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Introduction

Language is puzzling. On the one hand, there are compelling reasons to believe that the posses-
sion of language by humans has deep biological roots. We are the only species that has a commu-
nication system with the complexity and richness of language. There are cases of non-human 
primates who can be taught (sometimes only with heroic effort) some aspects of human language, 
but their performance comes nowhere close to those of a six-year old child. Second, although lan-
guages differ, but there are also striking similarities across widely divergent cultures. Finally, 
there are significant similarities in the patterns of language acquisition across very different lin-
guistic communities. These (and other considerations as well) all suggest that species-specific 
biological factors play a critical role in human’s ability to acquire and process language.

So what is puzzling? First, it is not at all clear what the biological foundations are. What 
precisely do we mean when we say that the human propensity for language is innate (or as 
Stephen Pinker puts it, is an “instinct”, Pinker, 1994). Do we only mean, when we say that “lan-
guage is innate”  that one must possess a human genome in order to speak (hear, read, sign)? This 
is not terribly informative; after all, getting a driver’s license also requires a human genome 
(although driving the freeways of Southern California, one sometimes wonders). But we do not 
view this as an especially useful explanation of the origin and nature of the skills and competen-
cies which are required to drive a car. Second, when we actually look at the genome, we see little 
that suggests any obvious connection with language. The recurring lesson from recent genetic 
research is that behaviors typically rest on the interaction of large numbers of genes, each of 
which may participate in many other processes (e.g., Greenspan, 1995). Claims to the contrary 
notwithstanding (Gopnik & Crago, 1991; but see also Vargha-Khadem et al., 1995), there are no 
good examples of selective impairment of language which can be traced to defects in isolated 
genes.

Yet the fact remains, humans have language and chimpanzees do not. This is true no mat-
ter how human-like a chimp’s environment and upbringing are made. Thus we remain with a puz-
zling set of questions:          
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• Why does our species have language, and no other? What are the species differences that 
make language possible?

• Why does language take the forms it does, and not others?

• How does language emerge in the language-learning child?

• How do we account for both global patterns of similarity in language behavior, as well 
as individual variations on those patterns?

In this chapter I outline a connectionist perspective on language development with the goal 
of ultimately (if not now) providing answers to these questions. The particular perspective I put 
forward is one which has been developed together with my colleagues Elizabeth Bates, Mark 
Johnson, Annette Karmiloff-Smith, Domenico Parisi, and Kim Plunkett (see Elman et al., 1996, 
for a fuller account). In our view, biology plays a crucial role in determining the outcome of devel-
opment, and in the case of humans, enabling language. However, rather than viewing the develop-
mental process as one in which biology contributes some portion of the answer, and experience 
another (much like a jigsaw puzzle, in which biology assembles most of the pieces and experience 
fills in the rest), we see these two forces as engaged in a complex synergy. The challenge, of 
course, is to be able to clarify the way in which these interactions occur.

I begin by presenting with a taxonomy for thinking about alternative ways in which behav-
iors might be constrained by the biology. As it turns out, there are reasons to believe that some of 
these alternatives are more plausible than others, and that what may be the most widely held view 
of innateness is highly unlikely in the case of language.  After discussing other ways in which bio-
logical constraints might constrain outcomes, I will  describe two simulations which illustrate 
how what appears to a much weaker alternative constraint in fact has considerable power. Among 
other things, these simulations also suggest that domain-specific behaviors can be achieved 
through mechanisms which are themselves not domain-specific. Finally, I discuss how these 
results fit in with more general findings regarding development into what I call a “conspiracy” 
theory of language origins. 

Ways to be innate

At least some of the controversy surrounding the nature/nurture debate arises from lack of clear 
notions regarding what is meant when it is claimed that a behavior is innate. In the framework out-
lined by Elman et al, 1996, we found it useful to think about development as a process which can 
occur at multiple levels (using level here in a heterarchical rather than hierarchical sense), and in 
which processes at different levels may interact. At all levels, the constraints may crucially 
depend on interactions with the environment. When we say that an outcome is innate, then, we 
mean that it is significantly constrained at one or more of these levels, given the expected inputs 
from the environment. The taxonomy that we developed makes reference to constraints at the lev-
els of representations, architectures, and timing. These levels can be defined in terms of brain 
development, but we also find it useful to talk about their network analogs.

(1) Representational innateness.  If cognitive behaviors are the immediate product of our mental 
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states, and these are equivalent to brain states, then the most specific way of constraining a cogni-
tive behavior is to constrain the brain states which underlie it. Brain states are patterns of activa-
tions across neurons, and their proximal cause lies in the pattern of synaptic connections which 
generate that activity. Thus, the most direct and specific way of constraining a behavior would be 
to specify in advance the precise pattern of neuronal connectivity which would lead to that behav-
ior. In brains, then, a claim for representational innateness is equivalent to saying that the genome 
somehow predetermines the synapses between neurons. In neural networks, representational 
innateness is achieved by hand-wiring the network and setting the weights prior to learning.

