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Random-text models have been proposed as an explanation for the power law rela-
tionship between word frequency and rank, the so-called Zipf’s law. They are generally
regarded as null hypotheses rather than models in the strict sense. In this context, recent
theories of language emergence and evolution assume this law as a priori information
with no need of explanation. Here, random texts and real texts are compared through
(a) the so-called lexical spectrum and (b) the distribution of words having the same
length. It is shown that real texts fill the lexical spectrum much more efficiently and
regardless of the word length, suggesting that the meaningfulness of Zipf’s law is high.
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Understanding the origins and evolution of language requires an appropriate

identification of its universal features. One of the most obvious is the statisti-

cal distribution of word abundances. Word frequency distributions exhibit striking

regularities. If words in a sample text are ordered decreasingly by their frequency,

the (normalized) frequency of a word is a power law of its rank [16], r, described in

its simplest form as

P (r) ∝ r−α , (1)

where P (r) is the normalized frequency of a word whose rank is r. Equivalently,

such regularity can be presented (again in its simplest form) as a function of the

frequency f of a word and becomes

P (f) ∝ f−β , (2)
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where P (f) is the probability a word has frequency f in a sample. The second

form is called the lexical spectrum [14] or the inverse Zipf’s distribution [3]. The

exponents in Eqs. (1) and (2) obey (see for instance Refs. 4, 8 and 9)

β =
1

α
+ 1 (3)

and their typical values are α = 1 and β = 2. Both Eqs. (1) and (2) are the so-

called Zipf’s law, although the former is the most common one. Here, the term

“law” refers to the strength of the empirical observation that has been tested in

different languages and by different authors [1]. As far as we know, detailed and

extensive study has only shown that the values of the exponents can vary from

one sample to another [1] and even more than one domain [4, 11, 14] is necessary

to explain the same sample. Figure 1 shows the normalized frequency versus rank

(α = 1) and the lexical spectrum (β = 2) for Herman Melville’s Moby Dick.

One obvious question raised by these observations is: Are they the result of

some non-trivial causal process? Any observed regularity in nature needs first to be

studied by means of null models. One possible explanation of Zipf’s law comes from

a purely random process. An early argument against any special causal explanation

beyond randomness was the discovery that random sequences of letters (in which the

blank space was among them) reproduced the α = 1 exponent of words [7]. Assume

that the keys of a typewriter are typed at random. If the blank space is hit with

probability q and one of the N possible letters are hit with probability (1− q)/N ,

with all letters having the same probability, the distribution of words limited by

blank spaces can be shown to obey Eq. (1) [7]. Reference 5 provides recent proof

when all characters have the same probability. Such a random process is called a

monkey language [2, 7] or intermittent silence [7] or simply a random text [5] model.
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Fig. 1. Frequency versus rank (A) and lexical spectrum (B) of Herman Melville’s Moby Dick
(9, 244 different words). The dashed line in (A) shows the frequency versus rank for words having
length 5, which is the average length of words in Melville’s book (there are 1, 248 different 5-letter
words). The exponents are (A) α = 1 and (B) β = 2 = 1

α
+ 1 as expected.



April 3, 2002 8:47 WSPC/169-ACS 00046

Zipf’s Law and Random Texts 3

10
1

10
2

f (frequency)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

P(
f)

10
0

10
2

10
4

10
6

10
8

i (rank)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P(
i)

A B

-1.0

Fig. 2. Frequency versus rank (A) and lexical spectrum (B) of a so-called monkey language
(a random text) formed by 1, 731, 411 different words (4 × 106 total words). The alphabet has
N = 26 letters (all having the same probability) and the probability of blank space is q = 0.18.
The exponent in (A) is α = 1 while no power law seems to fit in (B).

Since random texts easily generate statistically consistent results, they are generally

regarded as a null hypothesis [6]. A consequence of this view is that Zipf’s law does

not provide, by itself, any meaningful information concerning language structure

and its evolution [5, 13].

Such a conclusion comes, in our view, from the misleading comparison between

rank distributions. When the lexical spectrum is plotted for the monkey language,

the differences between random and non-random sequences become dramatic.

Figure 2 shows the normalized frequency versus rank and the lexical spectrum

for a monkey language with q = 0.18 and n = 26. The former shows α = 1. The

latter should show an exponent β = 2 as predicted by Eq. (3) but no power do-

main can be identified and it differs greatly from its counterpart in Fig. 1. It is

tempting to think that the statistical structure of both distributions is completely

different.

