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The emergence of a complex language is one of the fundamental
events of human evolution, and several remarkable features sug-
gest the presence of fundamental principles of organization. These
principles seem to be common to all languages. The best known is
the so-called Zipf’s law, which states that the frequency of a word
decays as a (universal) power law of its rank. The possible origins
of this law have been controversial, and its meaningfulness is still
an open question. In this article, the early hypothesis of Zipf of a
principle of least effort for explaining the law is shown to be
sound. Simultaneous minimization in the effort of both hearer and
speaker is formalized with a simple optimization process operating
on a binary matrix of signal–object associations. Zipf’s law is found
in the transition between referentially useless systems and indexi-
cal reference systems. Our finding strongly suggests that Zipf’s law
is a hallmark of symbolic reference and not a meaningless feature.
The implications for the evolution of language are discussed. We
explain how language evolution can take advantage of a commu-
nicative phase transition.

Beyond their specific differences, all known human languages
exhibit two fully developed distinguishing traits with regard

to animal communication systems: syntax (1) and symbolic
reference (2). Trying to explain the complexity gap between
humans and other species, different authors have adopted
different views from gradual evolution (3) to non-Darwinian
positions (4). Arguments are often qualitative in nature and
sometimes ad hoc. Only recently mathematical models have
explicitly addressed these questions (5, 6).

It seems reasonable to assume that our human ancestors
started off with a communication system capable of rudimentary
referential signaling, which subsequently evolved into a system
with a massive lexicon supported by a recursive system that could
combine entries in the lexicon into an infinite variety of mean-
ingful utterances (7). In contrast, nonhuman repertoires of
signals are generally small (8, 9). We aim to provide new
theoretical insights to the absence of intermediate stages be-
tween animal communication and language (9).

Here we adopt the view that the design features of a commu-
nication system are the result of interaction between the con-
straints of the system and demands of the job required (7). More
precisely, we will understand the demands of a task such as
providing easy-to-decode messages for the receiver. Our system
will be constrained by the limitations of a sender trying to code
such an easy-to-decode message.

Many authors have pointed out that tradeoffs of utility
concerning hearer and speaker needs to appear at many levels.
As for the phonological level, speakers want to minimize artic-
ulatory effort and hence encourage brevity and phonological
reduction. Hearers want to minimize the effort of understanding
and hence desire explicitness and clarity (3, 10). Regarding the
lexical level (10, 11), the effort for the hearer has to do with
determining what the word actually means. The higher the
ambiguity (i.e., the number of meanings) of a word, the higher
the effort for the hearer. Besides, the speaker will tend to choose
the most frequent words. The availability of a word is positively
correlated with its frequency. The phenomenon known as the

word-frequency effect (12) supports it. The most frequent words
tend to be the most ambiguous ones (13). Thereafter, the speaker
tends to choose the most ambiguous words, which is opposed to
the least effort for the hearer. Zipf referred to the lexical
tradeoff as the principle of least effort. He pointed out that it
could explain the pattern of word frequencies, but he did not give
a rigorous proof of its validity (11). Word frequencies obey Zipf’s
law. If the words of a sample text are ordered by decreas-
ing frequency, the frequency of the kth word, P(k), is given
by P(k) } k2a, with a ' 1 (11). This pattern is robust and
widespread (14).

Here we show that such a lexical compromise can be made
explicit in a simple form of language game where minimization
of speaker and hearer needs is introduced in an explicit fashion.
As a consequence of this process and once a given threshold is
reached, Zipf’s law, a hallmark of human language, emerges
spontaneously.

