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Abstract. Here we present a new model for Zipf’s law in human word frequencies. The model defines
the goal and the cost of communication using information theory. The model shows a continuous phase
transition from a no communication to a perfect communication phase. Scaling consistent with Zipf’s law is
found in the boundary between phases. The exponents are consistent with minimizing the entropy of words.
The model differs from a previous model [Ferrer i Cancho, Solé, Proc. Natl. Acad. Sci. USA 100, 788–791
(2003)] in two aspects. First, it assumes that the probability of experiencing a certain stimulus is controlled
by the internal structure of the communication system rather than by the probability of experiencing it in
the ‘outside’ world, which makes it specially suitable for the speech of schizophrenics. Second, the exponent
α predicted for the frequency versus rank distribution is in a range where α > 1, which may explain that
of some schizophrenics and some children, with α = 1.5−1.6. Among the many models for Zipf’s law,
none explains Zipf’s law for that particular range of exponents. In particular, two simplistic models fail
to explain that particular range of exponents: intermittent silence and Simon’s model. We support that
Zipf’s law in a communication system may maximize the information transfer under constraints.

PACS. 87.10.+e General theory and mathematical aspects – 89.75.Da Systems obeying scaling laws

1 Introduction

Human word frequencies are known to obey a universal
regularity. If P (i) is the frequency of the ith most frequent
word in a text, then it follows that

P (i) ∼ i−α, (1)

where we have typically α ≈ 1 [1,2]. Equation (1) de-
fines the so-called Zipf’s law. Equation (1) is the frequency
versus rank representation of Zipf’s law.

Although α ≈ 1 is usually found in word frequencies,
significant deviations have been reported:

– α < 1 in fragmented discourse schizophrenia. The
speech is characterized by multiple topics and the ab-
sence of consistent subject. The lexicon of a text of that
kind may be varied and chaotic [3,4]. α ∈ [0.7, 0.9] is
found. That type of schizophrenia seems to be found
in early stages of the disease but not all early stages
should follow that pattern.

– α > 1 in advanced forms of schizophrenia [1,3,4]. Texts
are filled mainly with words and word combinations
related to the patients obsessional topic. The variety of
lexical units employed here is restricted and repetitions
are many. α = 1.5 is reported in [3,4].

– α > 1 in young children [3,5,6]. α = 1.6 is reported
in [5]. Older children conform to the typical α ≈ 1 [7].

– α = 1.4 in military combat texts [4,8].
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Two trivial explanations have been proposed for Zipf’s
law: intermittent silence [9–14] and Simon’s model [15].
Because of their over simplifications with regard to real
words, those models are often considered null-hypothesis
rather than models in the strict sense.

Intermittent silence consists of random sequences of
letters (or phonemes) interrupted by blank spaces (or si-
lences). The belief that Zipf’s law in human words can
be explained by a such a trivial process is widespread in
science [14,16–20] although intermittent silence texts and
real texts differ greatly [21,22]. The simplest intermittent
silence model obeys [14,20]

α =
log(L + 1)

log L
, (2)

where L is the number of letters (or phonemes) of the
alphabet. Equation (2) comes from assuming that silence
and each letter have probability 1/(L+1). It follows from
equation (2) that α > 1. The simplest intermittent silence
cannot explain the cases where α < 1 and cannot easily
reproduce the frequency distribution of the cases where
α > 1. If α > 1.58 then no simple intermittent silence
model can account for the exponent (Fig. 1) which may
exclude young children. If 1.26 ≤ α ≤ 1.58, then L ≤ 3,
which is inconsistent with the unaltered number of letters
(or phonemes) of schizophrenics. Besides, schizophrenic
patients with α < 1 are also excluded because equation (2)
gives α > 1 for finite L. The exponent of military combat
texts cannot be explained either because it lays between
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Fig. 1. α, the exponent of Zipf’s law, versus L, the number of
letters, of an intermittent silence model.

the exponent predicted by L = 2 (α = 1.58) and L =
3 (α = 1.26). A slightly more complicated intermittent
silence covers continuously the values of α from 1 to ∞. If
the probability of silence is σ and the probability of each
letter is 1/L we have [10]

