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Abstract

Here, we study a communication model where signals associate to stimuli. The model assumes that signals follow Zipf’s law and
the exponent of the law depends on a balance between maximizing the information transfer and saving the cost of signal use. W
study the effect of tuning that balance on the structure of signal-stimulus associations. The model starts from two recent results
First, the exponent grows as the weight of information transfer increases. Second, a rudimentary form of language is obtained whe
the network of signal—stimulus associations is almost connected. Here, we show the existence of a sudden destruction of languac
once a critical balance is crossed. The model shows that maximizing the information transfer through isolated signals and languag
are in conflict. The model proposes a strong reason for not finding large exponents in complex communication systems: languag:
is in danger. Besides, the findings suggest that human words may need to be ambiguous to keep language alive. Interestingly, tt
model predicts that large exponents should be associated to decreased synaptic density. It is not surprising that the largest expone
correspond to schizophrenic patients since, according to the spirit of Feinberg’s hypothesis, i.e. decreased synaptic density may lez
to schizophrenia. Our findings suggest that the exponent of Zipf's law is intimately related to language and that it could be used to
detect anomalous structure and organization of the brain.
© 2005 Published by Elsevier Ireland Ltd.

Keywords: Zipf's law; Communication; Human language; Syntax; Symbolic reference; Schizophrenia

1. Introduction obey auniversalregularity, the so-called Zipf's I&ipf, s
1972) If P(f) is the proportion of words whose fre- s
The XX century withessed the birth and development quency isf in a text, we obtain 3

of information theory(Shannon, 1948; Ash, 1965 _B
theoretical framework devoted to the study of commu- P~ 7, @) =

nication systems. Recently, various new models have where we typically havg ~ 2. Eq.(1)is away of defin- s
been introduced to explain the organization of word fre- ing Zipf's law. Zipf’s law is a regularity that appears in s
quencies in human language using an information the- many contextgLi, 2002; Newman, 2005)The ubiquity
ory approact(Ferrer i Cancho and S®| 2003; Ferrer i of Zipf’s law is the origin of many misunderstandings.a
Cancho, 2005a,dYVord frequencies in human language  First, the fact that Zipf's law is everywhefei, 2002)
does not imply that Zipf's law is the only frequency dis-4

tribution, not even the most common one. A recent coms

* Tel.: +39 0644 55705/52045x46-50; fax: +39 0644 63158. pilation of Zipf’s law contains hundreds of distributions s
E-mail addressramon.ferrericancho@gmail.com (Wimmer and Altmann, 1999mong which one is the

0303-2647/%$ — see front matter © 2005 Published by Elsevier Ireland Ltd.
doi:10.1016/j.biosystems.2005.12.001
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power distribution that is typically assumed for Zipf's 2. A general information theory framework %
law. Second, the fact that Zipf's law allows many ex-

