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When language breaks into pieces3

A conflict between communication through isolated
signals and language
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Abstract9

Here, we study a communication model where signals associate to stimuli. The model assumes that signals follow Zipf’s law and
the exponent of the law depends on a balance between maximizing the information transfer and saving the cost of signal use. We
study the effect of tuning that balance on the structure of signal–stimulus associations. The model starts from two recent results.
First, the exponent grows as the weight of information transfer increases. Second, a rudimentary form of language is obtained when
the network of signal–stimulus associations is almost connected. Here, we show the existence of a sudden destruction of language
once a critical balance is crossed. The model shows that maximizing the information transfer through isolated signals and language
are in conflict. The model proposes a strong reason for not finding large exponents in complex communication systems: language
is in danger. Besides, the findings suggest that human words may need to be ambiguous to keep language alive. Interestingly, the
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odel predicts that large exponents should be associated to decreased synaptic density. It is not surprising that the large
orrespond to schizophrenic patients since, according to the spirit of Feinberg’s hypothesis, i.e. decreased synaptic dens
o schizophrenia. Our findings suggest that the exponent of Zipf’s law is intimately related to language and that it could b
etect anomalous structure and organization of the brain.
2005 Published by Elsevier Ireland Ltd.
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. Introduction

The XX century witnessed the birth and development
f information theory(Shannon, 1948; Ash, 1965), a

heoretical framework devoted to the study of commu-
ication systems. Recently, various new models have
een introduced to explain the organization of word fre-
uencies in human language using an information the-
ry approach(Ferrer i Cancho and Solé, 2003; Ferrer i
ancho, 2005a,d). Word frequencies in human language

∗ Tel.: +39 0644 55705/52045x46–50; fax: +39 0644 63158.
E-mail address:ramon.ferrericancho@gmail.com

obey a universal regularity, the so-called Zipf’s law(Zipf,
1972). If P(f ) is the proportion of words whose fr
quency isf in a text, we obtain

P(f ) ∼ f−β, (1)

where we typically haveβ ≈ 2. Eq.(1) is a way of defin
ing Zipf’s law. Zipf’s law is a regularity that appears
many contexts(Li, 2002; Newman, 2005). The ubiquity
of Zipf’s law is the origin of many misunderstandin
First, the fact that Zipf’s law is everywhere(Li, 2002)
does not imply that Zipf’s law is the only frequency d
tribution, not even the most common one. A recent c
pilation of Zipf’s law contains hundreds of distributio
(Wimmer and Altmann, 1999)among which one is th

303-2647/$ – see front matter © 2005 Published by Elsevier Ireland Ltd.
oi:10.1016/j.biosystems.2005.12.001
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power distribution that is typically assumed for Zipf’s47

law. Second, the fact that Zipf’s law allows many ex-48

planations does not mean that all of them are valid in a49

specific context. The claims against the meaningfulness50

of Zipf’s law usually neglect the exact value of the expo-51

nent. For instance, it has been claimed by many authors52

(Miller, 1957; Li, 1992; Mandelbrot, 1966; Nowak et53

al., 2000; Nowak, 2000b,a; Wolfram, 2002)that Zipf’s54

law is not a meaningful statistical regularity in human55

language because it can be explained by an intermittent56

silence process (a random sequences of letters including57

blanks that act as word delimiters). That arguments for-58

gets that the intermittent silence process can only cover59

the exponent within the interval (1, 2)(Ferrer i Cancho60

and Servedio, 2005)while real exponents lay in the ap-61

proximate interval [1.6, 2.4](Ferrer i Cancho, 2005c).62

The similar mistake is made when claiming that Zipf’s63

law in dolphins whistles may have a trivial explanation64

because an intermittent silence process would reproduce65

it (Suzuki et al., 2005), since the range of exponents that66

intermittent silence covers is only a fraction of the range67

of exponents in dolphin whistle data(McCowan et al.,68

1999, 2002, 2005). Besides neglecting the value of the69

exponent, claims against the meaningfulness of Zipf’s70

law in human language do not consider the fact that in-71

termittent silence generates an uncorrelated sequence of72

words while the presence of long-distance correlations73

among text elements are widely known(Montemurro74

and Pury, 2001; Podgorelec et al., 2000; Ebeling et al.,75

1995; Ebeling and P̈oschel, 1994; Schenkel et al., 1993;76
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2. A general information theory framework 98

The recent information theory models mentioned at99

the beginning of the article assume a system where sig-100

nals from a setScommunicate about stimuli from a set101

R. Signals are equivalent to words and stimuli are the ba-102

sic ingredients of word meaning. For instance, the word103

‘dog’ is associated to visual stimuli (e.g. the shape of104

a dog), auditive stimuli (e.g. barking), etc. All these105

stimuli are elicited by the word ‘dog’(Pulverm̈uller, 106

2003). Stimuli are sometimes called objects or events107

in the origins of language literature (e.g.Nowak, 2000a; 108

Ferrer i Cancho et al., 2005). Those models assume a109

set ofn signalsS = {s1, . . . , si, . . . , sn} and a set ofm 110

stimuliR = {r1, . . . , rj, . . . , rm}. Signals link to stimuli 111

and connections are defined by ann×m binary matrix 112

A = aij, whereaij = 1, if si andrj are linked andaij = 0 113

otherwise. 114

According to Shannon’s standard theory(Shannon, 115

1948), the goal of communication through isolated sig-116

nals is maximizingI(S,R), the information transfer be- 117

tweenSandR. One of the most important contributions118

of the models above is that Zipf’s law with non-extremal119

exponents can not be explained by maximizingI(S,R) 120

alone, which would lead toβ → ∞. Zipf’s law with ex- 121

ponents close to the typical values are obtained when122

I(S,R) is maximized with a further constraint.H(S), 123

the entropy of signals has been shown to be, as far as124

we know, the best candidate for that constraint(Ferrer i 125

Cancho and Solé, 2003; Ferrer i Cancho, 2005c,d). It is 126
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CFerrer i Cancho and Elvevåg, 2005). Shortly, a certai