α = 1 − log(1 − σ)
log L

. (3)

Equation (2) is recovered when σ = 1/(L + 1). Assuming
that L is constant (i.e. the number of letters or phonemes
is unaltered in military combat texts, schizophrenics and
may be also children), equation (3) predicts that the larger
the value of α the larger the value of σ. In turn, the larger
the value of σ, the shorter the length of words. A signif-
icant word length decrease in military combat texts and
schizophrenics is hard to justify. Word length reduction
is not known to be among the linguistic manifestation of
schizophrenia [23]. Ultimately, the major problem inter-
mittent silence has as a model of word frequencies is a
radically unrealistic design. Intermittent silence assumes
that words are created from scratch by combining charac-
ters on the fly. In contrast, real words are selected from a
mental lexicon, i.e. a set of preconstructed words or base
word forms [24,25]. While the mental lexicon is essentially
finite, intermittent silence does not tentatively bound the
number of words it can generate.

Simon’s model is based on generating a text by choos-
ing at random words that have been previously used. That
model can only explain α < 1, so both young children and
some schizophrenics are excluded. Simon’s original model
is a birth process. Extending Simon’s model so that it
becomes a birth and death process [26] cannot explain
exponents α > 1 either. In sum, Simon’s model or inter-
mittent silence cannot easily explain atypical exponents.
The problems are: inconsistent predictions and assump-
tions or parameters values that are hard to justify. The
model that will be introduced here does not have such
kind of problems.

The present article is devoted to show that Zipf’s law
with the particular range of α > 1 found in schizophren-
ics and children can be explained by a non-trivial pro-
cess, namely, maximizing the communicative efficiency of
a system under constraints. The model presented shows
Zipf’s law in the vicinities of a phase transition. Phase
transitions of decoding algorithms in a noisy channel have
received attention in the physics literature [27–29]. The
model presented here shows a phase transition between
no communication and perfect communication in a noise-
less channel as in [30]. We will support that Zipf’s law
may be a scaling law appearing in the vicinities of a phase
transition [30] in different circumstances.

2 The model

We assume we have a general communication system that
is defined by a set of n signals S = {s1, ..., si, ..., sn} and
a set of m stimuli R = {r1, ..., rj , ..., rm}. Here we assume
that signals are equivalent to words and stimuli are the
basic ingredients of word meaning. For instance, the word
‘dog’ is associated to visual stimuli (e.g. the shape of a
dog), auditive stimuli (e.g. barking), ... All these stimuli
are elicited by the word ‘dog’ [31]. Our stimuli are some-
times called objects or events in the origins of language
literature [19,32]. We assume that signals link to stimuli
and that connections are defined by an n×m binary ma-
trix A = {aij} where aij = 1 if si and rj are linked and
aij = 0 otherwise.

We assume that the goal of human language is that of
any communication system, i.e. maximizing I(S, R), the
Shannon’s information transfer between the set of signals
S and the set of stimuli R [33]. As in [30], we assume that
communication has a cost of signal use that is defined by
H(S), the entropy associated to signals. It is known in
psycholinguistics that the lower the frequency of a word,
the lower its availability (the so-called word frequency ef-
fect [34]). The availability affects both the speaker when
it has to find a signal for a particular stimulus and the
hearer, who has to find the intended stimulus by a signal.
The higher the availability the lower the cost. So the worst
case situation is given by all words being equally likely
(p(si) = 1/n for each i). In that case, we have maximum
H(S). The minimum cost situation is when all signals have
probability zero except one. In that case, H(S) = 0. H(S)
is a measure of the cost of the communication. We define
the energy function Ω0 that any communication system
must minimize as in [30] as

Ω0(λ) = −λI(S, R) + (1 − λ)H(S), (4)

where 0 ≤ λ ≤ 1. λ is a parameter controlling the balance
between the goals of communication (maximizing I(S, R))
and minimizing the cost of communication (minimizing
H(S)). Communicative efficiency is totally favoured when
λ = 1 whereas saving cost is totally favoured when λ = 0.