At least some of the discussion regarding the origins of language appear to assume that 
representational innateness is what is assumed. Thus, for example, Pinker (1994) claims that,

It is a certain wiring of the microcircuitry that is essential... .If language, the 
quintessential higher cognitive process, is an instinct, maybe the rest of cognition 
is a bunch of instincts too—complex circuits designed by natural selection, each 
dedicated to solving a particular family of computational problems posed by the 
ways of life we adopted millions of years ago. (Pinker, 1994; pp. 93, 97)

Although this scenario is logically possible, and there are some animals for whom the genome 
appears to constrain the topology and connectivity of specific cells, we shall see below that repre-
sentational innateness is highly dubious as a mechanism for ensuring language in humans.

(2) Architectural innateness.  Outcomes can also be constrained by limiting the architectures 
which are available. As used here, architecture will refers to organization which is at a higher  
level of granularity than the prespecified connections between neurons (or nodes) which guaran-
tee representational innateness. Architectural constraints in fact can vary along a large number of 
dimensions, but in general fall into three broad classes: unit-based, local, and global. Unit-based 
architectural constraints deal with the specific properties of neurons, including firing threshold, 
refractory period, etc.; type of transmitter produced (and whether it is excitatory or inhibitory); 
nature of pre- and postsynaptic changes (i.e., learning), etc. In network terms, unit level con-
straints might be realized through node activation functions, learning rules, temperature, momen-
tum, etc. It is clear that unit level constraints operate in brain development. There are a relatively 
small number of neuron types, for instance, and they are neither randomly nor homogeneously 
distributed throughout the brain. The unit level constraints are fundamental to brain organization, 
since they concern the lowest level of computation in the brain. Local architectural constraints 
operate at the next higher level of granularity. In brains, these describe differences in the number 
of layers (e.g., the six-layered organization of cortex), packing density of cells, types of neurons, 
degree of interconnectivity (“fan in” and “fan out”), and nature of interconnectivity (inhibitory vs. 
excitatory). In network terms, local architectural differences would include feedforward vs. recur-
rent networks, or the layering of networks. Interestingly, the cortex itself appears to display rela-
tively little in the way of local architectural differences at early stages of development. The much 
greater differentiation which is found in the adult cortex appears to result from development, and 
an interesting question is how these differences arise. This, in fact, is one of the goals of the sec-
ond simulation which will be described below. Finally, global architectural constraints specify 
the way in which the various pieces of a system—be it brain or network—are connected together. 
Local architecture deals with the ways in which the low-level circuitry is laid out; global architec-
ture deals with the connections at the macro level between areas and regions, and especially with 
the inputs and outputs to subsystems. If one thinks of the brain as a network of networks, global 
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architectural constraints concern the manner in which these networks are interconnected.In brain 
terms, such constraints could be expressed in terms of (e.g., thalamo-cortical) pathways which 
control where sensory afferents project to, and where efferents originate. Very few network mod-
els employ architectures for which this sort of constraint is relevant (since it presupposes a level of 
architectural complexity which goes beyond most current modeling). One might imagine, how-
ever, networks which are loosely connected, such that they function somewhat modularly but 
communicate via input/output channels. If the pattern of inter-network connections were prespec-
ified, this would constitute an example of a global architectural constraint.

(3) Chronotopic innateness. A third way in which outcomes can be constrained is through the 
timing of events in the developmental process. Indeed, as Gould (and many other evolutionary 
biologists) has argued eloquently, changes in the developmental schedule play a critical role in 
evolutionary change (Gould 1977; see also McKinney & McNamara, 1991).In networks, timing 
can be manipulated through exogenous means, such as control of when certain inputs are pre-
sented. Or timing can arise endogenously, as seen in Marchman’s simulations of the critical period 
(Marchman,1993); in these networks, the gradual loss of plasticity in a network comes about as a 
result of learning itself. In brains, timing is sometimes under direct genetic control but the control 
of timing may also be highly indirect and the result of multiple interactions. Hence the onset and 
sequencing of events in development represents a schedule that is the joint product of genetic and 
environmental effects. Both of the simulations reported in this chapter deal with the effects of tim-
ing.

The differences between the three ways to be innate are shown in Table 1.