range of exponent allows many explanations only if
neglects other properties or predictions of the mode
can be tested. The fact that texts exhibit long distance
relations sweeps away all the intermittent silence b
models as well as Simon’s model and its extensions
Ferrer i Cancho and Servedio (2005)for a review of mod
els based on intermittent silence and Simon’s mod
one has to choose among various models that do no
the problem of assuming uncorrelated sequences
(Balasubrahmanyan and Naranan, 2002)) there are sti
other features that can be used for testing the suita
of the model. The models assuming that word frequ
is an epiphenomenon of word meaning can explain
the growth ofβ (for instance when considering nou
versus words of all parts-of-speech mixed together)
sociated to a greater semantic precision(Ferrer i Cancho
2005b; Ferrer i Cancho et al., 2005). As far as we know
models starting from different assumptions have not
able to explain that. Next section introduces a gener
formation theory framework for studying Zipf’s law a
the general motivation of the article.
BIO 2520 1–12

known in psycholinguistics that the availability a wo
is positively correlated with its frequency. The hig
the frequency of a word, the higher its availability. T
is the so-called word frequency effect(Akmajian et al.
1995). That frequency dependent availability conce
both the speaker and the hearer of a conversation. I
ine we haven words (or signals). When all words a
equally likely, that is, when all words have frequen
1/n, all words are taking the smallest frequency poss
In that case,H(S) = logn, where logn is the maximum
value ofH(S) (Ash, 1965). In contrast, when a wor
has probability one (which implies that the remain
words have probability zero),H(S) = 0, which is the
minimum value ofH(S) (Ash, 1965).H(S) is a measur
of the cost of communication, more precisely, of the
of signal use. The higher the value ofH(S) the highe
the cost (and the lower the word availability). Notice t
computers do not have the same information acces
retrieval constraints of human brains. In general, in
mation is accessed at a very high speed and frequ
effects, when present, are not so heavy as those imp
by the human brain. One can, in general neglect the
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tropy of units in many computer or engineering problems149

but not in real brain word access and retrieval.150

If we restrict ourselves to Shannon’s classic infor-151

mation theory, the goal of a communication system is152

maximizing the function153

Ω0 = I(S,R). (2)154

If we take into consideration the cost of signal use, we155

may write156

Ω = λI(S,R) − (1 − λ)H(S) (3)157

as the function that a natural communication system158

should maximize(Ferrer i Cancho and Solé, 2003; Ferrer159

i Cancho, 2005c,d). λ is a parameter controlling the bal-160

ance between maximizing the information transfer and161

minimizing the cost of signal use. We assumeλ ∈ [0,1].162

We haveΩ0 = Ω whenλ = 1.Ω0 is suitable for com-163

puter or robotic problems whereH(S) can be neglected164

andΩ (with λ < 1/2 (Ferrer i Cancho, 2005c,d)) is spe-165

cially suitable for brain based communication systems.166

Ω seems, a priori, a better choice thanΩ0 for natural167

communication systems.168

We do not claim thatΩ is the best function for nat-169

ural communication systems but there are some results170

supporting its usefulness:171

• MaximizingΩ, Zipf’s law is obtained for a particular172

value ofλ. If one replacesH(S) in Eq. (3) by the the173

effective lexicon size, namely, the number of signals174

with at least one association with stimuli, Zipf’s law is175
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β -196