planations does not mean that all of them are validina  The recent information theory models mentioned ak
specific context. The claims against the meaningfulness the beginning of the article assume a system where sig-
of Zipf's law usually neglect the exact value of the expo- nals from a se§ communicate about stimuli from a setio.
nent. For instance, it has been claimed by many authorsR. Signals are equivalent to words and stimuli are the ba-
(Miller, 1957; Li, 1992; Mandelbrot, 1966; Nowak et sic ingredients of word meaning. For instance, the worg
al., 2000; Nowak, 2000b,a; Wolfram, 200@at Zipf's ‘dog’ is associated to visual stimuli (e.g. the shape af.
law is not a meaningful statistical regularity in human a dog), auditive stimuli (e.g. barking), etc. All theseos
language because it can be explained by an intermittentstimuli are elicited by the word ‘dog(Pulvernller, 1o
silence process (a random sequences of letters including2003) Stimuli are sometimes called objects or events
blanks that act as word delimiters). That arguments for- in the origins of language literature (eNowak, 2000a; 10
gets that the intermittent silence process can only cover Ferrer i Cancho et al., 2005Those models assume aos
the exponent within the interval (1, ZFerrer i Cancho  set ofn signalsS = {s1,...,s;,...,s,} and asetofm 1o
and Servedio, 2005yhile real exponents lay in the ap- stimuliR = {r1,...,7j, ..., r,}. Signals link to stimuli 111
proximate interval [1.6, 2.4]Ferrer i Cancho, 2005¢c)  and connections are defined by m binary matrix .
The similar mistake is made when claiming that Zipf’'s A = a;;, wherea;; = 1,ifs; andr; arelinkedand;; =0 s
law in dolphins whistles may have a trivial explanation otherwise. 114
because an intermittent silence process would reproduce According to Shannon’s standard thed§hannon, s
it (Suzuki et al., 2005)%ince the range of exponents that 1948) the goal of communication through isolated Sigrs
intermittent silence covers is only a fraction of the range nals is maximizing/(S, R), the information transfer be- 1
of exponents in dolphin whistle datdcCowan et al., tweenSandR. One of the most important contributionsus
1999, 2002, 2005)Besides neglecting the value of the of the models above is that Zipf’s law with non-extremats
exponent, claims against the meaningfulness of Zipf’s exponents can not be explained by maximizii§, R) 1o
law in human language do not consider the fact that in- alone, which would lead t§ — oco. Zipf's law with ex- 121
termittent silence generates an uncorrelated sequence oponents close to the typical values are obtained when
words while the presence of long-distance correlations (S, R) is maximized with a further constraint(S), s
among text elements are widely knowiontemurro the entropy of signals has been shown to be, as far.as
and Pury, 2001; Podgorelec et al., 2000; Ebeling et al., we know, the best candidate for that constrgifdrrer i 1
1995; Ebeling and &chel, 1994; Schenkel et al., 1993; Cancho and Sél 2003; Ferrer i Cancho, 2005¢,t)is 12
Ferrer i Cancho and Elvég, 2005) Shortly, a certain known in psycholinguistics that the availability a wordz
range of exponent allows many explanations only if one is positively correlated with its frequency. The highets
neglects other properties or predictions of the model that the frequency of a word, the higher its availability. Thaibs
can be tested. The fact that texts exhibit long distance cor-is the so-called word frequency effgétkmajian et al., 10
relations sweeps away all the intermittent silence based 1995) That frequency dependent availability concerns:
models as well as Simon’s model and its extensions. Seeboth the speaker and the hearer of a conversation. Imag-
Ferreri Cancho and Servedio (200&)a review of mod- ine we haven words (or signals). When all words ares
els based on intermittent silence and Simon’s model. If equally likely, that is, when all words have frequency
one has to choose among various models that do not havel/n, all words are taking the smallest frequency possibles
the problem of assuming uncorrelated sequences (e.g.In that casef(S) = logn, where log: is the maximum s
(Balasubrahmanyan and Naranan, 20@2gre are still value of H(S) (Ash, 1965) In contrast, when a word 1
other features that can be used for testing the suitability has probability one (which implies that the remainings
of the model. The models assuming that word frequency words have probability zero}(S) = 0, which is the iz
is an epiphenomenon of word meaning can explain why minimum value of/(S) (Ash, 1965) H(S) is a measure 1o
the growth ofg (for instance when considering nouns of the cost of communication, more precisely, of the cosi
versus words of all parts-of-speech mixed together) is as- of signal use. The higher the value Bf(S) the higher 1.
sociated to a greater semantic precigerreri Cancho,  the cost (and the lower the word availability). Notice thats
2005b; Ferrer i Cancho et al., 2008 far as we know, computers do not have the same information access and
models starting from different assumptions have not been retrieval constraints of human brains. In general, inforss
able to explain that. Next section introduces a general in- mation is accessed at a very high speed and frequengy
formation theory framework for studying Zipf's law and ~ effects, when present, are not so heavy as those imposed
the general motivation of the article. by the human brain. One can, in general neglect the er-
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tropy of units in many computer or engineering problems
but not in real brain word access and retrieval.

If we restrict ourselves to Shannon’s classic infor-
mation theory, the goal of a communication system is
maximizing the function

20 = I(S, R). 2)

If we take into consideration the cost of signal use, we
may write

2 = AI(S, R) — (1 — 2)H(S) 3)

as the function that a natural communication system
should maximizéFerreri Cancho and S®|2003; Ferrer
i Cancho, 2005c,d}. is a parameter controlling the bal-
ance between maximizing the information transfer and
minimizing the cost of signal use. We assuine [0, 1].
We havef2g = £2 wheni = 1. £2¢ is suitable for com-
puter or robotic problems whet&(S) can be neglected
ands2 (with A < 1/2 (Ferrer i Cancho, 2005c,dis spe-
cially suitable for brain based communication systems.
£2 seems, a priori, a better choice they for natural
communication systems.

We do not claim that2 is the best function for nat-

ural communication systems but there are some results

supporting its usefulness:

e Maximizing £2, Zipf’s law is obtained for a particular
value ofA. If one replaced(S) in Eq. (3) by the the
effective lexicon size, namely, the number of signals
with at least one association with stimuli, Zipf's law is
not obtainedFerrer i Cancho and S®|2003; Ferrer
i Cancho, 2005d)Vocabulary size is an important
factor for the cost of word uséohler, 1987)but
does not seem to be essential for Zipf’s law. We define
H(R|S) as the conditional entropy of stimuli when
signals are known. Zipf’s law is still reproduced if
I(S, R) isreplaced by- H(R|S) inthe model irFerrer
i Cancho and Sél (2003) but not in the model in
Ferrer i Cancho (2005d)

e The exponent of Zipf’'s law in single author text satis-
fiesg € [1.6, 2.4] (FerreriCancho, 2005dWlaximiz-
ing £2 in a system following Zipf's law (i.e. searching
the value ofs maximizings2) can explain the interval
of variation of8 in human languag@-errer i Cancho,
2005c)

If one considers texts from a single auti{gerrer i
Cancho and Sél 2001; Montemurro, 2009nd does
concentrate on words of a certain type (e.g. nouns)