Table 1: 

Source of constraint Examples in brains Examples in networks

Representations synapses; specific microcircuitry weights on connections

unit cytoarchitecture (neuron types); fir-
ing thresholds; transmitter types; 
heterosynaptic depression; learning 
rules (e.g., LTP)

activation function; learning algo-
rithm; temperature; momentum; 
learning rate

Architectures local number of layers; packing density; 
recurrence; basic (recurring) cortical 
circuitry 

network type (e.g., recurrent, feed-
forward); number of layers; num-
ber of units in layers

global connections between brain regions; 
location of sensory and motor affer-
ents/efferents

expert networks; separate input/
output channels

Timing number of cell divisions during 
neurogenesis; spatio-temporal 
waves of synaptic growth and prun-
ing/decay; temporal development 
of sensory systems

incremental presentation of data; 
cell division in growing networks; 
intrinsic changes resulting from 
node saturation; adaptive learning 
rates

L
e

a
st

 s
p
e

ci
fic

/in
d

ire
ct

 
M

o
st

 s
p

e
ci

fic
/d

ire
c

t



Elman Page 5

The problem with representational innateness

Obviously, the most direct method for guaranteeing an outcome would be for the genome to spe-
cific a precise wiring plan for human cortex. Something like this appears to happen with the nem-
atode, C. Elegans. This animal has exactly 959 somatic cells, and genetically identical nematodes 
have virtually identical patterns of cell connectivity. This is quite unlike humans. No two humans, 
not even monozygotic twins, have identical neuronal connections. And there is abundant reason to 
believe that representational nativism is simply not an option available for guaranteeing language 
in humans, and that the cortex of higher vertebrates (and especially humans) has evolved as an 
“organ of plasticity” which is capable of encoding a vast array of representations.

In a number of recent studies with vertebrates, for example, investigators have changed the 
nature of the input received by a specific area of cortex, either by transplanting plugs of fetal cor-
tex from one area to another (e.g., somatosensory to visual, or vice-versa, O'Leary, 1993; O'Leary 
& Stanfield, 1989), by radically altering the nature of the input by deforming the sensory surface 
(Friedlander, Martin & Wassenhove-McCarthy, 1991; Killackey et al., 1994), or by redirecting 
inputs from their intended target to an unexpected area (e.g., redirecting visual inputs to auditory 
cortex (Frost, 1982, 1990; Pallas & Sur, 1993; Roe et al., 1990; Sur, Garraghty & Roe, 1988; Sur, 
Pallas & Roe, 1990; see also Molnar & Blakemore, 1991). Surprisingly, under these aberrant con-
ditions, the fetal cortex takes on neuroanatomical and physiological properties that are appropriate 
for the information it receives, and quite different from the properties that would have emerged if 
the default inputs for that region had occurred. This suggests that cortex has far more representa-
tional plasticity than previously believed. Indeed, recent studies have shown that cortex retains 
representational plasticity into adulthood (e.g., radical remapping of somatosensory cortex after 
amputation, in humans and in infrahuman primates (Merzenich et al., 1988; Pons et al., 1991; 
Ramachandran, 1993; see also Greenough, Black, & Wallace, 1993). 

In fact, such a situation would seem to be inevitable, given the impossible burden that a 
direct gene-synapse specification would impose on the genome. Calow (1976) has estimated that 

the adult human body contains approximately 5 x 1028 bits of information (taking into account 
that cell type, spatial position, and connectivity need to be specified for each of the 100 trillion 

cells in the body), but the genome contains only about 1 x 109 bits (if it is construed as a bit-map). 
A better view of what genes do is provided by Bonner (1988), who suggests that much of develop-
ment occurs through simple inertia of biochemical reactions which drive themselves. Genes play 
the role of catalysts and regulators which modulate these reactions, so their effects are typically 
highly indirect and opaque with regard to final outcomes. Furthermore, a very large number of 
genes may be involved in complex behaviors (e.g., courtship in the fruitfly, Greenspan, 1995), 
most of which are “re-used” and participate in many other interactions. 

Thus, although representational nativism is a logical possibility, it is not likely that it plays 
any role in the emergence of language.

The importance of time

If we reject representational nativism, this leads us to seek ways in which architectural and chro-
notopic (timing) constraints might be responsible for language. Architectural constraints are in 
fact very powerful, but in this chapter I wish to focus on the role played by time.
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Evolutionists have long known that dramatic changes in the timing of developmental 
events can produce remarkable differences in outcome (e.g., Gould 1977; see also McKinney & 
McNamara, 1991). The dramatic distortions of body shape which D’Arcy Thompson (1961) 
described, involving simple allometric changes in Cartesian coordinates, easily arise from altered 
temporal growth gradients. In other cases, timing may alter the nature of tissue/tissue interaction 
and tissue induction. In adults, the length of long bones is partially determined by the number of 
mitotically active founder cells initially available. If the process of bone formation is delayed, 
these founder cells may in the interim be recruited to form other issue types and so fewer cells will 
be available, leading to shortened bone length. Or timing may be so altered as to lead to a loss of 
interactions. The formation of teeth involves a complex interaction between several embryonic tis-
sues. In the case of birds, this interaction has been short-circuited but it can be artificially brought 
about by bringing together dental ectoderm from the chick and mesenchyme from a mouse (Kol-
lar & Fisher, 1980). The genetic information necessary for tooth formation thus still seems to be 
present in birds (the last toothed bird dates to the Upper Cretaceous), but has been lost through a 
change in the timing of developmental events. 

