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Zipf’s law states that the frequency of a word is a power function of its rank. The exponent of
the power is usually accepted to be close to (—)1. Great deviations between the predicted and real
number of differents words of a text, disagreements between the predicted and real exponent of the
probability density function and statistics on a big corpus, make evident that word frequency as a
function of the rank follows two different exponents, = (—)1 for the first regime and = (—)2 for the
second. The implications of the change in exponents for the metrics of texts and for the origins of

complex lexicons are analyzed.

I. INTRODUCTION

The Zipf’s law for words, by G. K. Zipf [1] , is one
of the most fundamental and popular achievements of
quantitative linguistics and the origin of a wide range of
hypothesis about its origin [2]. Despite its apparent ro-
bustness, Zipf’s law is an empirical observation and not a
law in a rigourous sense [3,4]. In this context, Zipf’s law
has been assumed but not explained in recent models for
the evolution of syntactic communication [5] and is an
obvious ingredient for any theory of language evolution.
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FIG. 1. Probability that a word occurs ¢ times. The
first and the second power law decays have exponent
a1 = 1.06 + 0.04 and as = 1.97 £ 0.06, respectively (r > 0.99
in both cases). Statistics on the whole BNC (T ~ 9107
words, n ~ 588, 030)

Original Zipf’s law (G. K. Zipf discovered many rank-
probability relations. Since we will focuse on that of
words, we will simply hereafter refer to it as the Zipf’s
law) linked ¢, the rank of a word (in a list of words de-
creasingly ordered by frequency) with P(i), its frequency.
The relation follows a power law in the form:

P(i) = pri™® (1)

where a =~ 1 [1,3,6] and p; is the probability of the
most frequent word.

The same law can also be presented as probability den-
sity function:

QU) oxj”? (2)

where Q(j) is the probability that a word is present j
times in a text.

We can relate the rank with the probability density
function. Let us denote by m, = T'Q(n) the number of
words having population n, where T is the total number
of word in the sample. Then, the rank is given by

R(n) = / " dn (3)

and the most frequent word has R = 1, the second most
frequent word has R = 2, and so on, for decreasing val-
ues of n in the integral. Eq. 3 establishes a general
relation between the rank of an event in the sample and
the probability distribution according to the event fre-
quency. Substituting R o n~'/ (obtained from Eq. 1)
and Eq. 2 in Eq. 3 we immediately get n'=# ~ n~1/2
from where

‘ —

a= 1 (4

f=—+1 ()

R~

If a = 1 then 8 should be 2.

It can be observed in the plots of [1,3,6] that the law
provides a good fit for the smallest ranks (acknowledg-
ing some deviations at the very begining of the ordering
discussed in [6,4]) but no attention has been paid to the
deviations in the tail. We will show that such deviations
are much more important than expected.

II. DISAGREEMENTS

One of the desirable properties of a law (as it hap-
pens with common physical laws) is to allow for accurate
predictions.



The predicted number n of differents words of a text
formed by T words, can be obtained by applying the
Zipf’s law and solving the following equation

1
==pn (6)

T
where 1/T is the lowest probability that can be achieved
by a word in a text of size T'. ;From Eq. 6 we obtain

n=[Tp]"* ~ Tp (7)

We processed all the T & 9-107 words of the British Na-
tional Corpus (BNC) a corpus of modern English, both
spoken (10%) and written (90%). BNC is a collection
of text samples (generaly not longer than 45,000 words).
It is syncronic (it includes imaginative texts from 1960,
informative texts from 1975), general (not specifically re-
stricted to any particular subject field, register or genre),
monolingual (it comprises text samples which are sub-
stantially the product of speakers of British English) and
mixed (it contains both examples of both spoken and
written English).
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FIG. 2. Probability of a word as a function of its rank
i, P(i¢). The first and the second power law decays have
exponent a1 = 1.01 £ 0.02 and a2 = 1.92 + 0.07, respec-
tively (r > 0.99 in both cases). Statistics on the whole BNC
(T ~9-107 words, n = 588, 030)

We obtained P(1) = 0.0601046, o = 1 (linear regres-
sion on the rank-ordering log-log plot) Unfortunately,
n = 588,030 was very far from 7 = 5.6 - 106. The big
deviation observed could be attributed to a poor statis-
tics or a bad fitting of the parameters intervening in the
prediction, p; and a. We will show that there is a deeper
reason.

We computed the probability density function of the
frequency (in number of occurences) of the BNC. More
precisely, the probability P(k) that a word occurs k
times in the corpus. The left half of the plot, shown
in Figure 2, revealed a well-defined power law relation-
ship between Q(j) and j whose exponent was 8 = 1.5.
The value obtained was 1.6, but removing the two first

points, corresponding to the most uncommon words, and
thus corresponding to the frequences being the most dif-
ficult to estimate, 1.5 was obtained (linear regression,
B =1.52+0.008). In contrast, Eq. 5 predicted § = 2. In
addition, the plot of the probability density function in
Figure 2 was specially clear. A question of bad statistics
or fitting again?