(Balasubrahmanyan and Naranan, 1996; Ferrer i Can-®Jj

cho, 20053a)the extremes of the interval of variation of
B correspond to schizophrenic patieriierrer i Can-

cho, 2005c) The aim of the present paper is deepens
ing our understanding of what may happen whgn s
is large and, in particular, what may be happing ins
schizophrenics with that. We will show that language 200
breaks into pieces when the balance between maximiz-
ing 1(S, R) and minimizingH (S) favours too much the 2.
former. More precisely, we will show that the networkos
of signal-interactions becomes suddenly disconnected
when ) takes a critical value in a communication syS:s
tem following Zipf’s law. 206

3. The model

207

Maybe the simplest approach for reproducing Zipf'ss
law for word frequencies is combining two assumptionse
First,

Pk) ~ kP,

210

(4)

whereP(k) is the probability that a signal hksonnec-
tions. Secondp(s;) ~ i, wherep(s;) is the probability
of usings; and

m
Wi = E aij-
j=1

Eq. (4) and p(s;) ~ w; give Eq.(1). Various models re-
cover Zipf's law when maximizing2 without the con-
straint in Eq(4) for a critical value of. (Ferrer i Cancho
and Soé, 2003; Ferrer i Cancho, 2005d)

Going further, we assume

211

212
213
214

(%)

215

216
217
218
219

220

Mi
plsi) =12 ©) =
where 222
m
M= Zui (7) 23
i=1

is the total amount of links. Assuming E¢B) has the 2
virtue of simplicity and allowing one to explain the inter-zs
val of variation ofg in humangFerreri Cancho, 2005¢) 22
Interestingly, Eq(6) makes some important assumptionsr
that need to be made explicit. Tothataim, let us start from
ageneral assumption abgu(s;, r;), the joint probability 22

of s; andr;, namely 230

aijp(r;)
wj
wherep(r;) is the probability of thg-th stimulus and

n
= ay
k=1

is the number of links of that stimulus.

(8)

231

plsirj) =

9)

233

234
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4 Ramon Ferrer i Cancho / BioSystems xxx (2005) XXX—XXX
If we assume {0(0), ..., Q(k), ..., Q(n)}, where Q(k) is the prob- 2
() = Wi (10) ability that a stimulus haklinks. We are assuming thatzs.
PV =5y Q(k) is defined fork = 0, while P(k) does not, becausezs:
and replace it in Eq$10) and (8) we obtain we allow unlinked stimuli but do not allow unlinked sig-zs4
a; nals. Here, we take the simplest distribution @gas in = s
p(si rj) = M] (11) Ferrer i Cancho (2005¢c)hat is 206
Replacing Eq(11)into 0~ binomial<(k>P n) (14)

m m

plsi) = Zp(si’ ) (12) where(...)p is the expectation operator over Thus, 2

j=1
we recover Eq.6). The models inFerrer i Cancho
(2005c,d)assume Eq(10) (hence assume Eg&) and
(11)). In contrast, the model iRerrer i Cancho and Sel
(2003)assumes thai(r;) is constant for eachand con-
siders a particular case, i.g(r;) = 1/m. We may write
Eq.(3) as

2= —AH(R|IS) — (1 — 2)H(S) (13)

as inthe modelifrerrer i Cancho and S®(2003) when
p(r;)is constant. Thatis not the case of the present article
and related modelg-errer i Cancho, 2005c¢,d)

The assumptiorp(r;) ~ w; means that the proba-
bility of each stimulus is dictated by the structure of
signal-stimulus associations. In other words, the proba-
bility of perceivingp(r;) in the ‘real world’ is neglected.
One may think that is a very radical assumption but in
fact, human language is a communication tool allowing
one to detach from the here and now. Displaced refer-
ence, our ability to talk about something that is distant
in time or space, is a salient feature of human language
(Chomsky, 1996; Hockett, 1958Pisplaced reference
is not uniquely human since bees havévibn Frisch,
1962) Because of displaced reference, we can talk of
‘dogs’ even when thereis no ‘dog’ in front of us. It seems
wise to assume that talking about present stimulus is not
the rule of human language and it seems that in some

cases such as schizophrenia, the detachment from the

here and know could be extreme. Various core aspects
of schizophrenia such as false believes, hallucinations
(Mueser and McGurk, 2004nd various cognitive im-
pairments, including attention probleniElvevag and
Goldberg, 200Q)suggests that interacting with the ‘real
world’ is difficult. In fact, schizophrenics seem optimal
candidates fop(r;) ~ w;. Schizophrenics speakers are
a very special case in the results that will follow. We will
return to them in the discussion.