These are examples of closed systems, in which timing affects an interaction which is 
internal to the organism. I would like now to describe two examples in which timing plays a cru-
cial role in enabling an outcome which otherwise would not have occurred, but in which external 
input from the environment is also necessary. 

The importance of starting small
One of the most important things human children must learn to do is communicate. Lan-

guage learning occupies a great deal of a child’s time and it takes place over many years. The 
apparent inexorability of this process has led many people to conclude that there are powerful 
internal drives at work. 

A fascinating feature of this behavior is that its form seems to be quite decoupled from its 
content. Manipulating words is not like manipulating a bicycle or using chopsticks or learning to 
walk. In these latter cases the form of the activity is directly related to its function. Language is 
different in this respect. It is a highly symbolic activity. The relationship between the symbols and 
the structures they form, on the one hand, and the things they refer to, on the other, is largely arbi-
trary. This too, has motivated many to seek biological explanations for the behavior, on the 
assumption that if the structures of language were functional, they could be learned.

Among the many peculiar features of language is the fact that while the sequence of words 
we speak occur in a simple linear order (one word following another), the relationships between 
these words are complex and often involve hierarchical organization. Thus, in the sentence The 
cat who the dogs chase runs toward me, the main thrust of sentence is that the cat is running 
toward me, and the fragment who the dogs chase  is subsidiary. One way to capture the relation-
ships between the different parts of the sentence is through a tree diagram of the sort shown in 
Figure 1.
This sort of tree encodes our intuitions about the relative relationship of the words in the sentence 
by explicitly representing their constituent structure (e.g., the cat and who the dogs chase are con-
stituents—parts—of the top level NP, which, along with the VP, is a constituent of the top level S).

In traditional linguistic theory, such representations are supposed to do several things for 
us. First, a theory of meaning (semantics) should be able use these representations to determine 
how the meaning of the sentences is built up from its constituents, given their structural relation-
ships. Second, these representations should provide a vocabulary for expressing important formal 
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generalizations about what sorts of structures are grammatical. A very simple but important gram-
matical generalization in English and many other languages is that the exact form of the verb 
depends on whether its subject noun is singular or plural. Thus, we rule out The cat who the dogs 
chases run toward me as ungrammatical; cats requires that its verb (runs) be in the singular, and 
dogs requires that its verbs (chase) be in the plural. The generalization which guarantees this 
agreement between noun and verb can be readily captured by the tree diagram above, because it 
allows us to appeal to notions of “level” or “clause”; cats and its verb are in the same clause, even 
though embedded material intervenes in the linear string.

Embedding is a basic property of human language. Whatever theory of language one 
adopts must provide some way to represent the complex hierarchical relationships which occur in 
many sentences. The ability to maintain such representations would appear to be an ideal candi-
date for something which must be innate in language users, and absent in non-human species.

Indeed, in a well-known mathematical proof, Gold (1967) was able to show that formal 
languages of the class which allow embeddings of the sort seen above cannot be learned induc-
tively on the basis of positive input only. A crucial part of Gold’s proof relied on the fact that 
direct negative evidence (e.g., of the explicit form in which the parent tells the child, “The follow-
ing sentence, ‘Bunnies is cuddly’, is not grammatical”) seems virtually nonexistent in child-
directed speech (but see MacWhinney, 1993). Since children eventually do master language, Gold 
suggested that this may be because they already know critical things about the possible form of 
natural language. That is, learning merely takes the form of fine-tuning.

Although there are many reasons to believe that Gold’s proof is actually not relevant to the 
case of natural language acquisition, it would be a mistake to take the extreme opposite position 
and claim that language learning is entirely unconstrained. Children do not seem able to learn any 
arbitrary language, nor are non-human young able to learn human languages. Or to return to the 
example at hand, what sort of constraint might permit a language user to represent abstract hierar-
chical relationships of the sort found in sentences? To study this question, I created an artificial 
language which possessed a number of characteristics that are presumably problematic (in the 
above sense), and attempted to teach a simple recurrent network to process them (see Elman, 1993 
for full account). The artificial language had the following characteristics:

1. grammatical categories: words belonged to different categories (e.g., noun, verb, etc.);

S

NP VP

NP      
S

the cat

who the dogs chase

runs toward me

Figure 1.  A simplified phrase structure tree corresponding to the sentence The cat who the dogs chase runs toward
me. Triangles simplify additional structure; S, NP, and VP stand for sentence, noun phrase, and verb phrase.
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2. basic sentence structure: simple sentences consisted of a noun followed by a verb; if the 
verb was transitive then a second noun followed);

3. number agreement between subject noun & verb: singular nouns required the singular 
form of the form; plural nouns required plural verbs;

4. verb argument structure: some verbs were transitive; others were intransitive; and others 
were optionally transitive

5. relative clauses: nouns could be modified by a relative clause (e.g., who the dogs chase); 
both subject relatives (girl who sees the boy) and object relatives (girl who the boys see) 
were possible.

