition � in the case of N = 100 agents com-
municating about n = 10 meanings using m = 10 signals. The evolution was
followed until t = 2 � 10 for the elitist strategy (�) and until t = 10 for
Moran’s model (�). The symbols represent the average of over 50 indepen-
dent runs. The error bars are smaller than the symbol sizes. For � = 0, we find
G = 0:255�0:005 for both strategies, whereas for random language matrices
we find G = 0:1� 0:0001. The other parameters are " = r = 0. The search
space is them �n space spanned by the two independent binary probability
matrices P and Q.

of unfit agents from the population. This combination prevents
the accumulation of inefficient agents in the population and the
consequent degradation of the communication performance ob-
served in Moran’s model. Moreover, by eliminating the agent
that performs worse in the language game, the elitist strategy
adds an extra kick to the selective pressure towards better com-
munication codes, in addition to the fitness regulation of off-
spring production described in (3).

The reason the elitist strategy can guide the population to a
regime of practically perfect communication accuracy even in
the presence of a constant flux of inefficient mutants is
that a defective offspring, though spared from demise at birth,
will almost certainly be purged from the population in the next
step. We recall that a single generation comprises such gener-
ation/elimination steps. In this scheme, the population can main-
tain at most a single defective agent, thus resulting in a reduction
of the maximum normalized payoff by a factor . In view of
the remarkable effectiveness of the elitist strategy to maximize
the communication accuracy of the population, in what follows
we will present the results for that strategy only.

Fig. 3 presents the average communication accuracy for
100 independent runs (populations) in a generic case in which
the parameters and , which couple the dynamics with the
distances in the signal and meaning spaces are nonzero. Now,
since the communication between any two agents is affected by
noise, we must adopt a slightly different procedure to evaluate
the payoff of the entire population. As before, we follow the
evolutionary dynamics (i.e., the differential reproduction and
learning-with-error procedures) until , then we
store the language matrices of all agents. Keeping these
matrices fixed, we evaluate the average population payoff in
100 contests. A contest is defined by the interaction between
all pairs of agents in the population. Actually, according to (5),
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Fig. 3. Normalized average payoff for the elitist (�) strategy at t = 2 � 10
for 100 independent sample runs of the evolutionary dynamics. These results
are compared with that of a fully compositional code (solid line) and of Saus-
surean codes (�). The parameters and search space are the same as in Fig. 2
with � = 1, except that now we have included a pressure for compositionality:
the signals are corrupted with probability " = 0:2 and the ratio between the
payoffs for inferring a close and the correct meaning is r = 0:25. The optimal,
compositional code yields G � 0:85 and the typical payoff of a Saussurean
code is G � 0:80.

each interaction comprises two communication attempts, since
any given agent first plays the role of the emitter and then of the
receptor. Hence, a contest amounts to communica-
tion events. Of course, in the noiseless case , the payoff
obtained would be the same in all contests. The procedural
changes are needed to average out the effects of noise. For
instance, in a single interaction two perfectly compositional
codes could perform worse than two holistic codes if, by sheer
chance, the signals happen to be corrupted only during the
interaction of the compositional codes. To avoid such spurious
effects the payoffs resulting from the interactions between any
two agents are averaged out over 100 different interactions.

For the purpose of comparison, in Fig. 3 we also present the
results for a population of agents carrying the same perfectly
compositional code , as well as for a similarly homoge-
nous population of agents carrying identical Saussurean codes.
These are control populations that in contrast to the elitist pop-
ulations, do not evolve. In the absence of noise, these control
populations would reach the maximum allowed payoff, .
We note that a perfectly compositional code is not a Saussurean
code, in the sense that the one-to-one mapping between meaning
and signals is not arbitrary. The elitist strategy seems to face
great difficulties even to find a Saussurean code, as compared
with the performance in the noiseless case (see Fig. 2) for in-
stance, not to mention to find the optimum, perfect composi-
tional code. Actually, in the presence of noise, the performance
of the Saussurean code seems to pose an upper limit to the per-
formance of the elitist strategy by acting as an attractor to the
evolutionary dynamics.