For the present article, we assume a communi-
cation system following Zipf’s law by means of
Eq. (6). The distribution of links per signal is
given by P = {P(1), ..., P(k), ..., P(m)} and the dis-
tribution of links per stimulus is given byQ =

(k) p is the mean signal degree. We may define the infass
mation theory measures that matter in the calculation of
£ assumingp(r;) ~ w; (or p(s;) ~ w;) for any pair of
P and Q. The calculation of2 is straightforward once
we know(Ferrer i Cancho, 2005c,d)

291

292

293

H(S) =logM — H(R|S) (15) 204

H(R) =logM — H(S|R) (16) 25

whereM = n(k)p = m(k)o and 296
klogk

H(R|S) = % (A7) oo

H(S|R) = UCL(Z??Q. (18) 2

The present model integrates two recent results. The
firstresultis thag*, the value of8 maximizings2, grows
with A, till A = A*. Beyond { > 1*), we have8 — oo

300

301

tn 2.5

0.5

Fig. 1. g%, the value ofg maximizing §2 for n = m = 10 (circles),

n =m = 10 (squares)p = m = 10° (diamonds) and = m = 10*
(triangles).s is the exponent of Zipf's lawg2 is the energy function
that communication maximizesjs the number of signals amdis the
number of stimuli.A tunes the balance between information transfer
and cost of signal use. Communication is totally balanced towards
saving the cost of communication whén= 0, whereas, it is totally
balanced towards information transfer whee: 1.
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m

Fig. 2. g*, the value of8 minimizing H(S) vs.m. H(S) is the signal
entropy andnis the number of stimuli.

(Ferrer i Cancho, 2005c)he behavior ofs* is illus-
trated inFig. 1 It can be shown that* < 1/2 and a

heuristic argument suggests the existence of a disconti-

nuity ath = A* Ferreri Cancho (2005cThe ideais very
simple. Eq.3) can be written as

2 = (20 — WAH(S) — »H(S|R) (19)

knowing that(S, R) = H(S) — H(S|R) (Ash, 1965)
Eqg.(19)indicates that maximizing2 minimizesH(S) if
A < 1/2,and maximize#l (S)if » > 1/2.8 — oo mini-
mizesH (S| R) and maximize$(S) (recall Eqs(18) and
(15)), soB — oo is expected fon > 1/2. Since maxi-
mizing §2 for » = 0 gives a finite value of* (Fig. 2), 8
must diverge for O< A < 1/2. Notice that maximizing
£2for » = 0is equivalent to minimizingZ(S), the signal
entropy.

(A)

Fig. 3. Two bipartite networks. White and black are used for each vertex partition. (A) An almost connected network. (B) A disconnected network.

The second resultis thata communication system gets

a rudimentary form of language if the bipartite networks

of

signal—stimulus associations is connected or almost

connectedFerreri Cancho et al., 2005 oughly speak- s
ing, connectedness is the possibility of starting from &
signal (or a stimuli) and reaching the remaining Sig»:
nals and stimuli of the network crossing the links of:
the network.Fig. 3A and B shown, respectively, an al-z
most connected and a disconnected bipartite networks.
Almost connectedness means that a wide majority of vess
tices (e.g. 90%) lay in the largest connected component
(Ferreri Cancho et al., 2008)Vhen exponents are closess
to the real ones, it has been shown that Zipf’s law prezs
vides almost connectedness under a general set of caen-
ditions(Ferrer i Cancho et al., 2005Fonnectedness isza
intimately related to two essential traits that researchess
have identified as essential aspects of human language:
syntax and symbolic referend&night et al., 2000) 33
Signal-stimulus associations allow one to define signaks
signal associations. More importantly, the network afs

signal-stimulus association specifies allowed and fos-
bidden signal-signal associations. Taking the example

of words, we can explain why the syntactic combinatiofs
of “drive cars” is a sensible combination in the sentence
“John drives cars” and why it is not the combination.
“drives onions” inthe sentence “John drives onions”. The:
combination of ‘drive’ and ‘car’ in “John drives cars” s
exemplifies the relationship between a verb and its argu-
ment. As inFerrer i Cancho et al. (2005)e adopt the s
convention that two signals (or two words)ands; can s
be combined syntactically if and only if they are linkeds
to at least one common stimulus, that is5 if 0 where s

= ajaj.
J

(B)

(20) a0
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meanings) but also other wor@®eacon, 1997)Dea- s
con tried to define symbolic reference but his proposat

has been criticized due its lack of precisifturford, ass

S 1998; Hudson, 1999)Taking the idea of ‘signals evok- as

\X ing other signals’Ferrer i Cancho et al. (2004)ave s
N - defined symbolic reference as connectedness in the nat-

. work of signal-stimulus associations. The definition is.
not ambiguous and relies on standard concepts of gragh

Fig. 4. A possible implementation of the constrains of the verb ‘drive’  theory(Bollobas, 1998) When a network is connected ze
with two arguments: ‘car’ and ‘onion’. White circles are words and one may start from a certain signal and reach its first
black circles are stimuli. ‘car’ is an allowed argument of the verb ‘drive’ neighbours (stimulus) and from them one can get to the
and therefore there is a link between ‘drive’ and a stimulus associated second neighbours (signals). One may continue from 2ad

to‘car’. ‘onion’is not a valid argument of ‘drive’, so no stimulus linked iahb 3rd. 4th d il all the si Is aneh
to ‘drive’ is linked to ‘onion’. &, the number of shared stimulus by neighbours to 3rd, 4th, and so on till all the signals a