The words in the language were represented by vectors in which all elements were 0 
except for a single bit which was set to 1. Because these vectors are all orthogonal to each other, 
there was no similarity of form which the network could use to determine that a given vector was 
a noun or verb, or even that two vectors might be related (as in boy and boys). 

The task of the network was to take one word at a time and predict what the next word 
would be. Since the grammar which generated the sentences was nondeterministic, any given 
word might be followed by a number of different possibilities. Short of memorizing the entire 
training corpus (which was not feasible, given the size of the corpus and the resources available to 
the network), the optimal strategy would be for the network to predict all the possible words 
which might occur in a given context. Thus, after having heard the sequence the girl who the dogs 
see..., the network should predict all the words which might occur in that position, namely, singu-
lar transitive verbs. But in order to do this, the network had to have identified which words were 
verbs, which were singulars, and which were transitive. Furthermore, and most relevant to the 
issue at hand, the network must have somehow learned to associate the first verb it encounters in 
the sequence (see) with the second noun it has heard (dogs), and that the word which follows see 
must be the verb which goes with the very first noun (girl ), and therefore a singular. This is 
exactly what the sort of information tree diagrams are intended to convey. How would a net-
work—or could a network—represent this information?

Since the task involved processing a sequence of information presented over time, a sim-
ple recurrent network with the architecture shown in Figure 2 was used. The recurrent connec-
tions provide the network with the memory that it needs to process the serially ordered inputs.

The results of the first trials were quite disappointing. The network failed to master the 
task, even for the training data. Performance was not uniformly bad. Indeed, in some sentences, 
the network would correctly coordinate the number of the main clause subject, mentioned early in 
a sentence, with the number of the main clause verb, mentioned after many embedded relative 
clauses. But it would then fail to get the agreement correct on some of the relative clause subjects 
and verbs, even when these were close together. (For example, it might predict The boys who the 
girl *chase see the dog, getting the number agreement of boys and see right, but failing on the 
more proximal—and presumably, easier—girl chases.) This failure, of course, is exactly what 
might have been predicted by Gold.

In an attempt to understand where the breakdown was occurring, and just how complex a 
language the network might be able to learn, I devised a regimen in which the training input was 
organized into corpora of increasing complexity, and the network was trained first with the sim-
plest input. There were five phases in all. In the first phase, 10,000 sentences consisting solely of 
simple sentences were presented. The network was trained on five exposures (“epochs”) to this 
database. At the conclusion of this phase, the training data were discarded and the network was 
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exposed to a new set of sentences. In this second phase, 7,500 of the sentences were simple, and 
2,500 complex sentences were also included. As before, the network was trained for 5 epochs, 
after which performance was also quite high, even on the complex sentences. In phase three, the 
mixture was 5,000 simple/5,000 complex sentences, for 5 epochs. In phase four, the mixture was 
2,500 simple/7,500 complex. And in phase five, the network was trained on 10,000 complex sen-
tences. At the conclusion of training, the network’s performance was quite good, for complex as 
well as simple sentence. Furthermore, the network generalized its performance to novel sentences.

This result contrasts strikingly with the earlier failure of the network to learn when the full 
corpus was presented at the outset. Put simply, the network was unable to learn the complex gram-
mar when trained from the outset with the full “adult” language. However, when the training data 
were selected such that simple sentences were presented first, the network succeeded not only 
mastering in these, but then going on to master the complex sentences as well.

In one sense, this is a pleasing result, because the behavior of the network partially resem-
bles that of children. Children do not begin by mastering the adult language in all its complexity. 
Rather, they begin with the simplest of structures, and build incrementally until they achieve the 
adult language.

There is an important disanalogy, however, between the way in which the network was 
trained and the way children learn language. In this simulation, the network was placed in an envi-
ronment which was carefully constructed so that it only encountered the simple sentences at the 
beginning. As learning and performance progressed, the environment was gradually enriched by 
the inclusion of more and more complex sentences. But this is not a good model for the situation 
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10
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Figure 2.  The simple recurrent network used in the prediction task. Rectangles represent groups of nodes; the num-
bers are shown adjacent to each layer. Lines with arrows indicate connections between layers, and the flow of infor-
mation. Broken lines represent connections whose weights can be changed by learning; the solid line represents
connections which are fixed at the value of 1.0.
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in which children learn language. Although there is evidence that adults modify their language to 
some extent when interacting with children, it is not clear that these modifications affect the gram-
matical structure of the adult speech. Unlike the network, children hear exemplars of all aspects of 
the adult language from the beginning. 