The information transfer between S and R can be de-
fined in two equivalent ways [35]:

I(S, R) = H(R) − H(R|S) (5)
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or
I(S, R) = H(S) − H(S|R), (6)

where H(R) is the entropy of stimuli, H(R|S) is the
average entropy associated the interpretation of signals
and H(S|R) is the average entropy associated to choos-
ing a certain signal for a certain stimulus. Knowing equa-
tion (5), equation (4) becomes

Ω0(λ) = −λH(R) + λH(R|S) + (1 − λ)H(S). (7)

Minimizing Ω0(λ) when H(R) is constant as in [30], keep-
ing λ fixed, is equivalent to minimizing

Ω1(λ) = λH(R|S) + (1 − λ)H(S), (8)

the main energy function used in [30]. Here we will not
have constant H(R).

Alternatively, we may write equation (4) as

Ω0(λ) = (1 − 2λ)H(S) + λH(S|R) (9)

using equation (6). Whereas H(S|R) is always minimized,
H(S) is minimized if 1−2λ > 0 and maximized if 1−2λ <
0. Thus, the solution of 1 − 2λ = 0 gives λ = 1/2 as the
point where a radical change in the behavior of Ω0 takes
place.

Here we define the joint probability of si and rj as
in [30] as

p(si, rj) =
aijp(rj)

ωj
, (10)

where p(rj) is the probability of the jth stimulus and

ωj =
n∑

k=1

akj (11)

is the number of links of that stimulus. We define µi =∑m
j=1 aij as the number of links of the ith signal and

M =
n∑

i=1

µi =
m∑

j=1

ωi (12)

as the total amount of links.
The main difference with [30] is that we assume

p(ri) =
ωi

M
, (13)

hence H(R) is not constant here. Replacing equation (13)
in equation (10) we obtain

p(si, rj) =
aij

M
. (14)

Equation (14) is used in [36]. Replacing equation (14) into
p(si) =

∑m
j=1 p(si, rj) we get

p(si) =
µi

M
. (15)

Assuming p(rj) ∼ ωj has the virtue of leading to sim-
ple probability definitions (e.g. p(si) ∼ µi) and also al-
lowing one to explain the interval of variation of α in

human language [37]. Interestingly, equation (14) allows
stimuli with no links (provided M > 0) whereas equa-
tion (10) with stimulus probabilities that are indepen-
dent of A does not. Here there is no freedom to deter-
mine {p(r1), ..., p(rj), ..., p(rm)} (shortly {p(rj)}) a priori
as in [30]. Here, p(rj) is a function of the matrix A. To un-
derstand the differences between the model in [30] and the
present model we need to define more precisely what we
mean by p(rj). p(rj) is not the probability that a stimulus
of type rj happens but the probability that a stimulus of
type rj is perceived. As an example of a reason against
the former definition, let us consider the huge amount of
stimuli that a normal human cannot perceive unless he
uses special instruments (e.g. ultrasounds, cosmic radia-
tion, the composition of atomic nuclei, etc.). Besides, one
expects that the frequency of a word is positively corre-
lated with the frequency of perceiving each of its asso-
ciated stimuli. Equation (10) is a simple way of defining
that correlation. The model in [30] assumes that {p(rj)}
is constant. Tentatively, it seems that the probability of a
certain stimulus is determined by the ‘outside’ world. Indi-
rectly, that means that the frequency of a signal is strongly
influenced by the frequency of its associated stimuli which
is in turn externally determined. For instance, the word
‘dog’ is more likely to be used than the word ‘aardvark’
because, roughly speaking, aardvarks, edentate mammals
that are common in Southern Africa, have a much more
restricted habitat than dogs. Even if the word ‘dog’ and
the word ‘aardvark’ where connected in the same way in A,
the frequency of the signal ‘dog’ should be higher than the
frequency of the signal ‘aardvark’.