‘car” “drive” ‘onion’

the pair §;, s¢) is 1 for (‘drive’, ‘car’), and O for (‘drive’, ‘onion’). stimulus in the network have been reached. We ddfine zs
the normalized size (in number of vertices) of the largest
connected component, as 401

The idea behing;; > 0Ois thats; ands; must be semanti-

cally compatible. If; ='drive’ ands; =‘car’, we would I — ! ’ 21)

haves > 0, andifs; ='drive’ ands; =‘onion’, we would n+m

haveg = 0 (Fig. 4). If two signals are linked to the same . . .
stimulus it does not mean that the signals are synonymsWhereI is the number of vertices in the largest connected
component and + m is the total amount of verticek. 40

since stimulus here are not meanings but components of. fth . f the rudi i
meaning. The meaning of ‘drive’ is linked among others, IS @ Measure ot the expressive power otthe rudimentaty

to the visual, tactile, .. experiences of driving, the ob- lgQghiage emerging from signal—object associations. i

jects that can be driven ., whereas, ‘car’ is associated L - 1 then all _3|gnals can be combined na gramma&"’
to the visual shape of a car, the action of driving, The igflly correct discourse. IL. < 1 then that is possible «.
fact that ‘drive’ and ‘car’ share one or more stimuli does only for a fraction of signals. We will show that is 40

not mean that ‘drive’ and ‘car’ are synonyms. When controlled by». 40
the network of signal-object associations is connected,
we have that for every signal there is at least another 4. Results an
signal sharing stimuli. We could also define a network
of signal—signal associations defined by a binary n For each value of, a2

matrix B = {b;;}, whereb;, = 1, if & > 0 andb;; =0
otherwise B is a rudimentary syntactic network where
vertices are words and two words are linked if the
can be combined syntactical(ferrer i Cancho et al.,
2004) The properties of real syntactic networks have
been studied at the glob@terrer i Cancho et al., 2004)
and sentence levelFerrer i Cancho, 2004; Ferrer i
Cancho et al., 2004he small-word phenomenon and
heterogenous degree distribution have been reported
at the global level. In a system following E¢ft) with
B ~ 2, the signal degree distribution Bihas a power
tail with the same exponer(Ferrer i Cancho et al.,
2005) which is consistent with the degree distribution
of real syntactic network@-errer i Cancho et al., 2004) 1 “_'1 : [}_'2 : 0_'3 : 0_'4 : ”fi : 0.'6 : “_'7 : n_'x : n_'g —
In Pierce’s view, there are three ways in the which 2
words and objects of the ‘world’ can associate: iconically

by similarity), indexical (by spatial or temporal cooccur-
( y y) ( ysp P network of sighal—stimulus associations wite= m = 100. White and

rence) or symbolically (by conven_tlo(Deacon, 1997) . black circles indicate, respectively, signals and stimuli. The curve for
According to Deacon, an essential aspect of symbolic g« ends at the point of divergenceiat 1* ~ 0.37. A-C are examples

reference is that real words do not only evoke stimuli (or of the kind of the topologies found far= 0,1 = A* andi > A*.

Fig. 5. The evolution of8* vs. A (gray curve) and the structure of
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Fig. 6. L, the normalized size of the largest connected componerit,ibe parameter controlling the balance betwégf) R) and H(S) in £2.
The connected component size is measured in veriideshe number of signals amdis the number of objects. (A} = 10%; (B) m = 10%; (C)
m = 10% (D) m = 10°.

e We obtaine@*, value of8 maximizings2, exploring
B € [0, 10] with a resolutiore = 0.1. 5 ; ; : , ;

e \We calculated the mean valueloih random bipartite
network where signal degree follows E4) with 8 =
B*. Links with stimuli are formed choosing stimuli 4~ HS) T ————
at random (all stimuli are equally likely so E(L4)
follows). Means were calculated over 1000 replicas.

Fig. 5shows the evolution of a small network of signal— - I(S.R) ]
stimulus associations as grows. At a critical value 3
of A, the size of the largest connected component falls
abruptly. In general, falls abruptly to a small value for

A = A* (Fig. 6). A* is the point where3 diverges and 4 i
I(S, R) and H(S) reach their maximum valu@-errer i ,

Cancho, 2005c)The steepness of the fall grows with
Fig. 7illustrates what happens Ig I(S, R) and H(S) at 0 : ' : . ' '

] 0 0.2 0.4 0.6 0.8 1
the same time. A

5. Discussion Fig. 7. An example of the behavior &f(black), the normalized size
in vertices of the largest connected componé(, R) (dark gray),