If it is not true that the child’s environment changes radically (as in this first simulation), 
what is true is that the child changes during the period he or she is learning language. A more real-
istic network model would have a constant learning environment, but some aspect of the network 
itself would undergo change during learning. One candidate for a developmental change which 
might interact with learning is working memory; working memory and attention span in the 
young child are initially limited, and increase over time. Could such changes facilitate learning? 

In order to study a possible interaction between learning and changes in working memory, 
another new network was trained on the “adult” (i.e., fully complex) data which had initially been 
problematic. This time, at the outset of learning, the context units (which formed the memory for 
the network) were reset to random values after every two or three words. This meant that the tem-
poral window within which the network could process valid information was restricted to short 
sequences. The network would of course see longer sequences, but in those cases the information 
necessary to make correct predictions would fall outside the limited temporal window; such 
sequences would effectively seem like noise. The only sequences which would contain usable 
information would in fact be short, simple sentences. After training the network in this manner for 
a period of time, the “working memory” of the network was extended by injecting noise into the 
context units at increasingly long intervals, and eventually eliminating the noise together. 

Under these conditions, the performance at the conclusion of training was just as good as 
when the training environment had been manipulated. Why did this work? Why should a task 
which could not be solved when starting with “adult” resources be solvable by a system which 
began the task with restricted resources and then developed final capacities over time? 

It helps to understand the answer by considering just what was involved when learning 
was successful. At the conclusion of learning, the network had learned several things: distinctions 
between grammatical categories; conditions under which number agreement obtained; differences 
between verb argument structure; and how to represent embedded information. As was the case in 
the simulation involving simple sentences, the network uses its internal state space to represent 
these distinctions. It learns to partition the state space such that certain spatial dimensions signal 
differences between nouns and verbs, other dimensions encode singular vs. plural, and other 
dimensions encode depth of embedding.   

In fact, we can actually look at the way the network structures its internal representation 
space. Let us imagine that we do the equivalent of attaching electrodes to the network which suc-
cessfully learned the complex grammar, by virtue of beginning with a reduced working memory. 
If we record activations from this network while it processes a large number of sentences, we can 
plot the activations in a three-dimensional space whose coordinates are the principal components 
of hidden unit activation space (we shall use the second, third, and eleventh principal compo-
nents). The plot shown in Figure 3(b) shows the regions of this space which are used by the net-
work. 

As can be seen, the space is structured into distinct regions, and the patterning is used by 
the network to encode grammatical category and number. Once the network has developed such a 
representational scheme, it is possible for it to learn the actual grammatical rules of this language. 
The representations are necessary prerequisites to learning the grammar, just because these inter-
nal representations are also play a role in encoding memory (remember that the hidden unit acti-
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vation patterns are fed back via the context units). Without a way to meaningfully represent the 
(arbitrarily encoded) inputs, the network does not have the notational vocabulary to capture the 
grammatical relationships. Subjectively, it’s the same problem we would have if we try to remem-
ber and repeat back words in an unfamiliar language-it all sounds like gibberish. Note that this 
creates a bit of a problem, however. If the network needs the right internal representations to work 
with, where are these to come from? The truth is that these representations are learned in the 
course of learning the regularities in the environment. It learns to represent the noun/verb distinc-
tion because it is grammatically relevant. But we just said it couldn’t learn the grammar without 
having the representations. Indeed, this chicken and egg problem is exactly the downfall of the 
network which starts off fully developed (but lacking the right representations). If we look at the 
internal space of this network after (unsuccessful) training, shown in Figure 3(a) we see that the 

space is poorly organized and not partitioned into well-defined areas. The network which starts 
off with limited resources, on the other hand, actually is at an advantage. Although much of what 
it sees is now “noise,” what remains—the short, simple sentences—are easier to process. More to 
the point, they provide a tractable (because they are short, and impose fewer demands on a well-
developed representation/memorial system) entry point into the problem of discovering the gram-
matical patterns and categories latent in the environment. Once these categories have been 
induced, they provide the bootstrap by which the network can go on, as its working memory 
improves, to deal with increasingly complex inputs and refine its knowledge. 

Seen in this light, maturational limitations take on a very positive character.   If a domain 
to be mastered is complex, it helps to have some clues about where to start. Certainly the solution 
space for inducing a grammar from the data is extremely large, and finding the right grammar 
might be an intractable problem. It makes sense therefore that children (or networks) might need 
cues to help guarantee they discover the right grammar. The question is, what do these cues look 
like? 

