
*ORWWRPHWULFV���������������
 

&DQ�VLPSOH�PRGHOV�H[SODLQ�=LSI¶V�ODZ��
IRU�DOO�H[SRQHQWV"��

 
5DPRQ�)HUUHU�L�&DQFKR � ��5RPH�

9LWR�'��3��6HUYHGLR��5RPH�
 
 
$EVWUDFW�� H. Simon proposed a simple stochastic process for explaining Zipf’s law for word 
frequencies. Here we introduce two similar generalizations of Simon’s model that cover the same 
range of exponents as the standard Simon model. The mathematical approach followed minimizes the 
amount of mathematical background needed for deriving the exponent, compared to previous 
approaches to the standard Simon’s model. Reviewing what is known from other simple explanations 
of Zipf’s law, we conclude there is no single radically simple explanation covering the whole range of 
variation of the exponent of Zipf’s law in humans. The meaningfulness of Zipf’s law for word 
frequencies remains an open question. 
 
.H\ZRUGV��=LSI¶V�ODZ��6LPRQ�PRGHO��LQWHUPLWWHQW�VLOHQFH��
�
�

,1752'8&7,21�
 
Zipf’ s law for word frequencies is one of the most striking statistical regularities found in 
human language. If I is the frequency of a word, the proportion of words having frequency I 
follows  

β−II3 ~)( , (1) 

 
where β�≈ 2 in normal adult speakers (Zipf, 1932; Zipf, 1949; Ferrer i Cancho, 2005a). β is 
the exponent of Zipf’ s law. For simplicity, here we assume Eq. 1 for word frequencies, 
although other functional forms have been proposed (Chitashvili & Baayen, 1993; Tuldava, 
1996; Naranan & Balasubrahmanyan, 1998). H. A. Simon proposed a process constructing a 
random text for explaining Zipf’ s law (Simon, 1955; Simon, 1957). At each iteration step, the 
text grows by one word. The (W+1)-th word will be either a new one (with probability ψ) or an 
old word (with probability 1-ψ). An old word means a word that has already appeared in the 
text. The old word is obtained choosing one word occurrence of the existent text sequence at 
random. All occurrences of words in the sequence have the same probability of being chosen. 
Equivalently, the old word can be chosen in the following way: the probability of choosing 
the word L is proportional to Ii, the normalized frequency of word L in the text sequence. The 
asymptotic distribution of the process follows Eq. 1 with  
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(Simon, 1955; Simon, 1957; Rapoport, 1982; Manrubia & Zanette, 2002; Zanette & 
Montemurro, 2005). 
 

Simon’ s model reproduces Zipf’ s law with β�> 2. β�≈ 2 is obtained for small values of ψ. 
Simon’ s model has been applied to many contexts. Some examples are the scale-free degree 
distribution of complex networks (Bornhodlt & Ebel, 2001) and the distribution of family 
names (Zanette & Manrubia, 2001; Manrubia & Zanette, 2002; Manrubia HW�DO., 2003).  
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Our models are simple generalizations of Simon’ s and follow essentially the same idea.  
 

02'(/�$� At each iteration step, the text grows by P copies of a word (P�> 0). 
The P copies will be either from a new one (with probability ψ) or from an old 
one (with probability 1-ψ). The old word is obtained choosing one word of the 
text sequence at random, as in Simon’ s standard model. The probability of 
choosing the L-th word is proportional to Ii, the frequency of the word.  
 

As it is formulated, model A means that the text sequence consists of blocks of P copies of 
the same word. That is not realistic when P�> 1. A slight variation makes the generalized 
model more realistic, while giving the same word frequency distribution (see below for the 
mathematical details about the equivalence): 
  

02'(/�%. At each iteration step, the text grows by one word. The (W+1)-th word 
will be either a new one (with probability ψ) or an old word (with probability 
1-ψ). The old word is obtained choosing one member of the text sequence at 
random. In this case, the probability of choosing the L-th word is proportional to Ni, 
the weight of the word. Every time a word is chosen, P is added to its weight. 
New words have zero weight.  Ii , the frequency of the L-th word of the text is 
Ii =�Ni / P.  

 
When P�= 1, we have Ii = Ni. In that case, Simon’ s model and model A and B are identical. 
The Appendix shows that the frequency distribution of models A and B follows Zipf’ s law 
(Eq. 1) and the exponent is given by Eq. 2 (as in the standard Simon model). Interestingly, the 
exponent does not depend on P (P�≥ 1). The Appendix provides a calculation of 3(I) for 
Simon’ s model (P�= 1) that is more detailed and requires less mathematical background than 
existing calculations (Simon, 1955; Simon, 1957; Rapoport, 1982; Manrubia & Zanette, 2002; 
Zanette & Montemurro, 2005).  
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Our extensions of Simon’ s model account for the same range of exponents as the standard 
Simon model. Neither the standard Simon model nor our generalizations cover the full inter-
val of real exponents in word frequencies. As far as we know, real exponents lie within the 
interval [1.6,2.42] in single author text samples (Ferrer i Cancho, 2005a). 1 < β < 2 has been 
found in some schizophrenics (Whitehorn & Zipf, 1943; Zipf, 1949; Piotrowski, 1995). β�= 
1.6 was reported by Piotrowski (1995). Young children have been shown to follow β�= 1.6 
(Brilluen, 1960; Piotrowski, 1995). β�= 1.7 was found in military combat texts (Piotrowski, 
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1995). The standard Simon model and our extensions exclude the exponents of children and 
some schizophrenics. 