cho, 2005c). The aim of the present paper is deepen-197

ing our understanding of what may happen whenβ 198

is large and, in particular, what may be happing in199

schizophrenics with thatβ. We will show that language 200

breaks into pieces when the balance between maximiz-201

ing I(S,R) and minimizingH(S) favours too much the 202

former. More precisely, we will show that the network203

of signal-interactions becomes suddenly disconnected204

whenλ takes a critical value in a communication sys-205

tem following Zipf’s law. 206

3. The model 207

Maybe the simplest approach for reproducing Zipf’s208

law for word frequencies is combining two assumptions.209

First, 210

P(k) ∼ k−β, (4) 211

whereP(k) is the probability that a signal hask connec- 212

tions. Second,p(si) ∼ µi, wherep(si) is the probability 213

of usingsi and 214

µi =
m∑
j=1

aij. (5) 215

Eq. (4) andp(si) ∼ µi give Eq.(1). Various models re- 216

cover Zipf’s law when maximizingΩ without the con- 217

straint in Eq.(4) for a critical value ofλ (Ferrer i Cancho 218

and Soĺe, 2003; Ferrer i Cancho, 2005d). 219

Going further, we assume 220

221

222

223

224

er-225

) 226

ons227
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229

230
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not obtained(Ferrer i Cancho and Solé, 2003; Ferre
i Cancho, 2005d). Vocabulary size is an importa
factor for the cost of word use(Köhler, 1987)but
does not seem to be essential for Zipf’s law. We de
H(R|S) as the conditional entropy of stimuli wh
signals are known. Zipf’s law is still reproduced
I(S,R) is replaced by−H(R|S) in the model inFerrer
i Cancho and Solé (2003), but not in the model i
Ferrer i Cancho (2005d).
The exponent of Zipf’s law in single author text sa
fiesβ ∈ [1.6,2.4] (Ferrer i Cancho, 2005c). Maximiz-
ingΩ in a system following Zipf’s law (i.e. searchi
the value ofβmaximizingΩ) can explain the interv
of variation ofβ in human language(Ferrer i Cancho
2005c).

If one considers texts from a single author(Ferrer
ancho and Solé, 2001; Montemurro, 2001)and doe
oncentrate on words of a certain type (e.g. no
Balasubrahmanyan and Naranan, 1996; Ferrer i
ho, 2005a), the extremes of the interval of variation
correspond to schizophrenic patients(Ferrer i Can
BIO 2520 1–12

p(si) = µi

M
, (6)

where

M =
m∑
i=1

µi (7)

is the total amount of links. Assuming Eq.(6) has the
virtue of simplicity and allowing one to explain the int
val of variation ofβ in humans(Ferrer i Cancho, 2005c.
Interestingly, Eq.(6)makes some important assumpti
that need to be made explicit. To that aim, let us start
a general assumption aboutp(si, rj), the joint probability
of si andrj, namely

p(si, rj) = aijp(rj)

ωj
, (8)

wherep(rj) is the probability of thej-th stimulus and

ωj =
n∑
k=1

akj (9)

is the number of links of that stimulus.



TE
D

 P
R

O
O

F

4 Ramon Ferrer i Cancho / BioSystems xxx (2005) xxx–xxx

If we assume235

p(ri) = ωi

M
, (10)236

and replace it in Eqs.(10) and (8), we obtain237

p(si, rj) = aij

M
. (11)238

Replacing Eq.(11) into239

p(si) =
m∑
j=1

p(si, rj) (12)240

we recover Eq.(6). The models inFerrer i Cancho241

(2005c,d)assume Eq.(10) (hence assume Eqs.(6) and242

(11)). In contrast, the model inFerrer i Cancho and Solé243

(2003)assumes thatp(rj) is constant for eachj and con-244

siders a particular case, i.e.p(rj) = 1/m. We may write245

Eq.(3) as246

Ω = −λH(R|S) − (1 − λ)H(S) (13)247

as in the model inFerrer i Cancho and Solé (2003), when248

p(rj) is constant. That is not the case of the present article249

and related models(Ferrer i Cancho, 2005c,d).250

The assumptionp(rj) ∼ ωj means that the proba-251

bility of each stimulus is dictated by the structure of252

signal–stimulus associations. In other words, the proba-253

bility of perceivingp(rj) in the ‘real world’ is neglected.254

One may think that is a very radical assumption but in255

fact, human language is a communication tool allowing256

one to detach from the here and now. Displaced refer-257

ence, our ability to talk about something that is distant258

uage259

e260

,261

lk of262
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ome265
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pects267

tions268

-269

270

eal271

al272

are273

will274

275

uni-276

of277

is278

-279

280

{Q(0), . . . ,Q(k), . . . ,Q(n)}, whereQ(k) is the prob- 281

ability that a stimulus hask links. We are assuming that282

Q(k) is defined fork = 0, whileP(k) does not, because283

we allow unlinked stimuli but do not allow unlinked sig-284

nals. Here, we take the simplest distribution forQ as in 285

Ferrer i Cancho (2005c), that is 286

Q ∼ binomial

( 〈k〉P
m

, n

)
, (14) 287

where〈. . .〉P is the expectation operator overP. Thus, 288

〈k〉P is the mean signal degree. We may define the infor-289

mation theory measures that matter in the calculation of290

Ω assumingp(rj) ∼ ωj (or p(si) ∼ µi) for any pair of 291

P andQ. The calculation ofΩ is straightforward once 292

we know(Ferrer i Cancho, 2005c,d) 293

H(S) = logM −H(R|S) (15) 294

H(R) = logM −H(S|R) (16) 295

whereM = n〈k〉P = m〈k〉Q and 296

H(R|S) = 〈k logk〉P
〈k〉P (17) 297

H(S|R) = 〈k logk〉Q
〈k〉Q . (18) 298

The present model integrates two recent results. The299

first result is thatβ∗, the value ofβmaximizingΩ, grows 300

with λ, till λ = λ∗. Beyond (λ > λ∗), we haveβ → ∞ 301

,

n

sfer
ards

y

U
N

C
O

R
R

E
Cin time or space, is a salient feature of human lang

(Chomsky, 1996; Hockett, 1958). Displaced referenc
is not uniquely human since bees have it(von Frisch
1962). Because of displaced reference, we can ta
‘dogs’ even when there is no ‘dog’ in front of us. It see
wise to assume that talking about present stimulus i
the rule of human language and it seems that in s
cases such as schizophrenia, the detachment fro
here and know could be extreme. Various core as
of schizophrenia such as false believes, hallucina
(Mueser and McGurk, 2004)and various cognitive im
pairments, including attention problems(Elvevåg and
Goldberg, 2000), suggests that interacting with the ‘r
world’ is difficult. In fact, schizophrenics seem optim
candidates forp(rj) ∼ ωj. Schizophrenics speakers
a very special case in the results that will follow. We
return to them in the discussion.