That strong link between the ‘outside’ world and signal
use is challenged by displaced reference, the ability to talk
about something that is distant in time or space [38,39].
Displaced reference is an important feature of human lan-
guage but it is not uniquely human since bees have it [40].
Because of displaced reference, we can talk of ‘dogs’ even
when the stimuli elicited by dogs are not coming from the
‘outside’ world. The probability of experiencing the stim-
uli associated to the word ‘dog’ is mostly the probability
of talking or thinking about dogs. The latter probability is
related to that of experiencing dogs in the ‘outside’ world
but the relationship is not necessarily direct. If the flow
between ‘inside’ and ‘outside’ world is direct, one would
expect that internal stimulus probabilities mirror external
ones. We do not know about the extent to which a direct
flow exists in normal adults but there are special cases
where a purely direct flow seems clearly less likely. What
could happen when the boundary between the self and the
‘outside’ world is lost, as in schizophrenia [41,42]? Various
core aspects of the disease such as false believes, hallucina-
tions [41] and various cognitive impairments, including at-
tention problems [43], indicate that the relationship with
the ‘outside’ world is enormously complicated.

When we assume equation (13), we are assuming that
the probability of using a certain signal comes from ‘inside’
but in a special way, i.e. from the internal organization of
the communication system. That is what we hypothesize
specially for schizophrenia. That also could be happening
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in young children whose relationship with the ‘outside’
world is under construction.

H(S) and H(S|R) in equation (9) can be calculated
with the only assumption of equation (14). From the one
hand, the standard information theory definition [35]

H(S) = −
n∑

i=1

p(si) log p(si) (16)

can be developed using equation (15), which leads to

H(S) = log M − 1
M

n∑

i=1

µi log µi. (17)

From the other hand, the standard information theory
definition [35]

H(S|R) =
m∑

j=1

p(rj)H(S|rj) (18)

can be developed using equation (13) and knowing that
H(R|si) = log µi [36] so H(S|rj) = log ωj . Thus, we ob-
tain

H(S|R) =
1
M

m∑

j=1

ωj log ωj . (19)

As for H(S|R), its standard information theory defini-
tion, [35]

H(R|S) =
n∑

i=1

p(si)H(R|si), (20)

can be developed using equation (15) and knowing that
H(R|si) = log µi [36]. Since H(R|S) is the same as
H(S|R) changing ωj by µi, we get

H(R|S) =
1
M

n∑

i=1

µi log µi. (21)

Replacing the previous equation in equation (17), we get

H(S) = log M − H(R|S). (22)

3 Results

Here we minimize Ω(λ) keeping n and m constant for
different values of λ. A Monte Carlo technique at zero
temperature for minimizing Ω(λ) is used as in [30]. The
algorithm is based on generating random changes in A and
choosing any change decreasing Ω(λ). In [30], the number
of changes in A follows a binomial distribution. The partic-
ular issue here is simplifying the minimization algorithm
by making constant the number of changes in A. Here we
take the number of changes to be exactly two which is sim-
ilar to the two expected changes in [30]. The number of
changes should not be too large since otherwise the mini-
mization algorithm cannot converge to any solution. If the
number of changes is one (the smallest possible), then the
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Fig. 2. I(S,R) versus λ for systems of different sizes: n =
m = 100, n = m = 200, n = m = 300 and n = m = 400.
I(S,R) is the information transfer between the set of signals
(S) and the set of stimuli (R). λ is the parameter regulating
the balance between maximizing the information transfer and
saving the cost of signal use. Averages over 30 realizations are
shown. Natural logarithms are used for I(S,R).

changes can only be of two types (a) add a new link or
(b) remove an existing link. Changes keeping constant the
amount of links are not allowed, which is too restrictive.
Choosing two simultaneous changes gives (a) add a new
link and remove an existing link (b) add two new links (c)
remove two existing links. Changes keeping the amount of
links constant are allowed. Taking too many changes may
jeopardize the convergence to a minimum of Ω(λ), so we
take only two fixed changes for simplicity.

Since the information transfer can be equivalently de-
fined as equations (6) and (5), it follows that the max-
imum value of I(S, R) is given by the maximum value
of H(S), log n, and the maximum value of H(R), log m.
Since equations (6) and (5) are equivalent, it follows that
I(S, R) ≤ log min(n, m). Therefore, if a configuration
reaches I(S, R) ≈ log min(n, m) we will say that the infor-
mation transfer is maximum and the system is an (almost)
perfect communicator.