One possibility is that children (or networks) might be pre-wired in such a way that they 

(a) (b)

Figure 3.  View of hidden unit space (in three of 70 dimensions) of a network which fails to learn the grammar (a),
and which succeeds (b). The surfaces are plotted by passing a large number of test sentences through each network
and recording the hidden unit activation vector following each word.  In the case of successful learning, the hidden
unit state space is structured and can be interpreted in terms of various dimensions of relevance for the task (e.g.,
noun vs. verb, singular vs. plural, etc.).  In the case of the unsuccessfully trained network, the state space is poorly
organized and no clearly interpretable dimensions are found.
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know about concepts such as “noun” and “verb” at birth. We might endow them as well with spe-
cial knowledge about permissible classes of structures, or grammatical operations on those struc-
tures. The role of experience would be to help the learner figure out which particular structures or 
operations are true of the language being learned. This is the hypothesis of Parameter Theory 
(Chomsky, 1981).

The simulation here suggests another solution to the problem of finding the needle in the 
grammatical haystack. Timing the development of memory has the effect of limiting the search 
space in exactly the right sort of way as to allow the network to solve a problem which could not 
be solved in the absence of limitations. 

Is there any evidence that this positive interaction between maturational limitations and 
language learning plays a role in children, as it seems to in networks? Elissa Newport has sug-
gested that indeed, early resource limitations might explain the apparent critical period during 
which languages can be learned with native-like proficiency. Newport calls this the “less is more” 
hypothesis (Newport, 1988, 1990). 

It is well-known that late learners of a language (either first or second) exhibit poorer per-
formance, relative to early or native learner. What is particularly revealing is to compare the per-
formance of early (or native) learners when it is at a comparable level to that of the late learners 
(i.e., early on, while they are still learning). Although gross error scores may be similar, the nature 
of the errors made by the two groups differs. Late learners tend to have incomplete control of mor-
phology, and rely more heavily on fixed forms in which internal morphological elements are fro-
zen in place and therefore often used inappropriately. Young native learners, in contrast, commit 
errors of omission more frequently.   Newport suggests that these differences are based in a differ-
ential ability to analyze the compositional structure of utterances, with younger language learners 
at an advantage. This occurs for two reasons. Newport points out that the combinatorics of learn-
ing the form-meaning mappings which underlie morphology are considerable, and grow exponen-
tially with the number of forms and meanings. If one supposes that the younger learner is 
handicapped with a reduced short-term memory, then this reduces the search space (because the 
child will be able to perceive and store a limited number of forms). The adult’s greater storage and 
computational skills work to the adult’s disadvantage. Secondly, Newport hypothesizes that there 
is a close correspondence between perceptually salient units and morphologically relevant seg-
mentation. With limited processing ability, one might expect children to more attentive to this 
relationship than adults, who might be less attentive to perceptual cues and more inclined to rely 
on computational analysis. Newport’s conclusions are thus very similar to what is suggested by 
the network performance: there are situations in which maturational constraints play a positive 
role in learning. Counterintuitively, some problems can only be solved if you start small. Precoc-
ity is not always to be desired. 

The starting small/less is more hypotheses suggest a new interpretation to the “critical 
period” phenomenon. Many people have interpreted the fact that language-learning occurs with 
greatest success (e.g., learners achieve native fluency) during childhood as evidence for a Lan-
guage Acquisition Device which operates only during childhood. Once its job is done, it ceases to 
function. But the simulation here, and Newport’s hypothesis, suggest rather that the ability which 
children have for learning language derives not from a special mechanism which they possess and 
adults do not, but just the reverse. It is children’s lack of resources which enables them to learn 
languages fluently.

Finally, how do these hypotheses bear on the issue of innateness? If in fact developmental 
limitations of the sort discussed here can impose constraints which are crucial for achieving a tar-
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get behavior, and these developmental limitations arise from biological factors, then we may say 
that the network described here is “innately constrained” to discovering the proper grammar.   But 
note that this is a very different sort of innateness than envisioned by the pre-wired linguistic 
knowledge hypothesis. 

How does the cortex get its architecture?
One of the arguments I advanced earlier against the hypothesis of representational innateness (i.e., 
direct specification of cortical microciruity) rested on experimental data which suggest that the 
regional mapping of functions in the human cortex is not prespecified. Initially, the cortex appears 
to possess a high degree of pluripotentiality. Over time, however, a complex pattern of spatially 
localized regions develops, and the pattern of localization is relatively consistent across individu-
als. The mystery is how the specific functional organization of the cerebral cortex arises. Shrager 
and Johnson (1996) and Rebotier and Elman (1996), building on earlier work by Kerszberg, 
Dehaene and Changeux (1992), have offered a preliminary account of at least one factor which 
might provide an answer to this question. Let me describe these simulations.

Shrager and Johnson began with the assumption that the cortex is organized through a 
combination of endogenous and exogenous influences, including subcortical structuring, matura-
tional timing, and the information structure of an organism’s early environment. Their goal was to 
explore ways in which these various factors might interact in order to lead to differential cortical 
function and to the differential distribution of function over the cortex. They began with several 
simple observations.