For the present article, we assume a comm
cation system following Zipf’s law by means
Eq. (6). The distribution of links per signal
given byP = {P(1), . . . , P(k), . . . , P(m)} and the dis
tribution of links per stimulus is given byQ =
BIO 2520 1–12

Fig. 1. β∗, the value ofβ maximizingΩ for n = m = 10 (circles)
n = m = 102 (squares),n = m = 103 (diamonds) andn = m = 104

(triangles).β is the exponent of Zipf’s law,Ω is the energy functio
that communication maximizes,n is the number of signals andm is the
number of stimuli.λ tunes the balance between information tran
and cost of signal use. Communication is totally balanced tow
saving the cost of communication whenλ = 0, whereas, it is totall
balanced towards information transfer whenλ = 1.
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Fig. 2. β∗, the value ofβ minimizingH(S) vs.m. H(S) is the signal
entropy andm is the number of stimuli.

(Ferrer i Cancho, 2005c). The behavior ofβ∗ is illus-302

trated inFig. 1. It can be shown thatλ∗ < 1/2 and a303

heuristic argument suggests the existence of a disconti-304

nuity atλ = λ∗ Ferrer i Cancho (2005c). The idea is very305

simple. Eq.(3) can be written as306

Ω = (2λ− 1)λH(S) − λH(S|R) (19)307

knowing thatI(S,R) = H(S) −H(S|R) (Ash, 1965).308

Eq.(19)indicates that maximizingΩminimizesH(S) if309

λ < 1/2, and maximizesH(S) if λ > 1/2.β → ∞mini-310

mizesH(S|R) and maximizesH(S) (recall Eqs.(18) and311

(15)), soβ → ∞ is expected forλ > 1/2. Since maxi-312

mizingΩ for λ = 0 gives a finite value ofβ∗ (Fig. 2), β313

must diverge for 0< λ ≤ 1/2. Notice that maximizing314

Ω for λ = 0 is equivalent to minimizingH(S), the signal315

entropy.316

F h vertex partition. (A) An almost connected network. (B) A disconnected network.

The second result is that a communication system gets317

a rudimentary form of language if the bipartite network318

of signal–stimulus associations is connected or almost319

connected(Ferrer i Cancho et al., 2005). Roughly speak- 320

ing, connectedness is the possibility of starting from a321

signal (or a stimuli) and reaching the remaining sig-322

nals and stimuli of the network crossing the links of323

the network.Fig. 3A and B shown, respectively, an al-324

most connected and a disconnected bipartite networks.325

Almost connectedness means that a wide majority of ver-326

tices (e.g. 90%) lay in the largest connected component327

(Ferrer i Cancho et al., 2005). When exponents are close328

to the real ones, it has been shown that Zipf’s law pro-329

vides almost connectedness under a general set of con-330

ditions(Ferrer i Cancho et al., 2005). Connectedness is 331

intimately related to two essential traits that researchers332

have identified as essential aspects of human language:333

syntax and symbolic reference(Knight et al., 2000). 334

Signal–stimulus associations allow one to define signal–335

signal associations. More importantly, the network of336

signal–stimulus association specifies allowed and for-337

bidden signal–signal associations. Taking the example338

of words, we can explain why the syntactic combination339

of “drive cars” is a sensible combination in the sentence340

“John drives cars” and why it is not the combination341

“drives onions” in the sentence “John drives onions”. The342

combination of ‘drive’ and ‘car’ in “John drives cars” 343

exemplifies the relationship between a verb and its argu-344

ment. As inFerrer i Cancho et al. (2005), we adopt the 345

convention that two signals (or two words)si andsk can 346

be combined syntactically if and only if they are linked347

to at least one common stimulus, that is, ifξ > 0 where 348

ξik =
∑
j

aijajk. (20) 349
U

ig. 3. Two bipartite networks. White and black are used for eac



C
O

R
R

E
C

TE
D

 P
R

O
O

F

BIO 2520 1–12

6 Ramon Ferrer i Cancho / BioSystems xxx (2005) xxx–xxx

Fig. 4. A possible implementation of the constrains of the verb ‘drive’
with two arguments: ‘car’ and ‘onion’. White circles are words and
black circles are stimuli. ‘car’ is an allowed argument of the verb ‘drive’
and therefore there is a link between ‘drive’ and a stimulus associated
to ‘car’. ‘onion’ is not a valid argument of ‘drive’, so no stimulus linked
to ‘drive’ is linked to ‘onion’. ξik , the number of shared stimulus by
the pair (si, sk) is 1 for (‘drive’, ‘car’), and 0 for (‘drive’, ‘onion’).

