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Abstract

Lexicon learning systems need to be concerned
with more than just producing symbol usage
agreement between agents, which is easy to ac-
quire through imitation. Lexicon learners should
also explicitly attempt to increase the mutual in-
formation between their symbol usages (a mea-
sure of the usefulness of the symbols for trans-
ferring information between agents). This paper
argues that, although many lexicon learning al-
gorithms presented in the literature do attempt
to create highly informative symbol usages im-
plicitly, there are good reasons to make the mu-
tual information of symbol usages an explicit goal
of the lexicon learning system. Some first steps
in this direction are provided in this paper. It
presents lexicon learning experiments using both
purely imitative and explicitly information max-
imizing algorithms. The results of these experi-
ments are used to support the thesis of this paper,
that lexicon learning algorithms should explicitly
attempt to produce high mutual information sym-
bol usages.

1. Introduction

Lexicon learning is a task where a group of agents learn
to use symbols to label meanings. The goal of the task
is to enable agents to transmit meanings to each other
using the symbols contained in the lexicon. Therefore, a
lexicon could not be called successful, in any sense, un-
less a signal-receiving agent could reliably come up with
the same meaning that the signal-transmitting agent in-
tended.
This interpretation of lexicon learning has significantly

influenced the way it has been approached in the liter-
ature. The primary focus of recent research has been
on how the agents can use symbols to denote meanings
coherently (i.e., that meanings can be reliably transmit-
ted). However, there has been little focus on another
important aspect of lexicon learning: that the goal of
communication is to transmit information. As such, it is
little use for the agents to have a coherent lexicon if they

cannot distinguish between meanings that are useful for
task-accomplishing behavior or survival. For instance,
a degenerate case of enforcing coherence in the lexicon
is simply to label every meaning with the same symbol;
such a lexicon would be of no use in trying to transfer
information from one agent to another.

Much of the original work in lexicon learning asked the
question, “Under what circumstances will agents evolve
an explicit signaling system?” See, for instance, the work
of (Werner and Dyer, 1992; MacLennan, 1992). More re-
cently, a number of approaches have looked at how lexi-
con formation might occur as a result of agent’s imitat-
ing each other’s symbol usages (e.g., Steels, 1998; Batali,
1998). These approaches have focused on the contribu-
tion of imitation to the learning process, and the dynam-
ics of lexicon formation. However, they do not directly
address the problem of learning an informative lexicon,
but instead typically have “hidden” features that help
create informative symbol usages. These safeguards are
neither theoretically motivated nor do they have any per-
formance guarantees.

In contrast, we are interested in the use of lexicon
learning among robots to enable them to communicate
with each other about a task (Fleischer, 2004). In the
course of this work, an imitative lexicon learning algo-
rithm was implemented and found to be susceptible to
the degenerate case of labeling every meaning with the
same symbol. The reason for this problem was two-fold:
(1) the robot data is noisy and does not lend itself to
easy extraction of meanings, and (2) most imitative lex-
icon learning algorithms contain some hidden features
that ensure the creation of an informative symbol usage,
whereas the algorithm implemented above did not. This
result exposed an aspect of imitative symbol learning
that is not explicitly addressed in the literature: imi-
tation cannot guarantee an informative lexicon in the
absence of other mechanisms.

This paper addresses the problem by calling for re-
search into lexicon learning methods that explicitly ad-
dress the problem of learning informative symbol usages,
and by investigating one such algorithm.

Section two of this paper argues that there are bene-
fits to be had by making informative symbol usages an



explicit goal of the lexicon learning system. First, a def-
inition of the symbol usage informativeness is presented,
along reasons why an informative symbol usage is desir-
able for a set of communicating agents. Next, two of the
more known examples of imitation-based lexicon learn-
ing algorithms from the literature are presented, and
it’s illustrates how they contain implicit or hidden safe-
guards that cause these algorithms to create informative
symbol usage.

In order to show the potential problems of imitation
learning, section three presents an imitation-based sym-
bol learning algorithm that lacks the implicit safeguards
of the approaches in the literature. Experiments demon-
strate how it performs in both simulated lexicon learn-
ing tasks and also in a location-naming task on a mobile
robot. The simulation results give an indication of both
ideal performance and what types of meaning confusion
will most adversely affect the information of the learned
symbol usages. The robot lexicon learning task is an
example of what can go wrong with imitation learning
when there is a lot of perceptual noise.