Figure 2 shows I(S, R) versus λ for systems minimiz-
ing Ω(λ) and having different sizes. A sudden jump from
the minimum information transfer to the maximum infor-
mation transfer is found for λ = λ∗. The type of abrupt
change suggests a phase transition from no communica-
tion to perfect communication. λ∗ is defined as the ap-
proximate point where scaling is found.

Figure 3 shows that P (i) is changing from a fast de-
caying function of i to a rather flat curve in a very narrow
interval of λ. In between, a distribution consistent with
equation (1) is found, supporting that a continuous phase
transition [44] is taking place for λ ≈ λ∗ = 1/2 − ε where
ε is a small positive number.

Since a Zipf’s law-like distribution is found for λ∗ <
1/2, that is, when H(S) is minimized, we wonder if the
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Fig. 3. P (i), the probability of the ith most frequent signal, obtained from minimum energy configurations for systems of
different sizes: n = m = 100 (A), n = m = 200 (B), n = m = 300 (B) and n = m = 400 (D). Four series are shown in each
plot: λ = 0.49 (circles), λ = λ∗ (squares), λ = 1/2 (diamonds) and the ideal curve for α∗, the value of α minimizing H(S) when
µi ∼ i−α (dashed line). µi is the number of links of the ith most connected signal. Averages of P (i) over 30 realizations are
shown. When λ = λ∗ we have α∗ = 1.54 for n = m = 100, α∗ = 1.51 for n = m = 200, α∗ = 1.5 for n = m = 300 and α∗ = 1.49
for n = m = 400. λ∗ is determined approximately. We have chosen λ∗ = 0.4986 for n = m = 100, λ∗ = 0.4987 for n = m = 200,
λ∗ = 0.4987 for n = m = 300 and λ∗ = 0.4986 for n = m = 400.

value of α we obtain can be explained by that minimiza-
tion and assuming only

µi = ci−α, (23)

where c is a constant, so that equation (1) follows using
equation (15). We can calculate H(S) using equations (17)
and (23). Equation (17) depends on c, n and α. Find-
ing α∗, the value of α minimizing H(S), when c and n are
constant implies a search on a two-dimensional landscape.
We would like to be able to reduce the number of dimen-
sions of that landscape. We can use a different definition
of Zipf’s law, that is

P (f) ∼ f−β, (24)

where P (f) is the proportion of signals whose probability
is f . P (f) is the so-called frequency spectrum represen-
tation of Zipf’s law [45]. It is known that equations (1)
and (24) are equivalent with [46]

β = 1/α + 1 (25)

and β > 1. Assuming equation (15) we may write equa-
tion (24) as

P (k) ∼ k−β , (26)

where P (k) is the proportion of signals with k links. We
define 〈...〉 as the expectation operator over

{P (1), ..., P (k), ..., P (m)}. (27)

Using M = n 〈k〉 and P (k), we may write equation (17) as

H(S) = log(n 〈k〉) − 1
n 〈k〉

m∑

k=1

nP (k)k log k. (28)

After some algebra we get

H(S) = log(n 〈k〉) − 〈k log k〉
〈k〉 , (29)

which depends on n,m and β. Minimizing equation (29)
with n and m constant is equivalent to minimizing

H ′(S) = log 〈k〉 − 〈k log k〉
〈k〉 , (30)

where 〈k〉 and 〈k log k〉 depend only on m and β. We may
find β∗, the value of β minimizing H ′(S) for different val-
ues of m. Once β∗ is obtained, we can use equation (25)
to get α∗. Figure 4A shows H(S) versus α with n = m for
the values of m used in Figure 3. We have α∗ = 1.54 for
n = m = 100, α∗ = 1.51 for n = m = 200, α∗ = 1.50 for
n = m = 300 and α∗ = 1.49 for n = m = 400. Values of
α∗ are close to the exponents obtained when minimizing
Ω(λ) for λ = λ∗ (Fig. 3). The previous results suggest
that the scaling found is due to a continuous phase tran-
sition where the exponent α is such that minimizes H(S).
Figure 4B shows that α∗ decays with m very slowly for
sufficiently large m, suggesting that if 1 < α < 2 is found
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in a communication systems that could indicate H(S) is
being minimized. Furthermore, if α ≤ 1 then H(S) is not
being minimized.