It is instructive to calculate the average payoff of a pop-
ulation composed of identical agents carrying a perfect compo-
sitional code. Consider the average payoff received by a given
agent, say , in a very large number of interactions with one of
its siblings, say . When plays the signaler role its average

Fig. 4. Compositionality of the code carried by the agent with the highest
payoff in the runs shown in Fig. 3. The compositionality of the perfect com-
positional code is, by definition, C = 1. There is a slight tendency to composi-
tionality in the codes produced by the elitist (�) strategy as compared with those
of the Saussurean codes (�).

payoff is , which, by symmetry, hap-
pens to be the same average payoff receives when it plays the
receiver role. Since all agents are identical, the expected payoff
of any agent equals that of the population. Hence

(7)

We can repeat this very same reasoning to derive the average
payoff of a homogenous population of Saussurean codes. In
this case, by playing the signaler, receives the average payoff

, where the factor
accounts for the fact that the reward is obtained only if
the inferred meaning is one of the two neighbors of the correct
meaning. This reasoning is valid for only, since for
each meaning has a single neighbor, and so there is no difference
between Saussurean and compositional codes. Taking into ac-
count the payoff received by when playing the receiver yields

(8)

for . Note that for . Similarly to the case
, the Saussurean codes for are compositional codes

because of the cyclic boundary conditions in the meaning space.
In Fig. 4, we show the compositionality of the code carried by
the agent with the largest payoff value in each of the runs used
to generate the data of Fig. 3. Although there is a slight ten-
dency to compositionality in the codes produced by the elitist
strategy, it is fair to say that the pressure to generate compo-
sitional code has not worked as expected, despite the clear ad-
vantage of such codes given the conditions of the experiment
(see Fig. 3). As pointed out, the reason for that might be that
the Saussurean codes act as barriers (local maxima) from which
the evolutionary dynamics cannot escape, thus impeding it from
reaching a perfect compositional code (global maximum).

The results depicted in Fig. 3 expose clearly the failure of
the language evolutionary framework to produce efficient com-
munication codes when the receiver must interpret noisy sig-
nals. To rule out the possibility that the cause of such failure
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Fig. 5. Average payoff resulting from 100 independent runs of the noisy evolu-
tionary language game with the search space restricted to permutation matrices
(�) as a function of the pressure for compositionality. The error bars are smaller
than the symbol sizes. The upper straight line is the function G = (1 + r)=2
that yields the average payoff of a perfect compositional code and the lower
straight line is G = 0:5 + 0:11r that yields the average payoff of a Saus-
surean code (see (7) and (8)). The parameters are " = 0:5, � = 0:9,N = 100,
and n = m = 10.

was the initial unlikely decoupling between production and in-
terpretation, in the following, we will restrict the search space
to that of Saussurean codes. Hence, for any agent, the transmis-
sion matrix is a permutation matrix and the reception matrix

has entries given by if and 0 otherwise ( is
also a permutation matrix). The initial population is composed
of agents adopting distinct Saussurean codes. To guarantee
that all new codes generated by mutations stay within our search
space, we modify the mutation procedure so that with proba-
bility the signal associated to a randomly chosen meaning, say
, is exchanged with the signal associated to another randomly

chosen meaning, say . This corresponds to the interchange of
the rows and of the transmission matrix. The reception ma-
trix is then updated accordingly. The sole genetic strategy we
use in the forthcoming simulations is the elitist one, in which
the worst performing agent is replaced by the offspring of the
agent chosen by rolling the fitness wheel.