L . the information transfer and (S) (light gray), the signal entropy vs.
We have seen that a communication system maxi- ; the parameter regulating the balance between maximizifigk)

mizing §2 undergoes an abrupt transition to disconnect- and H(S) in £2. A sudden change of behavior is found for 0.37.
edness foi. > A*. We have seen that the transition is 7 =m = 100 was used.
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caused by a sudden jump from a finite valuegofo

B — oo, where the chance that a stimulus has two links
vanishes as grows. The disconnection of the network
whenp — is easy to understand. In general, a unipartite
graph withN vertices andM edges cannot be connected
if M < M*, whereM* = N — 1 is the number of edges
of a tree ofN vertices(Bollobas, 1998) Thus, a bipartite
graph withN = n + m vertices cannot be connected if
M < n+m — 1. In other words, connectedness is not
possible if(k)p < (n +m — 1)/n. Wheng — oo, we
have(k)p = 1and{k)p < (n +m — 1)/n holdstrivially
providedn > 1.Insum, connectednessisimpossible for
B — ocoandm > 1.

In Section3, we have reviewed a heuristic argument
suggesting the transition from a highly connected phase
to disconnectedness in our model is discontinuous. Dis-
continuous phase transitions are widespread in nature.
For instance, the melting of ice into water or the trans-
formation of boiling water into vapour are discontinuous
in normal circumstances. In a communication context,
the models inFerrer i Cancho and S®I(2003), Ferrer
i Cancho (2005dshows a continuous phase transition
between no communication and a perfect communica-
tion phase whem2 is minimized with no constraint on

information transfer but avoid reducing the size of thes
largest connected component too much. Interestingly
the regulation of the size of the largest connected conar
ponent can be done indirectly because increaHifigR)
also increase#(S), the cost of signal use. Word ambi-sso
guity may not be a mere defect but a requirement fep
connectedness and thus language. Our findings suggests
a possible scenario for the origins of language. Reducing
A (giving more weight to minimizingZ(S)) maximizes s
the chance of connectedness. The emergence of connect-
edness could be a side effect of saving the cost of signal
use.
Atheory of word frequencies needs answering diffefs
ent questions:

488

496

498
1. Why do words arrange themselves according e
Zipf’s law (Eq. (1))?
2. Why do humans choose some particular valug?of so:
3. Why is there variation i?
4. What are the limits of that variation?
5. What is the link between Zipf's law and human lanso
guage?

500

502

503
505

Many answers have been proposed for Questions %2

P. There, the presence of Zipf’'s law in the vicinities of (Ferreri Cancho, 2005dAs far as we know, Question 1 s
an abrupt change is the hallmark of a continuous phaseand 2, have only been answered assuming that words are
transition. In contrast, the phase transition from discon- used according to their meaningherrer i Cancho and so

nectedness to connectedness in a classioEdfenyi
graph(Erdos and Rnyi, 1960; Bollolas, 2001)s con-
tinuous(Newman etal., 2001; Stepanov, 197he hall-

Sok (2003), Ferreri Cancho (2005a,8hoosing values s
of 8 near 2 could be an optimal solution for a conflict.
between maximizing the information transfer and saving

mark of continuous phase transition in classic unipartite the cost of word uséFerrer i Cancho and S®l 2003; =
graphs is a power distribution of connected component Ferrer i Cancho, 2005dRuestions 3 and 4 have beguni.
sizes(Newman et al., 2001 which is related to a crit-  to be addressed iRerrer i Cancho (2005c,afhe idea sis
ical branching proces@Harris, 1963)at the threshold s that the lower bound and the upper bound$ afre
for connectedness. Other examples of continuous phaseobtained when maximizing for A = 0 andi = A*, re-
transitions are the transition from resistivity to super- spectively. The present article sheds new light on Ques-
conductivity (continuous in the absence of an external tions 3, 4 and 5. As for Question 3, variationdmmy be
magnetic field) and the conversion of iron from param- due to the chance of connectedness. As for Question 4t
agnetic to ferromagnetic forigBinney et al., 1992)In has been argued that the variatioraé constrained by
a communication context, the model examined here not the fact that maximizing2 for A € [0, 1] gives a narrow
only apparently shows a discontinuous transition to dis- interval of exponentgFerrer i Cancho, 2005c)t has
connectedness but also to maximum information transfer been argued that the interval of variationféxcludes
and maximum cost for = A* (Ferreri Cancho, 2005d) 8 — oo because the maximum cost, i#(S) = logn,
The divergence off for A = A* is accompanied by is paid in that case. The argument has some drawbacks.
a jump to maximum information transfeFiy. 7). In- H(S) = logn is a slow growing function of. In prac-
creasing. increased (S, R) but decreases the size of the tice, significant differences in logbetween two differ- s
largest connected component (the significance of the de-ent systems can only be obtained if the respective valuas
crease depends on the size of the system). At the pointof n differ in at least one order of magnitude. In order tes
where thel (S, R) is maximum/L is minimum. In a com- explain whys — oo is not found, one has to argue thats:
munication system maximizing, communication us-  speakers, in general, are very sensitive to the variationsef
ing isolated signals and language are in conflict. Human logn, which we do not know. Instead, one may propos&
speakers may need to regulatén order to maximize a stronger argumengi — oo is not found because thesz
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chance of connectedness is Ofor- 1 (as seen above).  dictions cannot be easily tested. Nonetheless, we hope