Section four makes a first stab at a learning sys-
tem that explicitly seeks more informative symbol us-
ages. The learning system is based on negotiation; when
agents disagree about how to label a meaning, they enter
negotiations where each proposes a labeling that will in-
crease its estimate of symbol usage information entropy.
Agents only accept a proposal that does not decrease
their own estimates of information entropy. Simulation
results show that this learning system can, in the right
circumstances, produce more informative symbol usages
than the imitation algorithm. In terms of absolute per-
formance, however, imitation can always be tuned to
produce more informative symbol usages. An analysis
of this problem is offered.

The conclusions section ties together the strands of ar-
gument about why information maximization should be
an explicit goal of lexicon learning. Finally, future direc-
tions for producing information maximizing algorithms
are discussed.

2. Background

2.1 Measuring information

Information theory provides tools useful both for evalu-
ating how informative a set of symbol usages is, and also
for providing a measure which can be maximized explic-
itly during learning to ensure that the symbol usages are
informative. The concepts of information theory were in-
troduced by Shannon (1948), and a standard textbook
in the area is (Cover and Thomas, 1991).

Formally, an information channel is a random variable
X, that can take a discrete and finite set of values (or
signals) X = {x1, x2, . . . xn} that occur with probabil-
ities p(x1), . . . , p(xn), such that p(xi) ≥ 0 ∀i ∈ X and

∑n

i=1
p(Xi) = 1, forming the discrete distribution P (X).

Then the entropy, H, of the channel is defined as

H(X) = −
n

∑

i=1

p(xi) log2 p(xi).

which is, in fact, the average information content of the
channel. Note that the maximum of this function occurs
when all the signals are equiprobable. That is, the max-
imum information content of communication will take
place when all the symbols are equally likely to occur.
Also, information entropy will be zero when the prob-
ability of a single symbol is one, and all the others are
zero. This is the degenerate case where every meaning
is labeled by the same symbol.
Mutual information (also called information gain) is

the amount of information that we gain about one ran-
dom variable if we know the value of another. It can be
defined as,

H(X;Y ) = H(X) +H(Y )−H(X,Y ).

Mutual information is a useful measure of the infor-
mation content of the symbol usage between two agents.
In a test set of meanings, each agent generates a set of
symbols to describe those meanings. Each agent’s de-
scription of the test set is a random variable, which we’ll
call Sa for the symbols used by agent a, and Sb for agent
b. The mutual information between the symbol usages
is then H(Sa;Sb). Note that H(Sa;Sb) can never be
greater than min (H(Sa), H(Sb)). Also, H(Sa;Sb) = 0
only if the two variables are independent, and is equal
to the maximum only if the two variables are maximally
correlated. So this measure has a maximum and mini-
mum, and progresses in a fashion that is natural to the
quality we want to describe.
The mutual information between symbol usages in a

test set of meanings is used in this paper as a means to
evaluate how informative the symbol usages learned by
the agents are. However, this quantity requires knowl-
edge of the output of all the agents on the entire set of
inputs. When an agent is employing a learning algorithm
that explicitly tries to maximize information it will be
unlikely to have access to such global performance knowl-
edge. Instead, the agent can assume that by increasing
the information entropy of its own symbol usages, some-
thing which is much easier to estimate, that it will in-
crease the mutual information between symbol usages.
This method is discussed further in section 4.1, which
presents the explicit algorithm.

2.2 Why maximize information?

The research in lexicon learning to date has predomi-
nantly focused on the methods by which agents learn
and the properties of learning such lexicons. Much work
has also taken the approach of trying to understand how



natural language evolved and how humans create mean-
ing. If the purpose of investigating lexicon learning is to
better understand lexicon formation and language evolu-
tion in humans, then explicit information maximization
algorithms should be of interest. It seems unlikely that
imitation is the only mechanism involved in lexicon ac-
quisition and language evolution; there could be specific
features of these systems whose function it is to maxi-
mize the informativeness of the symbols used.
In contrast, one also might be interested in having

agents learn a lexicon in order to accomplish a task.
Agents that work together in a group can increase their
task performance by using some form of communica-
tion (Balch and Arkin, 1994). One can obviously design
and implement a communication system for such agents,
but there are possible benefits to a communication sys-
tem that the agents adapt for their own uses. These are
the same arguments that are normally made for adap-
tive behavior in general: more robustness, the ability
to react to changing circumstances, the ability to tackle
problems that the agents were not explicitly designed to
solve.
If the purpose of lexicon learning is to enable agents

to communicate about objects in the world (e.g., robots
describing navigation routes to each other by naming
landmarks along the route), then it becomes very impor-
tant that the symbols used should be useful for the task.
Defining the usefulness of a symbol system for a task is
a difficult thing, that perhaps can only be assayed on a
case-by-case basis. However, it is impossible for a sym-
bol system to be useful if it is not informative. Take the
example of a lexicon that names landmarks experienced
by mobile robots. If almost every landmark is called by
the same name, then a route description generated using
that lexicon would be of very little navigational use to a
robot trying to follow the route.