4 Discussion

We have seen that minimizing equation (4) can lead to
Zipf’s law at the vicinities of a phase transition with a
particular range of exponents. Nonetheless, we have not
discussed if alternative equations may or may not exhibit
that behavior. Tentatively, minimizing Ω0(λ) (Eq. (4)) is
not equivalent to minimizing Ω1(λ) (Eq. (8)) unless H(R)
is constant. H(R) is constant in the model in [30] but is
not here, so studying Ω1(λ) is needed. Equation (8) could
be rewritten as

Ω1(λ) = (1 − 2λ)H(S) + λ log M, (31)

knowing H(R|S) = log M − H(S) (Eq. (22)). Equa-
tion (31) is the same as equation (9) changing log M
by H(S|R). A radical change in behavior is expected for
λ = 1/2.

We could replace H(S) by a simpler measure of cost
that would be proportional to the effective lexicon size, i.e.
the number of signals with at least on connection. Thus,
we define

J(X) = |{x|x ∈ X and d(x) > 0}|, (32)

where |...| is the cardinality operator and d(x) is the degree
or number of connections of x. J(X) could take S or R
as parameters. We define another possible measure of the
cost of the lexicon S as

Ln(S) =
J(S) log n

n
. (33)

Ln(S) is a rescaled measure of the effective lexicon size.
Ln(S) is designed to vary in the same range as H(S), that
is, from 0 to log n. Therefore, we replace H(S) by Ln(S)
in equation (4) and obtain

Ω2(λ) = −λI(S, R) + (1 − λ)Ln(S). (34)

Finally, replacing H(S) by Ln(S) and −I(S, R) by
H(R|S) in equation (4) we obtain

Ω3(λ) = λH(R|S) + (1 − λ)Ln(S). (35)

Using Ω1(λ) we found a sharp transition for λ = 1/2 sim-
ilar to that of Ω0(λ) (Eq. (4)). No scaling was found sug-
gesting that the transition is discontinuous. The absence
of scaling using Ω1(λ) suggests that log M is too simple
for showing Zipf’s law. No sudden transition and no scal-
ing was found for either Ω2(λ) and Ω3(λ). The previous
results suggest that Ln(S) is too simple for showing a tran-
sition. The same was found using Ln(S) instead of H(S)
in [30], where {p(rj)} is constant.

We end our seek of alternative energy functions by
considering another energy function

Ω4(Λ) = −I(S, R) + ΛH(S), (36)

where Λ is constant controlling the weight of H(S). Al-
though it may not be obvious at first glance, Ω4 is ob-
tained from Ω0 through a simple algebraic transforma-
tion: Ω4(Λ) = Ω0(λ)/λ and Λ = (1 − λ)/λ. The outcome
of minimizing Ω4(Λ) is the same as that of minimizing
Ω0(λ) with Λ = (1 − λ)/λ. Whereas Ω0(λ) has a sharp
transition for λ = 1/2, Ω4(Λ) has it for Λ = 1.

Among the large amount explanations for Zipf’s law
in human words: tautologies [1,47], birth process [15],
word length minimization [11,13,48], intermittent si-
lence [10,11,14,48], differential equations for the word
frequency distribution [45,49,50], various types of ran-
dom Markov processes [13,51], optimization of informa-
tion theory measures [2,36,52–54], communicative phase
transitions [30], entropy discontinuities [55,56], random
walks in complex networks [57,58] and general models for
scaling [59,60], none, as far as we know, explains Zipf’s
law for the particular range of exponents found in chil-
dren and schizophrenics. The model presented here does
it (Figs. 3, 4). It has two different phases: a no communi-
cation phase (where I(S, R) ≈ 0) for λ < 1/2 − ε and a
perfect communication phase (where I(S, R) approaches
the maximum value) for λ > 1/2. Just at the transition
point, λ = λ∗ = 1/2 − ε a configuration (not a phase)
consistent with atypical human language is found. For val-
ues of λ sufficiently far from the transition point, P (i) is
characterized by different exponents: α → ∞ in the no
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communication phase, α finite but significantly different
from α = 0 in the transition point and α ≈ 0 (i.e. all
signals are equally likely) at the perfect communication
phase. Interestingly, α = 0 (or near), the exponent max-
imizing I(S, R), is never found in human language. We
may think that Zipf’s law in word frequencies has noth-
ing to do with communication, specially when some trivial
mechanisms that have nothing to do with communication
can explain some intervals of α [9–11,13–15]. The key to
understanding that human language or any other com-
munication system showing Zipf’s law actually maximizes
I(S, R) is that the cost of communication prevents lan-
guage from achieving the ideal α = 0.