Vocabulary growth in random texts is faster than in real texts [3]. N = 26 leads

to 11, 881, 376 different 5-letter words, far from the roughly 1.7 million words of

the random text in Fig. 2. If sampling effects are responsible for the surprising plot

in Fig. 2(B), the lexical spectrum with N = 2 should improve (there are only 32

different 5-letter words). Figure 3 shows that not only the frequency versus rank

plot improves but also the lexical spectrum. Nonetheless, the quality of the latter

is still clearly lower than that of a real text. The analytically predicted exponents

are obviously valid in Figs. 2(B) and 3(B) but random texts like these reveal high

sampling sensitivity when compared to real texts.

It might be thought that the monkey language we have employed is simplistic.

All letters have the same probability, which is not realistic. If a random text is

generated with letter probabilities obtained from Moby Dick, the frequency versus

rank plot loses its step-like appearance (solid line in Fig. 4(A)) while the lexical
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Fig. 3. Frequency versus rank (A) and lexical spectrum (B) of a so-called monkey language
(a random text) formed by 212, 197 different words (4×106 total words). The alphabet has N = 2
letters (all having the same probability) and the probability of blank space is q = 0.18. The
exponent in (A) is α = 1 and the quality of the lexical spectrum it higher than with N = 26.
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Fig. 4. Frequency versus rank (A) and lexical spectrum (B) of a monkey language formed by
1, 795, 617 different words (4 × 106 total words). Character probabilities were obtained from
Melville’s Moby Dick. The dashed line in (A) shows the frequency versus rank for words having
length 5, which is the average length of words in Melville’s book. The random text has 238, 891
different 5-letter words. The exponent in (A) is α = 1 while the slope in (B) is α = 2.0.

spectrum improves (Fig. 4(B)). Notice that the improvement can not be attributed

to a smaller vocabulary (about 1.7 million words in the unbiased case) but a less

restrictive way of filling the spectrum.

An additional source of disagreement comes from the analysis of word distribu-

tions of a certain length. Monkey languages imply word length follows an exponen-

tial distribution given by

P (L) ∝ (1− q)L , (4)

where P (L) is the probability of words formed by L letters. In contrast, word length

is modeled with log-normal [1, 10] or Poissonian distributions [15]. Empirical studies
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show that there is a typical length L > 1 and long tails may appear. If all letters

have the same probability, monkey languages predict that words having the same

length have the same frequency. The dashed line in Fig. 1(A) shows the distribution

of words in Melville’s Moby Dick having the same length, which is clearly Zipfian.

In contrast, the equivalent in a monkey language in which all letters have the same

probability is a uniform distribution and the distribution of letters of a monkey

language with realistic letter frequencies is the dashed line in Fig. 4(A). Both are

clearly not Zipfian.

By assuming that Zipf’s law is a trivial statistical regularity, some authors have

declined to include it as part of the features of language origin. Instead, it has been

used as a given statistical fact with no need for explanation [12]. Our observations

do not give support to this view.

We have also shown that random texts lose the Zipfian shape in the frequency

versus rank plot when words are restricted to a certain length, which is not the

case in real texts. It is thus clear that monkey languages’ partial validity relies on

their word length distribution, which we have indicated is unrealistic. These results

suggest that future theories of language origin should be able to explain the origin

of Zipf’s law, instead of using it as a given constraint.
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[4] Ferrer i Cancho, R. and Solé, R. V., Two regimes in the frequency of words and the

origin of complex lexicons: Zipf’s law revisited, J. Quant. Linguistics (2001), in press.
[5] Li, W., Random texts exhibit Zipf’s-law-like word frequency distribution, IEEE

Trans. Inf. Theory 38 (6), 1842–1845 (1992).
[6] Miller, G. A. and Chomsky, N., Finitary models of language users, in Handbook of

Mathematical Psychology, Vol. 2, Luce, R. D., Bush, R. and Galanter, E., eds. (Wiley,
New York, 1963).

[7] Miller, G. A., Some effects of intermittent silence, Amer. J. Psychology 70, 311–314
(1957).

[8] Naranan, S., Statistical laws in information science, language and system of natural
numbers: Some striking similarities, J. Scientific and Industrial Research 51, 736–755
(1992).

[9] Naranan, S. and Balasubrahmanyan, V., Information theoretic models in statistical
linguistics — Part I: A model for word frequencies, Current Science 63, 261–269
(1992).



April 3, 2002 8:47 WSPC/169-ACS 00046

6 R. Ferrer i Cancho and R. V. Solé
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