When task accomplishment is important, then it
seems obvious that informative symbol usages are an im-
portant goal. When mechanisms for maximizing infor-
mation in the lexicon are implicit, such as in the methods
presented in the next section, then it can be difficult to
ensure that the results will be as desired. The best way
to make sure that symbol usages remain informative is
to make it an explicit goal of the learning system.

2.3 Literature

This section presents two well-known examples of imita-
tive lexicon learners that do not explicitly try to main-
tain the information content of symbol usages. How-
ever, since both are able to produce lexicons with high
mutual information they must have some implicit mech-
anisms that keep them from devolving to the solution of
naming all meanings with the same symbol. The follow-
ing paragraphs illustrate how these hidden mechanisms
work.

Steels (1996) introduced naming games as a method
of lexicon learning. A naming game is a game in that
sense that agents try to “win” by successfully commu-
nicating with each other. If both agents understand a
symbol to represent the same meaning then a naming
game is successful. Losses, i.e., communication failures
where the agents do not use a symbol to describe the
same meaning, give the agents data they use to do bet-
ter at the game in the future. Steels and colleagues have
introduced a variety of “language games” that perform
lexicon learning1. Although the language games have
different algorithms, they can all be described by the
same general framework:

Two agents are selected at random from the pop-
ulation. One agent is randomly selected as the
speaker, and the other as the listener. Both
agents are presented with a context containing
several objects. The speaker selects a topic ob-
ject from the context, and produces an utterance
to describe it. The speaker chooses the most “suc-
cessful” symbol in its repertoire to represent the
topic object, or makes one up if it doesn’t already
know one for that object. Both agents increment
counters of symbol usage and naming game suc-
cess, whose values they use to determine which
symbol to generate when speaking.

Note that the naming game is imitative because the
agents use their estimations of symbol occurrence and
success rate to decide which symbols to use. That is, by
observing the usage and communicative success of the
rest of the population, they determine their own symbol
usage.

One particularly important element of the language
games, for the purposes of this discussion, is that the al-
gorithm makes up a new word (i.e., symbol) randomly to
describe any new object. The likelihood of the popula-
tion as a whole using the same symbol to describe mul-
tiple meanings (and thereby loosing information in its
symbol usages) is directly related to how an agent ran-
domly chooses a new word to describe an object. Imag-
ine two agents, each encountering different objects for
the first time. They now (separately) make up words
for those objects and use them in naming games with
other agents. If both agents are fairly likely to make up
the same word, then its possible for the population as
a whole to adopt that word to represent two different,
and perfectly distinguishable, objects. Unfortunately,
the mechanism used in the naming games to make up
new words is never completely explained in the litera-
ture, so it the true probability of this circumstance oc-
curring is not known.

1The naming game, the observational game, the guessing game,
the selfish game. These are explained and reviewed in (Vogt, 2000)
and (Steels, 1998).



Note that if selection is equiprobable and the number
of words in the possible set is orders of magnitude greater
than the number of objects multiplied by the number of
agents, then there is very little chance of symbol usages
having low information. This can be seen from the fol-
lowing argument. (1) Since agents learn from the symbol
production of the rest of the group, it is not possible for
the final symbol assignment for a meaning to be anything
other than one of the symbols made up by an agent first
encountering that meaning. (2) It is therefore unlikely
that one symbol will be used for multiple meanings if
there are many more symbols than possible occurrences
of an agent first experiencing a meaning. Yet some of
the naming games reported in the literature do have
symbol usages where more than one meaning generates
the same symbol (see the “specificity” measurements in
Vogt, 2000). This naturally raises the question of how
tunable this information loss is, and whether it can ef-
fectively be prevented if it is not wanted.

Another well-known approach to imitative lexicon
learning is that presented by Batali (1998). In this sim-
ulation, the agents learn a lexicon where the symbols are
composed of morphological components, in the same way
that words are built out of letters. The agents themselves
are recurrent neural networks that, when presented with
a meaning vector as input, produce strings of symbols
as outputs. The strings are truncated at 20 characters
(even if the recurrent network would produce more), and
each character can be one of four letters.

Learning is directly imitative. An agent acting as the
hearer trains its network to produce the same meaning
encoded by the speaker. The same network that inter-
prets symbols to meanings is also used to send symbols
when the agent acts as speaker, so training as the hearer
affects production as speaker.