Simon’ s model is a ELUWK�VWRFKDVWLF�SURFHVV. A ‘birth’  means choosing a word that has not 
yet been used. ψ is the birth rate. Simon’ s model has been extended to consider also ‘deaths’  
(Manrubia & Zanette, 2002), which here means the possibility that a word occurrence 
disappears from the text. One may think that the fact that a word occurrence disappears means 
that the occurrence has been ‘forgotten’ . If ω is the death rate (i.e. the probability that a 
‘word’  disappears at any iteration step), the extended Simon model by Manrubia and Zanette 
obeys Zipf’ s law (Eq. 1) with  
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When words never ‘disappear’ , i.e. ω�= 0, Simon’ s standard model is recovered (Simon, 

1955). It is easy to show that we have β� < 1 or β� > 2 for the birth-death model. When 
1�-�ω���ψ�< 0,  it follows that  
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which leads to β<1 using Eq. 3. β<1 is problematic since 3(I) can only be a probability 
function if time is finite. When 1-ω�ψ>0 it follows that 1-ω!ψ. So, assuming  ψ>0 we obtain 
1-ω!��ω�ψ. Dividing by 1-ω�ψ on both sides of the previous equation we obtain 
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(5) 

 
which leads to β > 2 using Eq. 3. The interval β�∈ [1,2] is covered neither by the standard 
Simon’ s model,  nor by our extension, nor by Manrubia and Zanette’ s extension. 

While Manrubia & Zanette’ s extensions were not motivated by Zipf’ s law for word 
frequencies, Zanette & Montemurro extended Simon’ s model to make it more realistic for 
word frequencies (Zanette & Montemurro, 2005; Montemurro & Zanette, 2002). Recall 1t is 
the vocabulary size at time W. Their first extension (ZM1) takes into account that vocabulary 
growth in Simon’ s model is linear (1t ~ ψW) while real vocabulary growth is sublinear. ZM1 
gets 1t ~ Wν by replacing the constant rate ψ at which new words are added by a time 
dependant rate  
 

1
0

−= νψψ W , (6) 

 
where 0 < ν�< 1 and ψ0 is the initial rate. ZM1 gives β�= 1 + ν (Zanette & Montemurro, 
2005). It is easy to see that 1 < β < 2 for ZM1. The second extension (ZM2) tries to give 
recently introduced words more chance of being used again. After a series of simplifications, 
the final analytical model extends the standard Simon model with a probability γ. Any time an 
old word must be added, one word is chosen among all the words in the text regardless of its 
frequency (all existent words are equally likely) with probability and with probability 1-γ, an 
old word is chosen as in the standard Simon model, i.e. with a probability proportional its 
frequency of occurrence.  MF2 gives  
�
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Simon’ s original model is recovered for γ��= 0. Since γ�≥ 0, it is easy to see that  
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Knowing ψ�> 0 we have β�> 2. The third extension combines the extensions of ZM1 and ZM2 
leading to  
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(9) 

 
Knowing that γ�≥ 0, we obtain β�> 1 + ν. Knowing ν�> 0 we get β�> 1. 

Simon’ s model and intermittent silence are among the simplest explanations for Zipf’ s 
law in word frequencies. Intermittent silence models consist of concatenating characters from 
a set including letter (or phonemes) and blanks (or silences). Every time a sequence a blank is 
produced, a new word starts (Miller, 1957; Miller & Chomsky, 1963; Mandelbrot, 1966; Li, 
1992, Suzuki HW�DO� 2005). For simplicity, it is assumed that all letters are equally likely. If σ� 
is the probability of blank (or silence), intermittent silence reproduces Zipf’ s law with  

 

1

log
)1log(

1

1 +−−
=

/
σβ � (10) 

 
The model in (Li, 1992; Suzuki HW�DO�, 2005) is recovered when blanks have the same prob-
ability as any of the letters, that is, when  σ�= 1/(/�+ 1). Assuming /�> 1 and σ�> 0, /�→ ∞ 
and σ�→ 0 give  
 

0
log
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 <−<∞− /

σ � (11) 

 
Using the bounds in Eq. 11 on Eq. 10 we get β�∈ (1,2). Therefore, intermittent silence ac-
counts for a fraction of the interval of variation of real exponents. Interestingly, the wide-
spread skepticism about the meaning of Zipf’ s law among scientists is mostly based on 
intermittent silence (Miller & Chomsky, 1963; Nowak HW�DO�, 2000; Wolfram, 2002), which 
turns out to be incomplete.  