The idea behindξij > 0 is thatsi andsk must be semanti-350

cally compatible. Ifsi =‘drive’ andsk =‘car’, we would351

haveξ > 0, and ifsi =‘drive’ andsk =‘onion’, we would352

haveξ = 0 (Fig. 4). If two signals are linked to the same353

stimulus it does not mean that the signals are synonyms354

since stimulus here are not meanings but components of355

meaning. The meaning of ‘drive’ is linked among others,356

to the visual, tactile,. . . experiences of driving, the ob-357

jects that can be driven. . . , whereas, ‘car’ is associated358

to the visual shape of a car, the action of driving,. . . The359

fact that ‘drive’ and ‘car’ share one or more stimuli does360

not mean that ‘drive’ and ‘car’ are synonyms. When361

the network of signal–object associations is connected,362

we have that for every signal there is at least another363

signal sharing stimuli. We could also define a network364

of signal–signal associations defined by a binaryn× n365

matrixB = {bik}, wherebik = 1, if ξik > 0 andbik = 0366

otherwise.B is a rudimentary syntactic network where367

vertices are words and two words are linked if the368

can be combined syntactically(Ferrer i Cancho et al.,369

2004). The properties of real syntactic networks have370

been studied at the global(Ferrer i Cancho et al., 2004)371

and sentence level(Ferrer i Cancho, 2004; Ferrer i372

Cancho et al., 2004). The small-word phenomenon and373

heterogenous degree distribution have been reported374

at the global level. In a system following Eq.(4) with375

β ≈ 2, the signal degree distribution inB has a power376

tail with the same exponent(Ferrer i Cancho et al.,377

2005), which is consistent with the degree distribution378

of real syntactic networks(Ferrer i Cancho et al., 2004).379

ich380

ally381

ur-382

)383

bolic384

i (or385

meanings) but also other words(Deacon, 1997). Dea- 386

con tried to define symbolic reference but his proposal387

has been criticized due its lack of precision(Hurford, 388

1998; Hudson, 1999). Taking the idea of ‘signals evok- 389

ing other signals’,Ferrer i Cancho et al. (2004)have 390

defined symbolic reference as connectedness in the net-391

work of signal–stimulus associations. The definition is392

not ambiguous and relies on standard concepts of graph393

theory(Bollobás, 1998). When a network is connected,394

one may start from a certain signal and reach its first395

neighbours (stimulus) and from them one can get to the396

second neighbours (signals). One may continue from 2nd397

neighbours to 3rd, 4th, and so on till all the signals and398

stimulus in the network have been reached. We defineL, 399

the normalized size (in number of vertices) of the largest400

connected component, as 401

L = l

n+m
, (21) 402

wherel is the number of vertices in the largest connected403

component andn+m is the total amount of vertices.L 404

is a measure of the expressive power of the rudimentary405

language emerging from signal–object associations. If406

L = 1 then all signals can be combined in a grammat-407

ically correct discourse. IfL < 1 then that is possible 408

only for a fraction of signals. We will show thatL is 409

controlled byλ. 410

4. Results 411

For each value ofλ, 412

Fig. 5. The evolution ofβ∗ vs. λ (gray curve) and the structure of
network of signal–stimulus associations withn = m = 100. White and
black circles indicate, respectively, signals and stimuli. The curve for
β∗ ends at the point of divergence atλ = λ∗ ≈ 0.37. A–C are examples
of the kind of the topologies found forλ = 0, λ = λ∗ andλ > λ∗.
U
NIn Pierce’s view, there are three ways in the wh

words and objects of the ‘world’ can associate: iconic
(by similarity), indexical (by spatial or temporal coocc
rence) or symbolically (by convention)(Deacon, 1997.
According to Deacon, an essential aspect of sym
reference is that real words do not only evoke stimul
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Fig. 6. L, the normalized size of the largest connected component vs.λ, the parameter controlling the balance betweenI(S,R) andH(S) in Ω.
The connected component size is measured in vertices.n is the number of signals andm is the number of objects. (A)m = 102; (B) m = 103; (C)
m = 104; (D) m = 105.

• We obtainedβ∗, value ofβmaximizingΩ, exploring413

β ∈ [0,10] with a resolutionε = 0.1.414

• We calculated the mean value ofL in random bipartite415

network where signal degree follows Eq.(4)with β =416

β∗. Links with stimuli are formed choosing stimuli417

at random (all stimuli are equally likely so Eq.(14)418

follows). Means were calculated over 1000 replicas.419

Fig. 5shows the evolution of a small network of signal–420

stimulus associations asλ grows. At a critical value421

of λ, the size of the largest connected component falls422

abruptly. In general,L falls abruptly to a small value for423

λ = λ∗ (Fig. 6). λ∗ is the point whereβ diverges and424

I(S,R) andH(S) reach their maximum value(Ferrer i425

Cancho, 2005c). The steepness of the fall grows withn.426

Fig. 7illustrates what happens toL, I(S,R) andH(S) at427

the same time.428

5. Discussion429

We have seen that a communication system maxi-430

mizingΩ undergoes an abrupt transition to disconnect-431

edness forλ > λ∗. We have seen that the transition is432

Fig. 7. An example of the behavior ofL (black), the normalized size
in vertices of the largest connected component,I(S,R) (dark gray),
the information transfer andH(S) (light gray), the signal entropy vs.
λ, the parameter regulating the balance between maximizingI(S,R)
andH(S) in Ω. A sudden change of behavior is found forλ ≈ 0.37.
n = m = 100 was used.
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caused by a sudden jump from a finite value ofβ to433