Note that the set of potential strings (the functional
equivalent of symbols) is of size 420. Since there are only
100 possible meanings we are once again confronted with
a case where it is very unlikely that random initializa-
tions would produce the same symbol being assigned to
different meanings. However, it is more complex than
the case presented by the naming games of Steels. The
associations between meaning and symbol are produced
by a recurrent network. Therefore, the relationship be-
tween input and output is much more complex than the
case of simply counting occurrence and success rates.
Over the course of training, it seems inevitable that the
network weights will become modified so that the agent
will produce symbols that it neither originally produced
after initialization nor was trained to produce. In this
case, the question of how to control the information con-
tent of symbol usage has no obvious solution.

3. Imitation learning

This section demonstrates that an imitation based algo-
rithm without the hidden safeguards can develop very
uninformative symbol usages. This provides a proof of
the dangers of relying only on imitation, which motivates
the development of mechanisms that explicitly maximize
information in the lexicon.

3.1 Algorithm

At this point it is important to distinguish between a
meaning and a perception. In this paper, a meaning is
a category or object that has an identity independent of
agent perceptions. That is, it is a real-world location or
it is an abstract category in a simulation that the agents
are trying to communicate about. In some of the exper-
iments, agents will have different perceptions of these
meanings. For instance, they may be unable to differen-
tiate between two meanings. In the robot experiments
the agents self-organize categorizations, thereby creat-
ing arbitrary meanings from unlabeled data that will be
different from agent to agent.

The lexicon learning system is based on each agent
maintaining estimates of the conditional probability that
it should generate a particular symbol, given that it has
perceived a particular meaning. When an agent is re-
quired to generate a symbol to represent a perception,
it generates the maximum likelihood symbol (the sym-
bol with the highest conditional probability given the
perception experienced).

The set of possible perceptions and symbols is fixed
before lexicon learning occurs. For instance, in a simu-
lation there may be ten meanings to be learned. These
meanings will not change identity or grow in number
during the simulation. Likewise, the agents might be
given five arbitrary symbols to label these meanings at
the beginning of lexicon learning, and the symbols will
not change identity or grow in number during the learn-
ing process.

The conditional probabilities are stored in a single-
layer neural network, with no bias input, using the soft-
max activation function. The input to the neural net-
work is a 1-of-n encoded vector of the current meaning
(as perceived by the agent — recall that agents may
have different perceptual abilities). The activations of
the output nodes are the conditional probabilities given
the perception on the input nodes. Note that a single-
layer network is sufficiently powerful to encode the prob-
abilities because the inputs are mutually exclusive and
therefore orthogonal in the input space. The weights of
every agent’s neural network are initialized using a zero-
mean normal distribution.

The agents then proceed to learn a lexicon by imitat-
ing each other’s usage. The total training data is par-
titioned into training, validation, and test sets of equal



no error disagreements 0 (0)
H(Ca;Cb) 3.29 (0.01)
H(Sb;Sb) 2.55 (0.05)
unique symbols 6.57 (0.20)

systematic error disagreements 28.2 (1.8)
H(Ca;Cb) 3.26 (0.01)
H(Sa;Sb) 2.21 (0.05)
unique symbols 6.53 (0.18)

random error disagreements 18.2 (0.7)
H(Ca;Cb) 2.53 (0.04)
H(Sa;Sb) 1.93 (0.04)
unique symbols 6.40 (0.15)

Table 1: The mean (std. err.) performance over 30 trials

for various perceptual error models in the simulation experi-

ments. See section 3.1 for an explanation of the models and

the measurements. The results are over a test set of 200

randomly drawn meanings.

sizes (300 each for simulation, 640 each for the robot
data). The training set is re-ordered randomly at the
beginning of every epoch. Training occurs on-line ac-
cording to the following method:

Each agent perceives a meaning in the training
set according to its abilities, and encodes it as an
input vector for it’s neural network. Each agent
then generates the symbol that has the maximum
likelihood on the outputs, and transmits it to the
other agent. When an agent receives the other
one’s output it turns the symbol into a 1-of-n
encoded vector which is used as a training pat-
tern for its own neural network. The network
is trained using on-line gradient descent on the
cross-entropy error function, with a learning rate
of 0.01 and no momentum.

At the end of an epoch of training the agents are eval-
uated on a validation set. An error is counted for every
meaning in the validation set which the agents generate
two different symbols to describe. Training continues
until a maximum number of epochs is reached (1000 for
simulation, 10000 for robot experiments), validation er-
ror is zero, or validation error has not decreased for a
certain number of epochs (500 in both cases).