That is a compelling reason for not finding largen that that what follows is not taken as the ultimate explass
human language. We do not mean that Ig#8ge impos- nation or as an unthoughtful hypothesis, but rather assa
sible to attain in humans, but it would be surprising to suggestive research track. 590

find it in a system combining words through semantic The largest values gfthan have been found up to nowss:
constraints. As for Question 5, our work suggests that insingle author text samples correspond to schizophregic
the exponent of Zipf’s law is an important factor for the patients in the acute phase of the illn¢Berrer i Can- s«
presence or absence of language. In sum, the present areho, 2005c; Piotrowski et al., 1995pne of the most su
ticle puts another step forward in the construction of a salient features of schizophrenia is ‘disorder of thoughts
theory of word frequencies. (Elvevag and Goldberg, 1997pisorder of thought may se
Till now, we have studied the implications of large ex- be described as disturbances in the structure, orgadai-
ponents in a theoretical model. We would like to provide zation and coherence of thought that are reflected s
a framework that can offer new insights in real cases. reduced intelligibility and increased disorganization afs
Schizophrenics speakers with large exponents will re- speech that is difficult, if not impossible, for the listenetw
ceive special attention. For that reason, is it is important to comprehendBleuler, 1911/1950)Our model makes o
to review the facts that provide support for the sound- two relevant predictions for the case of schizophrenics:
ness of the theory. With the theoretical framework used First, the chance of being on the edge of an abrupt tras-
here, two types of successful predictions have been pre-sition grows with the value g8, so schizophrenics with s
viously made: general predictions and specific predic- large exponents may be threatened by an apparently dis-
tions for schizophrenia. As for the general predictions, continuous phase transition where language breaks iat0
we have seen two predictions that are made by mini- pieces. Second, if is small, the decrease in the size ofo
mizing £2(1) in Sectionl. That is not all. Nouns have a the largest connected component witlfand therefore eos
greater exponent that all parts-of-speech mixed together, ) is significant (recalFig. 6). The larger the value &, o
B € [2.1, 2.3], approximately(Ferrer i Cancho, 2005c)  the smaller the size of the largest connected compones.
There is a wide consensus in linguistics and philosophy Both predictions are apparently consistent with the ap:
about the greater semantic specificity of nouns (e.g. the pearance of thought disorder in schizophrenia. It is hasd

concept of rigidity of nouns in Kripke's workKripke, to imagine how a schizophrenic can construct a coherent
1990). The theoretical approach followed in this arti- discourse if the size of the largest connected componeiat
cle allows one to predict a higher semantic precision for has dramatically decreased. 615
nouns because of their higher exponent &aeer i Can- The network of signal-stimulus associations is as

cho (2005bY¥or the details of the argument). As for the emergent structure of the neural substrate. Integrating
predictions specific to schizophrenia, we will concen- stimuli of various kinds with words implies connect-is

trate on the speech of schizophrenics with |Bwcon- ing distant neural tissues. In order to have an exanis
taining many words related to the patients topic of obses- ple of mind, visual and temporal stimuli tend to be reso
sion(Piotrowski et al., 1995)t has been shown thatrif lated to occipital and temporal areas of the human brain

is kept constant and < 2, thenH(R|S) (a measure of  (Pulvermiller, 2003) It is reasonable to think that thesz
word ambiguity) grows ag decreaseferrer i Cancho,  density of synapsis has an influence on the largest cen-
2005b) The theory predicts thai (R|S) diverges when  nected component of the network of signal-stimulus as
B < 2 and expressivity is maximized (i.e1 is maxi- sociations. Thusg, specially for smalh, can be seen asezs
mized). Thusm must be kept small to avoid having too  an indicator of the size of the largest connected compas
ambiguous words, which explains the onset of obsessionnent, which would be in turn an indicator of the density
(Ferreri Cancho, 2005biNotice that the lowering of the  of the neural substrate. The link density of the networds
exponent (ifhn remains constant) translates into a greater of signal—stimulus associationssis= M/nm. Knowing e
repetition of words, but the latter does not imply thatthe M = n(k) p, we may write§ = (k) p/m. It can be easily s
speechis circumscribed very particular topic (in our sim- seen thatk)p decreases witl (see AppendiXA and e

plified model, a narrow topic corresponds to a small Ferrer i Cancho, 2005bFor largemandg > 2 we have &2
Our theoretical approach makes a strong prediction: ob- (see Appendixd) 633
session at the level of the topic of the discourse, not only 1-8