β → ∞, where the chance that a stimulus has two links434

vanishes asmgrows. The disconnection of the network435

whenβ → is easy to understand. In general, a unipartite436

graph withN vertices andM edges cannot be connected437

if M < M∗, whereM∗ = N − 1 is the number of edges438

of a tree ofN vertices(Bollobás, 1998). Thus, a bipartite439

graph withN = n+m vertices cannot be connected if440

M < n+m− 1. In other words, connectedness is not441

possible if〈k〉P < (n+m− 1)/n. Whenβ → ∞, we442

have〈k〉P = 1 and〈k〉P < (n+m− 1)/nholds trivially443

providedm > 1. In sum, connectedness is impossible for444

β → ∞ andm > 1.445

In Section3, we have reviewed a heuristic argument446

suggesting the transition from a highly connected phase447

to disconnectedness in our model is discontinuous. Dis-448

continuous phase transitions are widespread in nature.449

For instance, the melting of ice into water or the trans-450

formation of boiling water into vapour are discontinuous451

in normal circumstances. In a communication context,452

the models inFerrer i Cancho and Solé (2003), Ferrer453

i Cancho (2005d)shows a continuous phase transition454

between no communication and a perfect communica-455

tion phase whenΩ is minimized with no constraint on456

P. There, the presence of Zipf’s law in the vicinities of457

an abrupt change is the hallmark of a continuous phase458

transition. In contrast, the phase transition from discon-459

nectedness to connectedness in a classic Erdös–Ŕenyi460

graph(Erdös and Ŕenyi, 1960; Bollob́as, 2001)is con-461

tinuous(Newman et al., 2001; Stepanov, 1970). The hall-462

rtite463

nent464

t-465

d466

hase467

er-468

rnal469

am-470

471

e not472

dis-473

nsfer474

)475

y476

477

the478

e de-479

point480

-481

-482

man483

e484

information transfer but avoid reducing the size of the485

largest connected component too much. Interestingly,486

the regulation of the size of the largest connected com-487

ponent can be done indirectly because increasingI(S,R) 488

also increasesH(S), the cost of signal use. Word ambi-489

guity may not be a mere defect but a requirement for490

connectedness and thus language. Our findings suggests491

a possible scenario for the origins of language. Reducing492

λ (giving more weight to minimizingH(S)) maximizes 493

the chance of connectedness. The emergence of connect-494

edness could be a side effect of saving the cost of signal495

use. 496

A theory of word frequencies needs answering differ-497

ent questions: 498

1. Why do words arrange themselves according to499

Zipf’s law (Eq.(1))? 500

2. Why do humans choose some particular values ofβ? 501

3. Why is there variation inβ? 502

4. What are the limits of that variation? 503

5. What is the link between Zipf’s law and human lan-504

guage? 505

Many answers have been proposed for Questions 1-2506

(Ferrer i Cancho, 2005d). As far as we know, Question 1 507

and 2, have only been answered assuming that words are508

used according to their meaning inFerrer i Cancho and 509

Soĺe (2003), Ferrer i Cancho (2005a,d). Choosing values 510

of β near 2 could be an optimal solution for a conflict511

between maximizing the information transfer and saving512

; 513

un514

515

516

517

ues-518

519

n 4, it520

y 521

522

523

524

525

acks.526

527

- 528

lues529

r to530

at531

on of532

ose533

e534
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Cmark of continuous phase transition in classic unipa

graphs is a power distribution of connected compo
sizes(Newman et al., 2001), which is related to a cri
ical branching process(Harris, 1963)at the threshol
for connectedness. Other examples of continuous p
transitions are the transition from resistivity to sup
conductivity (continuous in the absence of an exte
magnetic field) and the conversion of iron from par
agnetic to ferromagnetic form(Binney et al., 1992). In
a communication context, the model examined her
only apparently shows a discontinuous transition to
connectedness but also to maximum information tra
and maximum cost forλ = λ∗ (Ferrer i Cancho, 2005d.

The divergence ofβ for λ = λ∗ is accompanied b
a jump to maximum information transfer (Fig. 7). In-
creasingλ increasesI(S,R) but decreases the size of
largest connected component (the significance of th
crease depends on the size of the system). At the
where theI(S,R) is maximum,L is minimum. In a com
munication system maximizingΩ, communication us
ing isolated signals and language are in conflict. Hu
speakers may need to regulateλ in order to maximiz
BIO 2520 1–12

the cost of word use(Ferrer i Cancho and Solé, 2003
Ferrer i Cancho, 2005d). Questions 3 and 4 have beg
to be addressed inFerrer i Cancho (2005c,a). The idea
is that the lower bound and the upper bounds ofβ are
obtained when maximizingΩ for λ = 0 andλ = λ∗, re-
spectively. The present article sheds new light on Q
tions 3, 4 and 5. As for Question 3, variation inβ my be
due to the chance of connectedness. As for Questio
has been argued that the variation ofβ is constrained b
the fact that maximizingΩ for λ ∈ [0,1] gives a narrow
interval of exponents(Ferrer i Cancho, 2005c). It has
been argued that the interval of variation ofβ excludes
β → ∞ because the maximum cost, i.e.H(S) = logn,
is paid in that case. The argument has some drawb
H(S) = logn is a slow growing function ofn. In prac-
tice, significant differences in logn between two differ
ent systems can only be obtained if the respective va
of n differ in at least one order of magnitude. In orde
explain whyβ → ∞ is not found, one has to argue th
speakers, in general, are very sensitive to the variati
logn, which we do not know. Instead, one may prop
a stronger argument:β → ∞ is not found because th
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chance of connectedness is 0 form > 1 (as seen above).535