3.2 Simulation experiment

In this simulation the agents were given ten symbols
to label ten meanings. These ten meanings occur with
equal frequency, but sometimes one or both of the agents
may systematically or randomly confuse meanings with
each other. In other words, the agents may not perceive
the same meaning, and therefore the imitative symbol
learning they perform will be subject to noise in the tar-
get values.

There are two ways the agents can perceive the ten
meanings:

No error Both agents perceive perfectly.

Systematic error Agent a perceives meaning #1 as
meaning #2 50% of the time and agent b perceives
meaning #3 as meaning #2 50% of the time.

Random error Agent a confuses all meanings with p =
0.1. When confused it picks any other of the nine
meanings with uniform probability. Agent b perceives
perfectly.

In both systematic and random error models roughly
10% of meanings will be confused by one or another of
the agents. Thirty simulations were run of each model,
with different randomly initialized agents in each simu-
lation.
The results of these simulations are summarized in ta-

ble 1. Four different measures of agent performance are
presented here, giving information on how much agree-
ment there is on symbol usage, on how much information
it is possible to transmit, how much information was
transmitted, and how many symbols were used. The
number of disagreements is the number of times the
agents produced different symbols for the 300 randomly
drawn meanings (w/ uniform probability) in the test set.
H(Ca;Cb) is the mutual information between the agent’s
perceptions of the meanings, i.e., the meanings with the
perceptual error model applied. This is the maximum
possible value that the symbol usage mutual informa-
tion, H(Sa;Sb) could ever hope to achieve. Finally, the
number of unique symbols in the test set is also recorded,
telling us how many of the ten possible symbols were
used in the test set.
The empirical results show us that the imitative learn-

ing algorithm will produce a symbol usage that con-
tains on average 77% of the information contained in
the meanings when the number of symbols equals the
number of meaning. It should be noted this loss of in-
formation is a “best-case” scenario. If the meanings are
not equiprobable then it can only become worse.
Looking at the effect of the perceptual error shows

firstly that both sorts of errors significantly reduce the
amount of information in the learned symbol usages.
What is interesting to note, however, is that in the case of
the random error, the loss in H(Sa;Sb) probably comes
directly from the loss in H(Ca;Cb) from the perceptual
errors. In the random error model the symbol usage
mutual information is 76% of the perception mutual in-
formation, a close match to the 77% found with perfect
perceptions. However, systematic errors seems to cause a
loss of symbol mutual information that is not accounted
for by the corresponding loss of perception mutual infor-
mation. In the systematic error experiments the symbol
usage obtains only 68% of the mutual information of the
perceptions.



measurement mean std err
disagreement rate 26.3% 0.4%
H(Ca;Cb) 2.20 0.02
H(Sb;Sb) 1.38 0.41
unique symbols 3.13 0.12

Table 2: Test set results for the robot landmark lexicon learn-

ing experiment (30 trials, 20 symbol lexicon), where each

agent uses its own 20 node SOM to categorize landmarks.

See section 3.3 for an explanation the setup.

These results tell us three important things. First, we
shouldn’t expect an imitative system without safeguards
to learn symbol usages with as much mutual information
as exist in the agent’s perceptions. Secondly, any sort of
perceptual confusion will only aggravate this problem.
Thirdly, for a given level of loss in perceptual ability,
a systematic error would seem to cause a greater loss
of mutual information as a percentage of the possible
information in the meanings. Other experiments that are
not reported here with different numbers of meanings,
symbols, and noise levels all support these conclusions.

3.3 Robot experiment

This section presents an experiment using the imitative
symbol learning algorithm to try and generate a lexicon
for use in a robotic navigation task. The lexicon consists
of names for landmark types (in a human sense, some-
thing akin to “T-junction” rather than a name for one
specific location like “T-junction #42”). The interested
reader can find further details on both landmark lexicon
learning and route description and navigation for this
task in (Fleischer, 2004).
In fact, this experiment is originally responsible for our

investigation of the topic of explicit information maxi-
mization in lexicon learning. The low information sym-
bol usages learnt by the imitation algorithm spurred the
need to develop a better method of lexicon learning.
In this experiment, two agents with different random

initializations are trained on the perceptions of a sin-
gle physical robot. Therefore, there is never any doubt
about what the “meaning” is — both agents have the
same raw sensor input. However, the sensor input is not
a meaning in and of itself, but rather a high-dimensional,
noisy, representation of the local area around the robot2.
Each agent produces a fixed set of meanings for itself by
training a Self-Organizing Map (SOM) (Kohonen, 1993)
on a batch of representative landmark perceptions. The
agents then categorize raw sensor data during lexicon
learning by using the identity of the highest activation
node of the map for a given sensory input as the agent’s

2In actuality, a 20x20 occupancy grid updated with the data
of the last 10 inches of travel, covering an area of 100x100 inches
around the robot.

perception of that landmark. In other words, each agent
will have similar but not identical perceptions of land-
marks. Thus, we can expect both systematic and ran-
dom perceptual error during lexicon learning.