In Fig. 5, we show the results of the experiments with the evo-
lutionary search restricted to the space of permutation matrices.
The procedure we use here was the same as that employed to
draw Figs. 3 and 4: after the evolutionary dynamics has settled
to an equilibrium (i.e., all agents are using the same communi-
cation code, except for single temporary mutants), the resulting
homogeneous population is then left to interact for 100 con-
tests and the average payoff is recorded. However, instead of
exhibiting the payoff obtained in the 100 independent runs as in
Fig. 3, we exhibit in Fig. 5 only the average payoff calculated
over those runs. Hence, to obtain each data point of this figure
we need to generate a set of data similar to that used to draw
Fig. 3. We choose as the independent variable the ratio between
the payoffs for inferring a neighbor of the correct meaning and
the correct meaning , which can be interpreted also as a se-
lective pressure for evolving compositional codes. For the sake

Fig. 6. Average compositionality of the 100 evolved communication codes
(�) whose payoffs are exhibited in Fig. 5, as well as of the same number of
Saussurean codes (�). The compositionality of a perfect compositional code is
C = 1 by definition. The linear fitting of the average compositionality of the
evolved codes yields a slope of �0.43.

of comparison, Fig. 5 also shows the average payoffs of perfect
compositional and random Saussurean codes.

The results in Fig. 5 indicate that for , the performance
of the communication codes, regardless of whether random,
compositional or evolved, are identical. Explicitly, in this case,
we find for any one-to-one mapping. Since the
search space is now restricted to the space of permutation ma-
trices, it is not a surprise that the payoffs of the Saussurean codes
serve as lower bounds to those of the evolved codes. This trivial
finding should not be confused with the unexpected result ex-
hibited in Fig. 3, that the payoffs of the Saussurean codes serve
as upper bounds to the payoffs of the evolved codes when the
search space is enlarged to cover all binary language matrices.
The results in Fig. 5 show clearly that, despite the fact that com-
positionality can greatly improve the communication payoff of
the population (see upper straight line in that figure), the evolved
codes fall short of taking full advantage of the structure of the
meaning-signal space to cope with the noise in the communi-
cation. As a result, the evolved codes are far from the optimal,
perfect compositional codes, although they fare better than the
Saussurean codes. Fig. 6 explains the reason for that: the evolu-
tionary dynamics actually succeeded to produce partially com-
positional codes, thus reducing the deleterious effects of noise.

It is interesting that the payoffs of the Saussurean codes in-
crease when the pressure for compositionality increases [see
Fig. 5 and (8)], although they remain largely noncompositional
in average (see Fig. 6). The key to the explanation of this result is
found in Fig. 4, where we can see that half of the samples of the
random Saussurean codes exhibit a positive value of the com-
positionality, which is then associated to a payoff value greater
than ( in that case), while the representatives of the
other half have a payoff of at worst. It is clear that the
resulting average payoff must be an increasing function of .

The reason that the evolutionary dynamics failed to produce
perfect compositional codes, despite their obvious advantage to
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Fig. 7. The evolution of the fraction f of agents carrying a perfect composi-
tional code in an experiment in which they compete against agents carrying a
Saussurean code. The parameters are " = 0:5, r = 0:25, N = 100, and
n = m = 10. The initial population is set so that (from top to bottom) f = 0:8,
0.5, 0.42, 0.419, and 0.2.

cope with noisy signals, is that once a nonoptimal communica-
tion code has become fixed (or even almost fixed) in the popula-
tion, mutants carrying better codes cannot invade. In fact, those
mutants will most certainly do badly when communicating with
the resident agents and, as a result, will quickly be removed from
the population. As pointed out, this is essentially the Allee ef-
fect of population dynamics.

The task faced by the evolutionary algorithm here is of an es-
sentially different nature from that tackled in typical optimiza-
tion problems in which the fitness of an agent is frequency in-
dependent. In such a case, a fitter mutant can always invade
the resident population. To stress this phenomenon, Fig. 7 illus-
trates the competition between a fraction of agents carrying
(the same) perfect compositional code and a fraction of
agents carrying (the same) Saussurean code. This simulation is
implemented using the elitist procedure described before, ex-
cept that learning errors are not allowed, so that at any time an
agent can carry only one of the two types of codes set initially.
Alternatively, Fig. 7 can be interpreted as the competition be-
tween two different strategies: the perfect compositional and the
holistic strategies. We can easily estimate the minimum fraction

of perfect compositional codes above which this strategy
dominates the population. It is simply

(9)

with and given by (7) and (8), respectively. For the pa-
rameters of Fig. 8, this estimate yields , which within
statistical errors, is in very good agreement with the single run
experiment described in the figure. Repetition of this experiment
using Moran’s model rather than the elitist strategy leads to the
same result, except that the fixation of the winner strategy takes
much longer—about 100 times longer than the fixation times
exhibited in Fig. 7.