The model in [30] also shows Zipf’s law on the edge of a
communicative transition, but α ≈ 1 is obtained instead of
α ≈ 1.5 as here. The differences in the exponent suggests
that using stimulus probabilities independent of A instead
of stimulus probabilities depending on A could make a
substantial difference in the behavior of a communication
system. The model presented here has some advantages
with regard to the model presented in [30]:

– Algebraic simplicity, e.g. H(R|si) = log µi and
H(S|rj) = log ωj . Thus, straightforward arguments
about the expected value of α at the transition can
be made (Fig. 4).

– Stimulus probabilities are not a parameter. We have
p(rj) ∼ ωj (Eq. (13)).

– More freedom: unlinked stimuli are allowed.
– Faster calculations: the static calculation of Ω takes

Θ(maxi{µi})+maxj{ωj}) time (whereas Θ(
∑n

k=1 µk)
time is needed in [30]).

The same numerical results we have found here could be
obtained by the analytical model in [36]. There, equa-
tion (13) is also assumed. The model introduced here
obtains Zipf’s law when minimizing Ω0(λ) with λ = λ∗
whereas the model in [36] does so when the entropy of
{P (k)} is maximized and 〈log k〉 is constrained. 〈log k〉
comes from the fact that if µi = k then H(R|si) = k [36].
H(R|si) is the uncertainty associated to decoding si, in
other words, a measure of the cost of decoding si. While
the model presented here gives a particular range of expo-
nents that depends on m, the model in [36] leaves the exact
value of the exponent to additional constraints. Since the
model here and the model in [36] share the same proba-
bility definitions, the latter can explain explain Zipf’s law
with the same dependence between the exponents and m if
H(S) minimization is assumed once the system organizes
according to equation (26).

Exponents very close to α = 1.5 are found in the model
(Figs. 3, 4) as well as in the speech of young children [3,5]
and schizophrenic patients [3,4]. The coincidence supports
that assuming p(rj) ∼ ωj is suitable for the case where
the relationship between the ‘inside’ and ‘outside’ world
is different than that of normal adults. Thus, word fre-
quencies of children and schizophrenic with α > 1 may be
tuned to maximize communicative efficiency at a critical
point where word entropy is minimized. Signal entropy
minimization makes sense in young children whose less
developed brain imposes minimizing the cost of commu-

nication, as well as in schizophrenics, where the illness
seems to affect the distinction between the speaker and
the hearer [61].

We have seen that our model could explain α ≈ 1.5
found in children and one type of schizophrenics but what
can we say about the other type, where α < 1? The normal
flow between the ‘inside’ and the ‘outside’ world is gener-
ally altered in schizophrenia so it makes sense to think that
the assumption p(rj) ∼ ωj (Eq. (13)) keeps having sense
for patients with α < 1. The difference could be that those
patients may not be subject to a critical balance between
maximizing the information transfer and the cost of com-
munication described by equation (4). The model in [36]
could explain them since it leaves the exact value of the
exponent to later constraints. More precisely, the problem
of schizophrenics with α < 1 could be that they are paying
an excessive cost for communicating. Knowing that cost
of communication (in terms of H(S)) grows as α decreases
when α < α∗ (Fig. 4A), schizophrenics with α < 1 could
be paying a higher cost than those with α > 1. Addition-
ally, the fact that the cost of decoding a signal decreases
with α (because it increases with β [36]; recall Eq. (25))
suggests that the individual words of schizophrenics with
α < 1 are more accurate than those of schizophrenics and
children with α > 1. In sum, schizophrenics and children
with α > 1 seem to have the most refined cost-benefit
tuning allowed by the assumption p(rj) ∼ ωj whereas
schizophrenics with α < 1 seem far from that.