The agents trained 20 node (4x5 toroidal topology)
SOM networks on robot data representing 200 meters of
travel in three different office corridors. They then used a
a different 110 meters of data, taken from a subset of the
same corridors, to train their lexicons. The lexicon learn-
ing data was randomly partitioned into training (1/2),
test (1/4), and validation (1/4) sets. Training continued
to a maximum of 10,000 epochs, but otherwise learning
parameters are identical to those of the simulation. The
agents were given a 20 symbol lexicon to learn.

Lexicon learning was repeated according to this setup
30 times with different agent initializations and different
training data splits each time. The results can be seen
in table 2, and they are quite disappointing. The agents
produced a symbol usage with only 62% of the possible
mutual information3. In light of the simulation results
presented in section 3.2, it is clear that the agents must
be suffering from extensive perceptual noise. This is, in
fact, the case. By looking at any given pair of SOMs
and sensory data sets, clear cases of systematic errors
can easily be found. Also, when the two agents are given
identical SOMs (i.e., they now have identical perceptions
of the landmarks), they can learn to produce the normal
(for the case of equal numbers of symbols and meanings)
76% of the possible mutual information.

These disappointing results highlight the importance
of maintaining mutual information in the symbol usages,
if the goal of lexicon learning is to produce a communi-
cation system that is useful for transmitting information
between agents.

4. Negotiation learning

This section describes experiments using an algorithm
that attempts to explicitly increase the mutual informa-
tion of symbol usages. The agents do this by negotiating
with each other about what symbol they should use for
a particular meaning.

The motivation of using negotiation comes from the
desire to produce explicit maximization of symbol infor-
mativeness without trying to compute things the agent
will not typically have access to, such as the probability
of a particular perception occurring (difficult in differ-
ent environments) or symbol usage probabilities of all
agents in the communication group (difficult when there
are many agents). Although the scheme is not moti-
vated by a particular cognitive or psychological model,
it seems that explicit negotiation does take place when

3Note that information entropy is a logarithmic scale, so seem-
ingly small percentages of change can be very important in terms
of system operation. In fact, the robots were essentially unable to
navigate using this type of landmark description lexicon.



adult humans play games requiring the development of
coordinated descriptions of spatial events (Garrod and
Doherty, 1994), although in their case negotiation seems
to function as a method of selecting which of several
possible alternative description schemes to use in a par-
ticular game, rather than which scheme to use “for all
time” as we’re investigating here.

4.1 Algorithm

The negotiating agents are substantially similar to the
imitation agents described in section 3.1. They generate
symbols using the same type of neural network, and are
trained using the same parameters.
However, a negotiating agent also maintains an esti-

mate of the occurrence rate of symbols. It does this by
counting the number of times it uses each symbol dur-
ing a single training epoch. Before training begins each
agent runs through the training set of meanings by itself
in order to generate an initial estimate of the occurrence
rates. At the end of an epoch, the agent replaces its
current estimated symbol probabilities with the occur-
rence rates from the last epoch. Let us denote agent a’s
current estimate of the occurrence rate of symbol s as
Pa(s). Note that
These probability estimates are used by the agent to

try and maximize the information entropy of its own
symbol usage, which in turn makes it possible for the mu-
tual information of symbol usages to become higher. En-
tropy is at a maximum when the symbols are equiproba-
ble; equiprobable symbol use is therefore the direct goal
of the negotiating agent.
The negotiation protocol is as follows:

1. Each agent, {a, b}, receives the meaning, perceives
it according to its ability, and produces a symbol,
{sa, sb} using the method described in section 3.1.

2. If sa = sb then train the networks using that symbol
and return to step 1.

3. Otherwise each agent makes an ordered list of all
symbols that occur equally or less often (according
to its estimation) than the symbol it produced in
step 1. The least used symbols are first in the list.

4. Each agent proposes a symbol (agent a proposes
sprop

a ) from the top of its list and sends this symbol
to the other agent.

5. Each agent calculates its willingness to accept the
other’s proposal. For agent a this value is

ra = log
Pa(sa)

Pa(s
prop
b )

6. If at least one of the signals is non-negative, then
the agent with the largest willingness (r) accepts the

other agent’s proposal. In case of a tie, a winner is
chosen randomly. Each agent trains its network using
the winning proposal as the target. Return to step
1.