The Model
To define explicitly the compromise between speaker and hearer
needs, a cost function must be introduced. Given the nature of
our systems, information theory provides the adequate mathe-
matical framework (15). We consider a system involving a set of
n signals S 5 {s1,…, si,…, sn} and a set of m objects of reference
R 5 {r1,…, ri,…, rm}. The interactions between signals and
objects of reference (hereafter objects) can be modeled with a
binary matrix A 5 {aij}, where 1 # i # n and 1 # j # m. If aij 5 1,
then the ith signal refers to the jth object, and aij 5 0 otherwise.
We define p(si) and p(rj) as the probability of si and rj, respec-
tively. If synonymy were forbidden, we would have

p~si! 5 O
j

aijp~rj!, [1]

because signals are used for referring to objects. We assume
p(ri) 5 1/m in what follows. If synonymy is allowed, the frequency
of an object has to be distributed among all its signals. The
frequency of a signal, p(si) is defined as

p~si! 5 O
j

p~si, rj!. [2]

According to the Bayes theorem we have

p~rj, si! 5 p~rj!p~si u rj!. [3]

p(si u rj) is defined as

p~si u rj! 5 aij

1
vj

, [4]

where vi 5 Sj aji is the number of synonyms of j. Substituting Eq.
4 into Eq. 3 we get
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p~rj, si! 5 aij

p~rj!

vj
. [5]

The effort for the speaker will be defined in terms of the diversity
of signals, here measured by means of the signal entropy, i.e.

Hn~S! 5 2O
i51

n

p~si!logn p~si!. [6]

If a single word is used for whatever object, the effort is minimal
and Hn(S) 5 0. When all signals have the smallest (nonzero)
possible frequency, then the frequency effect is in the worst case
for all signals. Consistently, Hn(S) 5 1.

The effort for the hearer when si is heard, is defined as

Hm~R u si! 5 2O
j51

m

p~rj u si!logm p~rj u si!, [7]

where p(rj u si) 5 p(rj, si)/p(si) (by the Bayes theorem). The effort
for the hearer is defined as the average noise for the hearer, that
is

Hm~R u S! 5 O
i51

n

p~si!Hm~R , si!. [8]

An energy function combining the effort for the hearer and the
effort for the speaker is defined as

V~l! 5 lHm~R u S! 1 ~1 2 l!Hn~S!, [9]

where 0 # l, Hn(S), Hm(R, S) # 1. The cost function depends
on a single parameter l, which weights the contribution of each
term.

Methods
V(l) is minimized with the following algorithm, summarized in
Fig. 1. At each step, the graph is modified by randomly changing
the state of some pairs of vertices, and the new A matrix is
accepted if the cost is lowered [if an object has no signals, V(l) 5
`]. The algorithm stops when the modifications on A are not

accepted T 5 2nm times in a row. Configurations for which an
object has no signals assigned are forbidden.

If Zipf’s hypothesis were valid, a Zipfian distribution of signal
frequencies should appear for l ' 1/2, where the efforts for the
speaker and the hearer have a similar contribution to the cost
function. Notice that V(1/2) 5 Hn•m(S, R)/2.

Results
Two key quantities have been analyzed for different values of l:
the mutual information,

In~S, R! 5 Hn~S! 2 Hn~S u R!, [10]

which measures the accuracy of the communication, and the
(effective) lexicon size, L, defined as

L 5
u$i u mi . 0%u

n
[11]

where mi 5 Sj aij is the number of objects of si.
Three domains can be distinguished in the behavior of In(S, R)

versus l, as shown in Fig. 2A. First, In(S, R) grows smoothly for
l , l* ' 0.41. In(S, R) explodes abruptly for l 5 l* ' 0.41. An
abrupt change in L (Fig. 2 A) versus l (Fig. 2B) is also found for
l 5 l*. Single-signal systems (L ' 1/n) dominate for l , l*.
Because every object has at least one signal, one signal stands for
all the objects. In(S, R) indicates that the system is unable to
convey information in this domain. Rich vocabularies (L ' 1) are
found for l . l*. Full vocabularies are attained beyond l ' 0.72.
The maximal value of In(S, R) indicates that the associations
between signals and objects are one-to-one maps.

As for the signal frequency distribution in every domain, very
few signals have nonzero frequency for l , l* (Fig. 3A), scaling
consistent with Zipf’s law appears for l 5 l* (Fig. 3B), and an
almost uniform distribution is obtained for l . l* (Fig. 3C). As
it occurs with other complex systems (16), the presence of
a phase transition is associated with the emergence of power
laws (17).