Normal adult speech is in between no attachment and
total attachment to the ‘here and now’. Detachment and
attachment may not have the same weight. It is reason-
able to think that the amount of detachment from the
present increases the chance that the normal interaction
between the ‘inside’ and ‘outside’ world is interrupted.
The repeated use of a word too independently from the
present could eventually dissociate the internal probabil-
ity of the associated stimuli from their ‘outside’ proba-
bilities. It is reasonable to think that this could be hap-
pening somehow in normal adult speakers. The extreme
situation in normal adults could be military combat texts,
where α deviates clearly from the typical value found in
normal adults. We do not mean that military texts and
schizophrenics are equivalent but they may share the fact
the communication system is apparently controlling the
probability of each stimulus. Differences between military
combat texts and schizophrenics do exist. For instance,
if we assume that H(S) is minimized, then the expected
value of m for each case differ in various orders of magni-
tude (m ≈ 300 is expected of α = 1.5 while m ≈ 30 000
is expected for α = 1.4). The fact that schizophrenic and
military combat texts are presumably extremely goal ori-
ented (i.e. one topic) cannot explain alone what may be
happening in schizophrenia and military combat texts.
Normal adults can focus on a particular topic but main-
tain the typical exponent. The difference between normal
adults and those special cases may not be a matter of
quantity. A very large value of m, a way of neglecting
topic constraints, does not give α∗ ≈ 1, what we typically
find in normal adults. If we take m = 3.35×107, α∗ = 1.32
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would be found, which is still far from the typical α ≈ 1.
α∗ grows slowly with m (Fig. 4). Besides, the altered link
with the ‘outside’ world needs to be considered as one of
the possible explanations for some writers. For instance,
α = 1.6 is found in the complete Shakespeare works [2].
That exponent cannot easily be attributed to the fact
that Shakespeare is doing fiction work. David Copperfield
by Charles Dickens gives α = 1.20 [62], Don Quixote by
Miguel de Cervantes gives α = 1.05 [62], the Aeneid by
Virgil gives α = 0.68 [62] and the Ulysses by James Joyce
gives α = 1.05 [2]. Shakespeare’s low exponent suggests
that the author may have unconsciously let the communi-
cation system to take control on the frequency of stimuli.

A combination of broken and unbroken flows between
the ‘inside’ and the ‘outside’ world makes sense in normal
adults. In that case, the model in [30] and the model intro-
duced here represent the two extremes. One where stim-
ulus probabilities are separated from the structure of the
communication system. There the probability of a stimu-
lus is dictated by the probability of perceiving the stimu-
lus in the ‘outside’ world or by the probability of thinking
about it (perceiving it in the ‘inside’ world). That would
be the model in [30]. Another one where the communica-
tion system has taken the whole control. That would be
the present model or the model in [36]. The advantage of
the present model over the model in [36] is that it uses
the same energy function that can explain the typical ex-
ponent of Zipf’s law in world languages. The suitability of
the present model and the model in [36] for explaining the
atypical exponents in schizophrenia and children suggests
the internal organization of the communication system has
a lot of influence in perceiving stimulus in those cases. Fur-
ther work is needed to understand the differences between
the the present model and the model in [30].

Some caution should be taken interpreting the results
of the present article. First, p(rj) ∼ ωj may not be the
only way of accounting for atypical exponents. It could
be that the model in [30] accounts for the atypical ex-
ponents with a small modification or a particular set of
parameters. Second, p(rj) ∼ ωj makes special sense in
schizophrenics and young children but the possibility that
it is also suitable for apparently normal speakers, maybe
only in special cases, cannot be denied. If the assumption
p(rj) ∼ ωj is valid for communication systems, it is rea-
sonable to think that it is so at least in schizophrenics and
young children. Future work should focus on the nature
of p(rj) in communication systems.
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