That is a compelling reason for not finding largeβ in536

human language. We do not mean that largeβ is impos-537

sible to attain in humans, but it would be surprising to538

find it in a system combining words through semantic539

constraints. As for Question 5, our work suggests that540

the exponent of Zipf’s law is an important factor for the541

presence or absence of language. In sum, the present ar-542

ticle puts another step forward in the construction of a543

theory of word frequencies.544

Till now, we have studied the implications of large ex-545

ponents in a theoretical model. We would like to provide546

a framework that can offer new insights in real cases.547

Schizophrenics speakers with large exponents will re-548

ceive special attention. For that reason, is it is important549

to review the facts that provide support for the sound-550

ness of the theory. With the theoretical framework used551

here, two types of successful predictions have been pre-552

viously made: general predictions and specific predic-553

tions for schizophrenia. As for the general predictions,554

we have seen two predictions that are made by mini-555

mizingΩ(λ) in Section1. That is not all. Nouns have a556

greater exponent that all parts-of-speech mixed together,557

β ∈ [2.1,2.3], approximately(Ferrer i Cancho, 2005c).558

There is a wide consensus in linguistics and philosophy559

about the greater semantic specificity of nouns (e.g. the560

concept of rigidity of nouns in Kripke’s work(Kripke,561

1990)). The theoretical approach followed in this arti-562

cle allows one to predict a higher semantic precision for563

nouns because of their higher exponent (seeFerrer i Can-564

c he565

p en-566

t567

t ses-568

s569

i f570

w ,571

2 n572

β573

m oo574

a sion575

( e576

e ater577

r the578

s im-579

p l580

O : ob-581

s only582

m , we583

b dic-584

t s no585

a re-586

dictions cannot be easily tested. Nonetheless, we hope587

that that what follows is not taken as the ultimate expla-588

nation or as an unthoughtful hypothesis, but rather as a589

suggestive research track. 590

The largest values ofβ than have been found up to now591

in single author text samples correspond to schizophrenic592

patients in the acute phase of the illness(Ferrer i Can- 593

cho, 2005c; Piotrowski et al., 1995). One of the most 594

salient features of schizophrenia is ‘disorder of thought’595

(Elvevåg and Goldberg, 1997). Disorder of thought may 596

be described as disturbances in the structure, organi-597

zation and coherence of thought that are reflected in598

reduced intelligibility and increased disorganization of599

speech that is difficult, if not impossible, for the listener600

to comprehend(Bleuler, 1911/1950). Our model makes 601

two relevant predictions for the case of schizophrenics.602

First, the chance of being on the edge of an abrupt tran-603

sition grows with the value ofβ, so schizophrenics with 604

large exponents may be threatened by an apparently dis-605

continuous phase transition where language breaks into606

pieces. Second, ifn is small, the decrease in the size of607

the largest connected component withλ (and therefore 608

β) is significant (recallFig. 6). The larger the value ofβ, 609

the smaller the size of the largest connected component.610

Both predictions are apparently consistent with the ap-611

pearance of thought disorder in schizophrenia. It is hard612

to imagine how a schizophrenic can construct a coherent613

discourse if the size of the largest connected component614

has dramatically decreased. 615

The network of signal–stimulus associations is an616

ating617

ct-618

am-619

re-620

rain621

he622

con-623
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as 625
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633
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ho (2005b)for the details of the argument). As for t
redictions specific to schizophrenia, we will conc

rate on the speech of schizophrenics with lowβ, con-
aining many words related to the patients topic of ob
ion(Piotrowski et al., 1995). It has been shown that ifm
s kept constant andβ < 2, thenH(R|S) (a measure o
ord ambiguity) grows asβ decreases(Ferrer i Cancho
005b). The theory predicts thatH(R|S) diverges whe
< 2 and expressivity is maximized (i.e.m is maxi-
ized). Thus,mmust be kept small to avoid having t
mbiguous words, which explains the onset of obses
Ferrer i Cancho, 2005b). Notice that the lowering of th
xponent (ifn remains constant) translates into a gre
epetition of words, but the latter does not imply that
peech is circumscribed very particular topic (in our s
lified model, a narrow topic corresponds to a smalm).
ur theoretical approach makes a strong prediction
ession at the level of the topic of the discourse, not
ore repetition at the surface level of words. In sum
elieve that there is a critical mass of successful pre

ions allowing one to move to cases where there i
vailable information for testing the predictions or p
BIO 2520 1–12

emergent structure of the neural substrate. Integr
stimuli of various kinds with words implies conne
ing distant neural tissues. In order to have an ex
ple of mind, visual and temporal stimuli tend to be
lated to occipital and temporal areas of the human b
(Pulverm̈uller, 2003). It is reasonable to think that t
density of synapsis has an influence on the largest
nected component of the network of signal–stimulus
sociations. Thus,β, specially for smalln, can be seen
an indicator of the size of the largest connected com
nent, which would be in turn an indicator of the den
of the neural substrate. The link density of the netw
of signal–stimulus associations isδ = M/nm. Knowing
M = n〈k〉P , we may writeδ = 〈k〉P/m. It can be easil
seen that〈k〉P decreases withβ (see AppendixA and
Ferrer i Cancho, 2005b). For largemandβ > 2 we have
(see AppendixA)