Knowing that In(S, R) 5 In(R, S) and using Eq. 10, minimizing
Eq. 9 is equivalent to minimizing

V~l! 5 lIn~S, R! 1 ~1 2 l!Hn~S!. [12]

Other functions could be proposed. Interestingly, the symmetric
version of Eq. 9 with conditional entropies in both terms of the
right side,

V~l! 5 lHm~R u S! 1 ~1 2 l!Hn~S u R!, [13]

will help us to understand the origins of the sharp transition.
Although the global minimum of Hn(S) (one signal for all
objects) is a maximum of Hm(R u S), the global minimum of
Hm(R u S) (signal–object one-to-one maps with n 5 m) is a
maximum of Hn(S) in Eq. 9. Thus both terms of Eq. 9 are in
conflict. In contrast, the global minimum of Hn(S u R) is a subset
of the global minimum of Hm(R u S) in Eq. 13. Consistently,
numerical optimization of Eq. 13 shows no evidence of scaling
for Eq. 13. Not surprisingly, the minimization of Eq. 13 is
equivalent to

V~l! 5 In~S, R! 1 ~1 2 l!Hn~S!. [14]

Notice that l is present in only one of the terms of the right side
of the previous equation. Zipf’s hypothesis was based on a
tension between unification and diversification forces (11) that
Eq. 13 does not accomplish. Eq. 9 does.

Fig. 1. Basic scheme of the evolutionary algorithm used in this article.
Starting from a given signal–object matrix A (here n 5 m 5 3), the algorithm
performs a change in a small number of bits (specifically, with probability n,
each aij can flip). The cost function V is then evaluated, and the new matrix is
accepted provided that a lower cost is achieved. Otherwise, we start again
with the original matrix. At the beginning, A is set up with a fixed density r of
ones.
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Discussion
Theoretical models support the emergence of complex language
as the result of overcoming error limits (5) or thresholds in the
amount of objects of reference that can be handled (6). Despite
their power, these models make little use of some well known
quantitative regularities displayed by most human languages
such as Zipf’s law (11, 18). Most authors, however, make use of
Zipf’s law as a null hypothesis with no particular significance (6).
As far as we know, there is no compelling explanation for Zipf’s
law, although many have been proposed (19–23). Random texts
(random combinations of letters and blanks) reproduce Zipf’s
law (19, 24–26) and are generally regarded as a null hypothesis
(18). Although random texts and real texts differ in many aspects
(26, 27), the possibility that Zipf’s law results from a simple
process (not necessarily a random text) has not been soundly
denied. Our results show that Zipf’s law is the outcome of the
nontrivial arrangement of word–concept associations adopted
for complying with hearer and speaker needs. Sudden changes in
Fig. 2 and the presence of scaling (Fig. 3B) strongly suggest that
a phase transition is taking place at l 5 l* (17).

Maximal mutual information (that is, one-to-one signal–
object maps) beyond the transition is the general outcome of
artificial-life language models (28, 29) and the case of animal
communication (2), where small repertoires of signals are found
(8, 9). On the one hand, speaker constraints (l , l*) are likely
to cause species with a powerful articulatory system (providing
them with a big potential vocabulary) to have a referentially
useless communication system (8). On the other hand (l . l*),
least effort for the hearer forces a species to have a different
signal for each object at the maximum effort at the expense of
the speaker, which allows us to make the following predictions.
First, nonhuman repertoires must be small to cope with maxi-
mum speaker costs. Consistently, their size is on the order of
20–30 signals for the larger repertoires (8). Second, the large
lexicons used by humans cannot be one-to-one maps because of
the word-frequency effect (12) that makes evident how lexical
access-retrieval cost is at play in humans. Third, large lexicons
with one-to-one maps can be obtained only under idealized
conditions when effort for the speaker is neglected. This is the
case of artificial-language communication models, which reach

Fig. 2. (A) ^In(S, R)&, the average mutual information as a function of l. l* 5 0.41 divides ^In(S, R)& into no-communication and perfect-communication phases.
(B) Average (effective) lexicon size, ^L&, as a function of l. An abrupt change is seen for l ' 0.41 in both of them. Averages over 30 replicas: n 5 m 5 150, T 5
2nm, and n 5 2/(2

n).