III. RETHINKING THE LAW

A more carefull sight of the rank ordering plot on our
data revealed the existence of two different exponents in
the same rank ordering plot (Figure 1). a1 = a &~ 1 and
az ~ 2 seem appropiate for ranks i < N € (10%,10%)
and i > N, respectively. Thus, the frequency of words
becomes a double law, the initial Zipf’s law and a more
sloping decay,

N I T ifi<N
P(i) = { Ne2pni~©2 otherwise (8)
where py is a the probability of the n-th most frequent
word. It can also be obtained from Eq. 1 and thus be

I Pn

mNe T N

Let 2 = [Tpy(1)]'/*". According to 8 and being 1/T
the smallest probability, the number of different words
predicted is:

. [Tp,]*/* if Tpy <1

n = N 1/as . (9)
[Tpn] otherwise

where P1,000 = 1.06292 - 10_4, Ps.000 = 1.71864 - 1075 and

pe’ooo = 134702 . 10_5.

The value of 7 calculated through Eq. 9 is 213,570,
much closer to the real value. Figure 3 shows the value
of n, A, obtained through Eq. 7) and 9; N = 6,000) and
Ebeling/Pdschel approximation [7] as a function of T'.

IV. DISCUSSION

The classic @ = 1 can be attributed to a superficial look
on small-sized texts in which deviations in the tail of the
distribution (of the rank-ordering plot) were attributed
to finite size effects instead of a different exponent. Pre-
vious work on English was performed on relatively small
texts, i.e. 260,430 words [1], 59,498 words [3], 20,000
words [6], far from the = 9 - 107 words of the BNC.

For long texts, the number of different words is mainly
due to second expression in Eq. 9. A relation n
T—1/22 was previously shown in [7] More precisely, n =
22.870-46,



The two observed exponents divide words in two differ-
ent sets: a kernel lexicon formed by ~ N versatile words
and an unlimited lexicon for specific communication. We
suggest that the size of the kernel lexicon is related with
constrains of capacity of human brain. As a matter of
fact, there is evidence of a relationship between charac-
teristic size limitations and inflection points of power law
exponents [8]. The change of the exponent of the power
law decay of the mutual information as a function of the
distance between words agrees with the average length
of sentences. We suggest that here the change in expo-
nents is related with the average amount of words that
human brain is able to store and use. Words with the
highest rank are very specyfic and obviously not shared
by all speakers. According to the intersection of the lines
aproximating the two regimes of P(i) in Figure 1, the ker-
nel lexicon of the BNC would be formed by 5,000-6,000
words.

---- real
e——o simple
e——e double
s—a E/P

FIG. 3. Number of different words as a function of the
total number of words , T, of the sample. The real num-
ber is accompanied by estimations performed with the Zipf’s
law. We used the two regime frequency observation (Eq. 9;
N =6,000) and the Ebeling/Pdschel approximation.

The existence of a kernel lexicon consists raises the
question of how small can be a lexicon without dras-
tically empoverishing communication. Pidgin languages
provide examples of very small lexicons. Estimates of the
number of items of a pidgin vary from about 300 — 1500
words, depending on the language [9,10]. The number
of lexical items of a speaker of an ordinary language is
about 25,000—30, 000 (clearly not enough for the 588,030
different words of the BNC) while this amount is 1,500
for a Tok Pisin speaker. It has been argued that these
1,500 words can be combined into phrases so as to say
anything that can be said in English [11]. As expected,
words of such small lexicons are very multifunctional and
a circumlocution is often recurred for covering the lexicon
gaps. The transition from the exponent a; to as takes
place in the interval of rank 10® < i < 10*. We suggest
that common languages also have a lexicon of this kind,

hidden by an unlimitited specific lexicon. Notice that al-
though the size of the lexicon of a speaker can be very
big, what counts for a successful communication are the
words shared (stored and used) with the maximum num-
ber of speakers, that is to say, the words in the kernel
lexicon.

The morpholocical simplicity and semantic generality
that characterize pidgin and other known simplified lex-
icons [9] respect to complex lexicons can also be inden-
tified for the kernel lexicon. Table I summarizes them
with examples from the BNC.

We calculated the proportion of words of a text be-
longing to the kernel lexicon as a function of N,

being P(i) the real probability of the i-th word) in order
to illustrate the importance of the kernel. S(1,000) =
0.69, S(4,000) = 0.84, S(5,000) = 0.86 and S(6,000) =
0.87 show how recurring are such words. Deviations for
high ranks according to the Zipf law are not erroneous
but caused by a different class of words.
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kernel lexicon

rest of the lexicon |

generalyty of
terms

generic
terms rather than spe-
cific terms (e.g.  iso,

seegs, groupass, liveessd,
know1,435 and bi’l“dl 981)

larger vocabulary in a given domain (e.g.
biplaneso 903, codass g2, scarpses 27,
myceliumiii,sso, anticoagulantsiis,2se
and microscopiumasa,eor)

complexity of
words

monomorphemic words '
(e.g. it7, madeioa,
yearizo, handzse and
mads,312)

compounds (e.g. airbrakesss, g2,
fingerpritingss,oss, peachtreeisr,oso,
breakdanceies,2s4, fingerlocksasze217 and
spillwayasss e15) and morphologically com-
plex words (e.g. childishlyae sa1,
literarinessss,3ss, thoughtlessnesses aso,
overindebtednessgr sss,

proletarianizedios,ror and
multiculturatedssr 5s0)

TABLE I. Comparison between the kernel lexicon and the rest of the lexion. The intervening features were originally devised
for comparing simple lexicons (pidgin,creole,...) and complex lexicons. Example words are subindexed by its rank.