This simple analysis of the competition between suboptimal
Saussurean codes and the optimal compositional codes lends
support to our previous conclusion that compositional codes do

not evolve within the usual language evolutionary game frame-
work because the evolutionary dynamics is very likely to get
trapped in the local maxima—the Saussurean codes.

IV. INCREMENTAL MEANING ASSIMILATION

What we have been trying to do up to now is to evolve in a
single shot a communication code that associates each of the

meanings (or objects) to one of the signals available in
the repertoire of the agents. As pointed out, in the case that the
meaning-signal mapping has a nontrivial underlying structure,
the optimal association is not completely arbitrary in the sense
that in the presence of noise some codes (i.e., the perfect compo-
sitional codes) result in a much better communication accuracy
than codes that implement an arbitrary one-to-one correspon-
dence between meaning and signals (Saussurean codes). The
results of the previous simulations lead us to conclude that it
is very unlikely, if not impossible, that evolution through nat-
ural selection alone could take advantage of the structure of the
meaning-signal space to produce the optimal, perfect composi-
tional codes.

The outcome would be very different, however, if the task
posed to the population were to reach a consensus on the signals
to be assigned to the meanings in a sequential manner. In other
words, let us consider the situation in which each agent has
signals available (here we set ) and the population needs
to communicate about a single meaning, say . The search
space is reduced then to the space of the permutation
matrices. (We restrict the search space to that of permutation
matrices, for simplicity.) Once the consensus is reached (i.e., the
signal assigned to meaning is fixed in the population), a
new meaning is presented and the population is then challenged
to find a consensus signal for that meaning. The procedure is
repeated until each of the meanings are associated to a
unique signal.

In the case of structured meaning-signal mappings, the order
of presentation of meanings to the population plays a crucial
role on the outcome of this strategy, which we term sequential
meaning assimilation. In particular, success is guaranteed only
if the novel meaning is a neighbor of the previously presented
meaning (e.g., or in the case the previous assimi-
lated meaning was ). In this case, the question is whether
the population will reach a consensus on a signal that is also a
neighbor of the signal assigned to the previous meaning. Curve
(a) of Fig. 8 shows that this scheme works neatly, and yields
a fully compositional code provided that and .
We note that when the number of assimilated meanings is less
than the size of the repertoire of signals , the payoff of the se-
quential assimilation scheme [curve (a)] falls below the average
payoff a fully compositional code (dashed horizontal line), be-
cause until all meanings are presented, the codes produced by
that scheme cannot take full advantage of the topology of the
meaning and signal spaces. The following example explains the
reason this is so. Consider the situation in which two meanings
were assimilated, say ,2 and the signals assigned to them
were ,7, respectively. The agents will receive no reward
if the corrupted signals become 5 or 8 (we recall that
in this experiment), since at this point there are no meanings as-
sociated to these altered signals. In contrast, reward is always
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Fig. 8. Average payoff of the population when the task is to produce consensus
signals to n meanings presented sequentially at the time intervals�t = 100. In
curve (a), the new meaning is a neighbor of the previous one, whereas in curve
(c), the order of presentation of the meanings is random. The result for the usual
batch algorithm, in which all meanings are presented simultaneously, is shown
in curve (b). The dashed horizontal line indicates the average performance of
perfect compositional codes. The parameters are " = 0:5, r = 0:5, N = 100,
and n = m = 10.

guaranteed for the fully formed compositional code since, by
definition, all meanings are assimilated at the very outset in this
case. Of course, as seen in Fig. 8, this “surface” effect is at-
tenuated as more meanings are assimilated. The fact that the
final payoff of the single run displayed in curve (a) ends up
being greater than the (theoretical) average payoff of the per-
fect compositional code is simply a statistical fluctuation. Curve
(c) in Fig. 8 illustrates the failure of the sequential presentation
scheme when the order of presentation of meanings is random.
In fact, if the meanings are presented in an arbitrary order, say

after , then there is no selection pressure to prevent
that the signal assigned to be one of the neighbors of the
signal associated to . Eventually, when the meaning
is presented this optimal signal will be unavailable to the agents,
precluding thus the emergence of a compositional code. Finally,
we note that the incremental learning scheme would work all the
same if the repertoire of meanings were left fixed and the sig-
nals were presented one by one.