7. Otherwise, each agent removes the symbol from the
top of its list. If both agent’s lists are now empty
they return to step 1. If at least one agent still has
proposals left to make they return to step 4.

Obviously, coherent symbol assignment (where the
agents agree on the symbols to use for all meanings)
is a fixed point of this protocol. It’s also the case that
it can be shown that this protocol will always produce a
coherent symbol assignment provided that (1) the agents
perceive the meanings in exactly the same way (no dis-
agreement from perceptual confusion of meanings), and
(2) that the learning system, in this case the neural net-
work, is capable of making the assignments proposed
by the protocol (no disagreement because the meaning-
symbol mapping dictated by the algorithm cannot be
learned).

4.1.1 Proof of convergence

Theorem: Given a set of input patterns, and a pair of
agents with different symbol assignments for those
patterns, there is at least one pattern for which a
symbol assignment is accepted and agreed upon by
the agents.

Proof by contradiction: Assume that there are two
different symbol assignments such that no symbol
proposal made by one of the agents is accepted by
the other. Consider the set of symbols that agent a

uses more than any other symbols,

S0

a = {s |Pa(s) ≥ Pa(s
′)∀s′ ∈ S},

where S is the set of all symbols. For any pattern
which agent a assigns to a symbol in this set, any
proposed symbol would be accepted by a. Thus, since
we assume no proposal is accepted, the two agents
must already agree on the patterns assigned to these
symbols. Now consider the symbols used by agent a

which are used more than any other symbols except
those in S0

a,

S1

a = {s ∈ S \ S0

a |Pa(s) ≥ Pa(s
′)∀s′ ∈ S \ S0

a}.

Note that agent b cannot propose a symbol in S0
a for

any pattern that a assigns to a symbol in S1
a because

a and b agree on those symbols and therefore must
have the same estimate of occurrence rate. So a will
accept any symbol proposed by b, and since we are
assuming that no proposal will be accepted, it must
be the case that for all patterns which a assigns to a
symbol in S1

a, b must assign the same pattern to the



same symbol. Likewise, we build sets S2
a, S3

a, . . . Si
a

(where i is the number of such sub-sets in S) and
show that the two agents must agree on the symbol-
pattern mappings in those sets. The same argument
can be used from agent b’s standpoint. But then we
have shown that the agents agree on symbols for all
patterns, and have contradicted the assumption that
they have not.

Corollary: If the learning systems can learn to assign
any symbol to any pattern without affecting the map-
pings from the other patterns, this protocol will con-
verge to a coherent set of symbol assignments.

The single-layer neural network in question will pro-
duce symbol usage coherence because the input patterns
are orthogonal and there is no bias term in the outputs
to link the symbol mappings of the patterns.
However, this algorithm does not converge to the opti-

mal (maximum possible entropy) solution. This happens
for two reasons. First of all, agreement is a fixed point
in the system. So as soon as the agents agree on how
to label a particular meaning, they will no longer be
able to change that, even if some other assignment they
make later in learning would mean that mutual infor-
mation would be increased by using a different symbol.
Secondly, an agent is not actually increasing the infor-
mation entropy of its symbol usage, but is employing a
heuristic approximation to direct maximization. The ac-
ceptance criteria will only increase information of symbol
usage if the change in symbol occurrence rates after the
new assignment is small and of equal size for all symbols.
There are many times when this is might not be the case,
e.g. if the agent assigns a new symbol to a meaning that
occurs 70% of the time.

4.2 Simulation experiment

The simulations presented here are identical in proce-
dure to the no noise simulations presented in section 3.2.
They demonstrate that the negotiation algorithm can

outperform the imitation algorithm it was designed to
replace in certain circumstances, but that the imitation
algorithm can be tuned to produce a more informative
lexicon more reliably.
In this experiment 5, 10, 15, and 20 symbols were

used by the agents to label the same twenty meanings.
Thirty trials were made of each using different random
initial network weights but the same no-noise data set.
Figure 1 shows the mean values and three standard error
bars of these experiments. It can be seen that when only
five symbols are available, the negotiation algorithm is
a clear winner. However, imitation is as good as nego-
tiation when there are as many symbols as meanings.
Once there are more symbols than meanings imitation
becomes the clear winner. This is an unexpected result,
as the negotiation algorithm was designed to explicitly

maximize mutual information in the symbol usages. If
negotiation works at all, one would expect it to work in
all cases.
A clue to why this occurs can be seen by looking at