The main argument against Zipf’ s law meaningfulness is that simple models can 
reproduce the law (Miller & Chomsky, 1963; Rapoport, 1982; Suzuki HW�DO. 2005). It is worth 
to mention that Suzuki HW� DO� take a special position, acknowledging the possible 
meaningfulness of Zipf’ s law for word frequencies but denying the relevance of Zipf’ s law for 
units (e.g. symbols) from unknown sources. Suzuki HW�DO�’ s main argument is that the presence 
of Zipf’ s law is not, in general, a sufficient for communication of any kind. If Zipf’ s law alone 
is considered a sufficient condition, false positives may be obtained. The criticisms mentioned 
above consider a very narrow interval of real exponents and use essentially two simple 
models, i.e. intermittent silence and the standard Simon’ s model. Those models are actually 
simple but do not cover, indeed, the whole range of real exponents.  



&DQ�VLPSOH�PRGHOV�H[SODLQ�=LSI�V�PRGHO�IRU�DOO�H[SRQHQWV"�

 

5

We have seen that it is not easy to find a model covering the whole range of exponents. 
ZM3 is, as far as we know, the only modification of a simple model that covers the whole 
range. ZM3 is less simple than Simon’ s original simple model. In fact, arguing that ZM3 is a 
simple model is problematic, since it in incorporates two particular extensions at the same 
time. Therefore, one can safely, conclude that, so far, there is no radically simple explanation 
of Zipf’ s law covering the whole range of exponents.  

The classic criticisms against Zipf’ s law meaningfulness need to be reviewed to the light 
of the range of real exponents. If the key problem against Zipf’ s law meaningfulness is 
finding a simple explanation, two different models are actually needed depending on the value 
of β: intermittent silence when β�< 2 and Simon’ s model when β�> 2. That is not very elegant 
since human language could be essentially the same system when considering the variations 
of β below or above 2 in normal adult speakers (Ferrer i Cancho, 2005a). Whether variations 
of β below or above 2 are the outcome of essentially the same communication system in 
normal adult speakers is a matter of current debate (Ferrer i Cancho, 2005a; Ferrer i Cancho, 
2005b). We believe that ZM3 will be a crucial model in future discussions about the relevance 
of Zipf’ s law. In the absence of a radically simple model for Zipf’ s law covering the whole 
interval of real exponents, it seems wiser to give Zipf’ s law meaningfulness a chance in 
human language.  
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We start with the derivation of the word frequency distribution for model A. Thus, we 
consider an extended Simon where P identical words are added to the text at every time step W 
(W�> 0). The identical words added are new with probability ψ or they are a copy of an existent 
word (which is chosen at random from the text) with probability 1 - ψ. The text sequences has 
10 different words and P0 word occurrences at the 0-th step (10 ≤ P0). 3(I) can be easily 
derived with the mean field schema used for the Barabási-Albert scale-free network model 
(Barabási & Albert, 1999a, Barabási & Albert, 1999b). If N � , the number of occurrences of the 
L-th word in Model A, and also W, are treated as continuous variables, then the expected 
variation of N �  is 
 

�
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where  
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and 1t is the number of different words at time W� πi  can be seen as a continuous rate of 
change of Ni. 

Replacing Eq. 13 with PWPN� � +=∑ = 0
N

1
 t  into Eq. 12 we obtain 
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We define Wi as the time at which word L arrived. Integrating Eq. 14 for a word that 

appeared for the first time at W�= W 	  with P copies we may write  
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The previous Eq. leads to 
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According to Eq. 16., τ(N, t), the expected time of arrival of a word with N occurrences when 
the process is at time W (the time at which a word with Ni occurrences was added for the first 
time when the process is in the W�th iteration) becomes 
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We define 3(Ni < N) as the probability that word L has less than N occurrences and 3(Wi > W) as 
the probability that word L arrives at time W or latter. We have that 
 

)),(()( WNW3NN3 �� τ>=< , (18) 

so  

)),((1)( WNW3NN3 �� τ≤−=< . (19) 

The number of words with Wi ��τ(N,t) is ψτ(N,t). Thus, the expected proportion of words 
with Wi ��τ(N,t) is   
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where P0+PW is the total amount of words at time W.  
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Replacing Eq. 19 with Eq. 20 into  
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we obtain  
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Interestingly, the distribution does not depend on either W, P0 or 10 and the exponent depends 
only on ψ. For P�= 1 as in the standard Simon model, Eq. 22 gives   
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Hence,  
β−NN3 ~)(  (24) 

with  
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as in the standard Simon process. For deriving the word frequency distribution in model B, 
we need to take into account that I�= N/P, where I is the random variable for the frequency of 
words and N is the random variable for the weight of words. We define 3(I) as the probability 
that a word has frequency I in model B. We have ))(()(

~ IN3I3 =  with N(I) = PI  so we get  
 

β−II3 ~)(
~

 (26) 

using Eq. 24. Therefore, model B follows Zipf’ s law with the same exponent as model A. 
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