Fig. 3. Signal normalized frequency, P(k), versus rank, k, for l 5 0.3 (A), l 5 l* 5 0.41 (B), and l 5 0.5 (B and C) (averages over 30 replicas: n 5 m 5 150 and
T 5 2nm). The dotted lines show the distribution that would be obtained if signals and objects connected after a Poissonian distribution of degrees with the
same number of connections of the minimum energy configurations. The distribution in B is consistent with human language (a 5 1).
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maximal values of In(S, R), making use of fast memory access
and the (theoretically) unlimited memory storage of computers
(28, 29).

l . l* implies not taking into account the effort of the
speaker. Getting the right word for a specific object may become
unaffordable beyond a certain vocabulary size. Furthermore, a
one-to-one map implies that the number of signals has to grow
accordingly as the number of objects to describe increases (when
m 3 `) and leads to a referential catastrophe. A referential
catastrophe is supported by the statistics of human–computer
interactions, where the largest vocabularies follow Zipf’s law (30)
and are associated with a higher degree of expertise of the
computer user. As the repertoire of potential signals is ex-
hausted, strategies based on the combination of simple units are
encouraged. Such a catastrophe could have motivated word
formation from elementary syllables or phonemes but also
syntax through word combinatorics. In a different context, some
authors have shown that natural selection favors word formation
or syntax when the number of required signals exceeds a
threshold value (6). We show that arranging signals according to
Zipf’s law is the optimal solution for maximizing the referential
power under effort for the speaker constraints. Moreover,
almost the best In(S, R) is achieved before being forced to use
one-to-one signal–object maps (Fig. 2). Although other re-
searchers have shown how overcoming phase transitions could
have been the origin of the emergence of syntax (5), our results
suggest that early human communication could have benefited
from remaining in a referential phase transition. There, com-
munication is optimal with regard to the tradeoff between
speaker and hearer needs. An evolutionary prospect is that the
number of objects to describe can grow, keeping the size of the
lexicon relatively small at the transition.

Having determined the only three optimal configurations
resulting from tuning speaker and hearer requirements, the path
toward human language can be traced hypothetically: (i) a
transition from a no-communication phase (l , l*) to a
perfect-communication phase providing some kind of rudimen-

tary referential signaling (l , l*); (ii) a transition from a
communication phase to the edge of the transition (l 5 l*),
where vocabularies can grow affordably (in terms of the speak-
er’s effort) when m 3 `. The latter step is motivated by the
positive correlation between brain size and cognitive skills in
primates (where m can be seen as a simple measure of them)
(31). Humans may have had a pressure for economical signaling
systems (given by large values of m) that other species did not
have. The above-mentioned emergence of Zipf’s law in the usage
of computer commands (the only evidence known of evolution
toward Zipf’s law, although the context is not human–human
interactions) is associated with larger repertoires (30), suggesting
that there is a minimum vocabulary size and a minimum number
of objects encouraging Zipf’s law arrangements.

The relationship between both is straightforward if the hearer
imposes its needs, because the number of signals must be exactly
the number of objects (when n 5 m) in that case. Our results
predict that no natural intermediate communication system can
be found between small-sized lexica and rich lexica unless Zipf’s
law is used (Fig. 2B). This might explain why human language is
unique with regard to other species but not only so. One-to-one
maps between signals and objects are the distinguishing feature
of index reference (2). Symbolic communication is a higher-level
reference in which reference results basically from interactions
between signals (2). Zipf’s law appears on the edge of the
indexical communication phase and implies polysemy. The latter
is the necessary (but not sufficient) condition for symbolic
reference (2). Our results strongly suggest that Zipf’s law is
required by symbolic systems.
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13. Köhler, R. (1986) Zur Linguistischen Synergetik: Struktur und Dynamik der Lexik
(Brockmeyer, Bochum, Germany).

14. Balasubrahmanyan, V. K. & Naranan, S. (1996) J. Quant. Linguist. 3, 177–228.
15. Ash, R. B. (1965) Information Theory (Wiley, New York).
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