〈k〉P ≈ 1 − β

2 − β
. (22)

If our hypothetical correspondence betweenβ and
synaptic density (or size in words of the largest c
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nected component) was correct, one would expect that637

the smallest synaptic density would be for the largest638

values ofβ, which corresponds to schizophrenic pa-639

tients in the acute phase(Piotrowski et al., 1995). In-640

terestingly, it has been speculated that excessive synap-641

tic pruning occurs in schizophrenia, which may lead642

to psychosis when it reaches a threshold(Mueser and643

McGurk, 2004; Innocenti et al., 2003; Keshavan et al.,644

1994). SeeMcGlashan and Hoffman (2000)for a re-645

view of recent evidence for reduced connectedness in646

schizophrenia. Our work is consistent with the spirit of647

Feinberg’s hypothesis, relating the onset of schizophre-648

nia to a critical decrease in synaptic density(Feinberg,649

1982). We do not mean that a critically low synaptic den-650

sity is the only possible cause of schizophrenia and that651

reduced synaptic density must always originate through652

the exact mechanisms that Feinberg proposed. Instead,653

we claim it is not surprising that large exponents belong654

to schizophrenic patients since those exponents predict a655

decreased synaptic density, which is an important factor656

that may lead to schizophrenia(McGlashan and Hoff-657

man, 2000; Harrison, 1997; Mueser and McGurk, 2004).658

Our work suggests that the exponent of Zipf’s law could659

be used to detect synaptic density alterations and more660

importantly, brain area disconnections.661

We intend to study schizophrenic language and com-662

munication from a specific specific framework. It is tech-663

nically impossible that our approach accounts for the664

wide range of features of schizophrenia. Neural net-665

work models have accounted for important aspects of666

- and667

lop-668

sion669

1;670

e671

sion672
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ipf’s674
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odel680

ortu-681

h682

n683

not684
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arge686
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ss of688

synapses(Hamos et al., 1989), although there is no study 689

of Zipf’s law on Alzheimer’s disease, as far as we know.690

The use of schizophrenics instead of other is due to the691

fact the schizophrenia is, as far as we know, the only692

brain alteration where Zipf’s law has been studied. 693

The model presented here suggests a track for under-694

standing non-pathological cases. While schizophrenics695

with large exponents seem to face the problem of the696

destruction of connectedness, children seem to face an697

inverse problem, i.e. the development of connectedness.698

The relatively short time elapsed from the single-word to699

multiple-word utterances (of the order of several months700

(Johnson et al., 1999)), suggests that the emergence of701

syntactic communication in children could be a phase702

transition to connectedness in the network of word syn-703

tactic interactions. According to our model of a rudimen-704

tary form of language, that transition would be an epiphe-705

nomenon of a transition to connectedness in the network706

of signal–stimuli associations. Whether the presumable707

phase transition would be continuous or not would de-708

pend of the presence or not of a special signature: scaling709

in the distribution of connected component sizes in the710

network of word syntactic interactions. We know that711

the network of syntactic interactions of adults is (almost)712

connected(Ferrer i Cancho et al., 2004)but the signa- 713

ture above may be found in children at a critical time. To714

sum up, our findings open new research prospects and715

support that Zipf’s law, rather than an curious regularity,716

is an essential aspect of human language. 717
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Cschizophrenia such as its unique symptoms, short

long-term course, typical age of onset, neurodeve
mental deficits, limited neurodegenerative progres
and sex differences(Hoffman and McClashan, 200
McGlashan and Hoffman, 2000). Our model should b
seen as an attempt to cover a very specific dimen
of schizophrenia. As far as we know, no model
fore has faced the alterations in the exponent of Z
law and the implications for language. The aim of
present article is not providing an ultimate explana
about what happens in schizophrenics with large e
nents but putting forward a strong theoretical hypoth
that would need further research. Future work shou
devoted to test the correlation suggested by the m
between high exponents and brain alterations. Unf
nately, the brain alterations in the patients with higβ
examined byPiotrowski et al. (1995)are not available i
their work. Our model is abstract enough to embrace
only schizophrenics speakers with large exponent
also other kinds of pathological speakers exhibiting l
exponents. Among those, patients with Alzheimer’s
ease are specially interesting because of their lo
BIO 2520 1–12
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Appendix A

We assumek is a random discrete variable who
probability is

P(k) = ck−β (23)
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whereβ is a constant and735

c = 1∑m
k=1 k

−β (24)736

is a normalization term.〈k〉, the mean value ofk is737

〈k〉 = c

m∑
k=1

k1−β. (25)738

We can approximate〈k〉 replacing summations by inte-739

grals and write740

〈k〉 ≈
∫ m

1 k1−βdk∫ m
1 k−βdk

. (26)741

Solving the integrals, we obtain742

〈k〉 ≈ (1 − β)(m2−β − 1)

(2 − β)(m1−β − 1)
. (27)743

Form → ∞ andβ > 2, we get744

〈k〉 ≈ 1 − β

2 − β
. (28)745
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