the standard error bars; for the ten symbol case there is
an order of magnitude more standard error in the dis-
tribution of negotiation scores than for the five symbol
case ( 0.10 vs. 0.02 bits). In fact, for the ten symbol
case four of the 30 negotiation trials produce solutions
of more than 3.0 bits of mutual information (maximum
possible is H(Ca;Cb) = 3.3 bits). On the other hand,
there are also three trials of with less than 1.5 bits of
mutual information. In comparison, the mutual infor-
mation values produced by the imitation algorithm all
fall between 2.0 and 3.0 bits. So, in fact, negotiation can
actually provide a more informative lexicon even in the
ten symbol case, but imitation provides a higher average
score.
This variance can be attributed to the simple fact

that the negotiation algorithm cannot backtrack and re-
assign a new symbol after the agents agree how to label
a meaning. Once a particular meaning is assigned to
an under-used symbol it may, in fact, cause that symbol
to become heavily over-used. If there are many fewer
symbols than meanings, there are more chances to rec-
tify any mistakes made in smoothing out the relative
occurrence rates of symbols. So, essentially, negotiation
degrades less quickly with decreasing lexicon size than
imitation only because there are an increased number of
chances to fix mistakes made in symbol assignment.
The clear implication is that the negotiation algorithm

proposed is not going to be good enough. Imitation will
always produce better symbol mutual information on av-
erage as long as it’s given enough symbols in the lexicon.
To get better performance in tasks with difficult percep-
tion, like the landmark labeling task presented in sec-
tion 3.3, it will be necessary to design an algorithm that
can either (1) take into account the relative frequency of
perceptions as well as that of symbol, or (2) can re-assign
symbols even for previously agreed upon meanings.

5. Conclusions and future work

This paper shows that imitation alone is insufficient to
develop lexicons useful for a task. Experiments with
a simple imitation learning algorithm show that sym-
bol usages will have less average information than is
present in the agents’ perceptions. The same simulations
showed that when perceptual noise is present this effect
becomes much worse. An example of lexicon learning on
a robotic task presented an extreme case of information
loss (only 3 symbols, 1.4 bits mutual information, out of
20 meanings) that motivated the development of a better
method.
This paper argues that lexicon learning algorithms

should explicitly maximize the mutual information be-



4 6 8 10 12 14 16 18 20 22
1.5

2

2.5

3

3.5

4

4.5

number of symbols in lexicon

sy
m

bo
l m

ut
ua

l i
nf

or
m

at
io

n 
(b

its
)

Comparison of algorithms, 20 meanings, 30 trials

ideal      
negotiation
imitation  

Figure 1: Figure showing how H(Sa;Sb) changes as a func-

tion of lexicon size for both imitation and negotiation algo-

rithms. Error bars show three standard errors around the

mean value. The ideal line is the mutual information of an

equiprobable symbol distribution of the given lexicon size.

Plainly negotiation cannot offer better mean mutual infor-

mation than imitation.

tween symbol usages to prevent this from occurring. Al-
though many lexicon learning algorithms in the litera-
ture effectively do this, they do so through hidden or
implicate mechanisms, like the example literature ana-
lyzed in section 2.3. Because these mechanisms are not
explicit they can be difficult to control or have unfore-
seen consequences in different lexicon learning tasks.

A first step was made toward a useful, information-
maximizing algorithm with the proposal of the negoti-
ation algorithm. Unfortunately, the algorithm does not
produce better mutual information levels than imitation
except in cases where the number of symbols is much
less than the number of meanings. This occurs because
the algorithm is heuristically approximating the maxi-
mization of symbol usage mutual information. Once the
algorithm has made a mistake due to that approxima-
tion, it cannot re-negotiate a new symbol assignment for
that meaning.

The way ahead is therefore clear. A new algorithm
should either make a better approximation to mutual
information maximization, or it should be able to re-
negotiate meaning-symbol assignments that are already
agreed upon. The difficulty with the later approach is
to be able to guarantee that a lexicon will ever become
stable. Therefore, we believe that the former is the best
avenue for future investigation. For instance, a new way
to calculate an agent’s willingness to accept a proposal
that uses an estimate of the occurrence rate of the mean-
ings rather than just the occurrence rate of the symbols

has the potential to be useful.
Regardless of the method used to achieve it, lexicon

learning algorithms would benefit from making informa-
tion maximization an explicit aim of learning. This ap-
proach will hopefully enable the development of mini-
mum performance guarantees and systems which pro-
duce higher symbol usage mutual information. In the
long term, such research might also shed some light on
mechanisms humans and other animals employ to ensure
that their symbol usages are informative.
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