more repetition at the surface level of words. In sum, we (k)p ~ m (22) 62

believe that there is a critical mass of successful predic-
tions allowing one to move to cases where there is no If our hypothetical correspondence betwegnand e
available information for testing the predictions or pre- synaptic density (or size in words of the largest conss
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nected component) was correct, one would expect thatsynapsegHamos et al., 1989although there is no study sss
the smallest synaptic density would be for the largest of Zipf’'s law on Alzheimer’s disease, as far as we knowso
values of 8, which corresponds to schizophrenic pa- The use of schizophrenics instead of other is due to the
tients in the acute phag@iotrowski et al., 1995)In- fact the schizophrenia is, as far as we know, the ondy
terestingly, it has been speculated that excessive synapbrain alteration where Zipf's law has been studied. o
tic pruning occurs in schizophrenia, which may lead The model presented here suggests a track for under-
to psychosis when it reaches a thresh@tueser and standing non-pathological cases. While schizophrenigs
McGurk, 2004; Innocenti et al., 2003; Keshavan et al., with large exponents seem to face the problem of the
1994) SeeMcGlashan and Hoffman (2000pr a re- destruction of connectedness, children seem to facesan
view of recent evidence for reduced connectedness ininverse problem, i.e. the development of connectedness.
schizophrenia. Our work is consistent with the spirit of The relatively shorttime elapsed from the single-word te.
Feinberg’s hypothesis, relating the onset of schizophre- multiple-word utterances (of the order of several months
nia to a critical decrease in synaptic dengfginberg, (Johnson et al., 199B)suggests that the emergence aof:
1982) We do not mean that a critically low synaptic den- syntactic communication in children could be a phase
sity is the only possible cause of schizophrenia and that transition to connectedness in the network of word syms
reduced synaptic density must always originate through tactic interactions. According to our model of a rudimerts.
the exact mechanisms that Feinberg proposed. Insteadtary form of language, that transition would be an epiphes
we claim it is not surprising that large exponents belong nomenon of a transition to connectedness in the netwask
to schizophrenic patients since those exponents predict aof signal—stimuli associations. Whether the presumable
decreased synaptic density, which is an important factor phase transition would be continuous or not would dess
that may lead to schizophrenf®#cGlashan and Hoff- pend of the presence or not of a special signature: scaliag
man, 2000; Harrison, 1997; Mueser and McGurk, 2004) in the distribution of connected component sizes in the
Our work suggests that the exponent of Zipf’s law could network of word syntactic interactions. We know that:
be used to detect synaptic density alterations and morethe network of syntactic interactions of adults is (almost).
importantly, brain area disconnections. connectedFerrer i Cancho et al., 2004ut the signa- s
We intend to study schizophrenic language and com- ture above may be found in children at a critical time. T
munication from a specific specific framework. Itistech- sum up, our findings open new research prospects and
nically impossible that our approach accounts for the support that Zipf’s law, rather than an curious regularityss
wide range of features of schizophrenia. Neural net- is an essential aspect of human language. 77
work models have accounted for important aspects of
schizophrenia such as its unique symptoms, short- a”dAcknowledgments
long-term course, typical age of onset, neurodevelop-
mental deficits, limited neurodegenerative progression
and sex differencegHoffman and McClashan, 2001;
McGlashan and Hoffman, 2000pur model should be

718

We are grateful to Vito Servedio for helpful com-ns
ments. Discussions with Toni Heéandez and Brita 7
' b . Elvevag have had a great influence for the arguments
seen as an attempt to cover a very specific dimension ot i a+ article. We specially thank Brita ENag for sug-
of schizophrenia. As far as we know, no model be- gaqting many improvements. This work was funded by
fore has facgd th.e a!teratlons in the exponenF of Zipf's {he ECAgents project (RFC), funded by the Future anel
law and the implications for language. The aim of the  ger4ing Technologies program (IST-FET) of the Eurass
present article is not providing an ultimate explanation pean Commission under the EU RD contract IST-1940s

about what happens in schizophrenics with large €xpo- The information provided is the sole responsibility of the:
nents but putting forward a strong theoretical hypothesis 4 ihors and does not reflect the Commission’s opinion:
that would need further research. Future work should be The Commission is not responsible for any use that may

devoted to test the correlation suggested by the model ade of the data appearing in this publication. o
between high exponents and brain alterations. Unfortu-

nately, the brain alterations in the patients with high .

examined byPiotrowski et al. (1995re not available in ~ APPeNdix A 731
their work. Our model is abstract enough to embrace not ) ) ]

only schizophrenics speakers with large exponents but e @ssumek is a random discrete variable whose:

also other kinds of pathological speakers exhibiting large Probability is 733
exponents. Among those, patients with Alzheimer’s dis-
ease are specially interesting because of their loss of P(k) = ck™” (23) 7=
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whereg is a constant and

. 1

YT

is a normalization termk), the mean value dfis

(k) =c> kP
k=1

We can approximaték) replacing summations by inte-
grals and write

Pk

T[T kPdk

Solving the integrals, we obtain
A= Bm*F - 1)

T =PI -1y

Form — oo andg > 2, we get

~ 1P
~ g

c (24)

(25)

(k) (26)

(k) (27)

(k) (28)
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