The proposed solution to the evolution of compositional
codes in an evolutionary language game framework could be
questioned, because it relies on the assumption that the new
meanings entering the population repertoire must be closely
related to the already assimilated meanings. However, this
seems to be the manner in which the perceptual systems work
during categorization: new meanings are usually hierarchically
related to the assimilated ones and this could be, for instance,
the reason for Zipf’s law of languages [40], [41]. In fact, as
pointed out in [33], the hierarchical structure of language may
be caused by our perception of reality, rather than the other
way around. The case for a hierarchically organized world was
made by Simon [42]:

“On theoretical grounds we could expect complex sys-
tems to be hierarchies in a world in which complexity had
to evolve from simplicity.”

In addition, the evidence that nouns are easily changed into
verbs (e.g., ship-shipped, bottle-bottled) [43] illustrates the
same type of continuity in the signal space as well.

In any event, our solution is in line with the traditional Dar-
winian explanation to the evolution of the so-called irreducibly
complex systems. Although the evolutionary game setting failed
to evolve perfect compositional codes when the task was to pro-
duce a meaning-signal mapping by assimilating all meanings
simultaneously, that setting proved successful when the mean-
ings were created gradually.

V. CONCLUSION

Saussure’s notion of language as a contract signed by mem-
bers of a community to set arbitrarily the correspondence be-
tween words and meanings leads to unexpected obstacles to the
evolution of efficient communication codes in the evolutionary
language game framework. In fact, the fixation of a communi-
cation code in a population is a once-for-all decision—it cannot
be changed even if a small fraction of the population acquires a
different, more efficient code (see Fig. 7). The situation here is
similar to the evolutionary stable strategies of game theory [27],
the escape from which is only possible if all players change their
strategies simultaneously. Since such concerted, global changes
are not part of the rules of the language game, there seems to be
no way for the population to escape from nonoptimal commu-
nication codes.

In fact, languages evolve. A branch of linguistics named glot-
tochronology (the chronology of languages) suggests the rule
of thumb that languages replace about 20% of their basic vo-
cabulary every 1000 years [44]. The abovementioned difficulty
of changing the communication code is not in the replacement
of old signals by new ones, but in the assignment of different
meanings to old signals and vice versa. Of course, this would
not be an issue if the evolutionary language game could lead
the population to the optimal code (a perfectly compositional
code, in our case); our simulations have shown that it always
gets stuck in one of the local maxima that plague the search
space. To point out this difficulty was, in fact, the main goal of
the present contribution.

Our view of compositionality as the evolutionary stage
following the settlement of simpler, unstructured communica-
tion codes, and the search for a continuous path connecting
these two stages, led us to the same type of difficulties re-
searchers working on a similarly elusive problem—the origin
of life—have been struggling with for more than three decades
[39]. For example, although the coordinated work of distinct
genes is germane to the emergence of cells, it is still not clear
how such an assemblage could be formed and maintained
starting from selfish genes (see [45] for a review). In that
sense, by exposing the obstacles to explain compositionality
from an evolutionary perspective, our work follows the same
research vein that lead to the present understanding of prebiotic
evolution.

The solution we put forward to this conundrum is a con-
servative one—we cannot explain the emergence of the entire
meaning-signal mapping that displays the required composi-
tional property via natural selection, but it is likely that the map-
ping was formed gradually with the addition of one meaning
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at each time. This gradual procedure, that we term incremental
meaning creation, leads indeed to fully compositional codes (see
Fig. 8). It would be interesting to verify whether alternative,
less conservative solutions such as the spatial localization of the
agents, less than perfect metrics in meaning space, or the struc-
turing of the population by age could lead to the dissolution of
the language contract and so open an evolutionary pathway to
more efficient communication codes.
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