First, Shrager and Johnson pointed out that although there are signals which pass through 
the cortex in many directions, subcortical signals (e.g., from the thalamus) largely feed into pri-
mary sensory areas, which then largely feed forward to various secondary sensory areas, leading 
eventually into the parietal and frontal association areas. Each succeeding large-scale region of 
cortex can be thought of as processing increasing higher orders of invariants from the stimulus 
stream. The image is that of a cascade of filters, processing and separating stimulus information in 
series up toward the integration areas.

Second, Shrager and Johnson noted that a very striking aspect of development of the cere-
bral cortex is the initial overproduction and subsequent loss of neural connections, resulting in the 
relatively sparsely interconnected final functional architecture. This process of overproduction of 
synapses and subsequent (or simultaneous) thinning out of the arbor is thought to be key in corti-
cal ontogeny. As Thatcher (1992) suggests, when initially heavily connected, the cortex is like a 
lump of stone which in the hands of the sculptor is shaped by removal of bits and pieces into its 
final form. But curiously, this sculpting does not occur everywhere simultaneously. Instead, there 
appears to be a general developmental dynamic in which, grossly speaking, the locus of maximum 
neural plasticity begins in the primary sensory and motor areas and moves toward the secondary 
and parietal association areas, and finally to the frontal regions (Chugani, Phelps, & Mazziotta, 
1987; Harwerth, Smith, Duncan, Crawford, & von Noorden, 1986; Pandya & Yeterian, 1990; 
Thatcher, 1992). Thus there is a parallelism between the final architecture of the cortex, in which 
information proceeds from sensory to secondary to association areas, and the dynamics of cortical 
development, which also proceeds from sensory to secondary to association areas.

Given these observations, Shrager and Johnson posed the question, How might such a 
developmental wave of plasticity—in which different regions of cortex are more plastic at differ-
ent points in time—affect the outcome of learning? To study this question, Shrager and Johnson 
developed a connectionist network which was designed to test the hypothesis that under certain 
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regimes of wave propagation, we might expect a tendency toward the development of higher order 
functions in later parts of the cortical matrix. In this way, the model might account for spatial dis-
tribution of function in cortex without having to encode the localization directly. 

The Shrager and Johnson model is shown in Figure 4. The model consists of an abstract 

“cortical matrix” composed of a 30 by 30 matrix of artificial neurons. Each neuronal unit has 
afferent and efferent connections to nearby units, and also receives afferent inputs from external 
signals designated A and B. For our purposes, we shall consider the case in which afferent and 
efferent connection weights are initially set at random, and in which the external signals A and B 
provide simultaneous inputs of 0 and 1, also at random.

The matrix weights are changed according to a Hebbian learning rule, so that connection 
strength grows between units whose activations are more highly correlated. Under the default con-
ditions just described, the outcome after learning is that some units become active only when their 
A input is on; others become sensitive only to the presence of the B input; and still others become 
sensitive to A and B simultaneously (logical AND), or to either A or B (logical OR). A very large 
number of units are always off. No units develop which are sensitive to exclusive OR (XOR), 
which is not surprising since Hebbian learning does not typically lead to such higher order func-
tions.

Shrager and Johnson then considered what might happen if the Hebbian learning is modu-
lated by a trophic factor (TF) which passed through the matrix in a wave, from left to right. The 
effect of wave was that the columns of units underneath it, at any given point in time, were more 

Figure 4.  Shrager & Johnson model. Each unit has short local connections (excitatory and inhibitory) to close neigh-
bors, and also receives afferents from the external afferents, A and B (shown here as excitatory, but initially set as exci-
tatory or inhibitory at random). In some simulations, a tropic wave of plasticity spreads from left to right across the
matrix and has the effect of modulating learning in the columns under this wave.

Trophic wave of plasticity 

local interconnections

A

B
external afferents
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plastic and therefore able to learn. During the first training cycle, for example, a modulation vec-
tor was produced for the 30-column matrix that might be [1.0, 0.86, 0.77, 0.66, 0.53,...,0.0, 0.0]. 
That is, TF transmission at location 1 in the matrix took place normally, whereas TF transmission 
at location 2 was reduced to 86% of what would have been moved, etc. On the next cycle, the 
wave moved to the right a small amount: [0.86, 1.0, 0.86, 0.77, 0.66,...,0.0, 0.0]. The progress of 
the wave thus modulated the transmission of trophic factor, leading to a dynamic plasticity in the 
cortical matrix. Leftward columns were plastic early and also lost their plasticity early on; 
whereas, rightward columns did not become plastic until later on, but were plastic toward the end 
of the simulation when most of the neurons were reaching asymptote on the stabilization and 
death curves. 

Under certain regimes of wave propagation, Shrager and Johnson expected to observe a 
tendency toward the development of higher order functions in the cortical matrix. (Higher order 
functions are those which depend on both A and B inputs; lower order functions are those which 
depend solely on A or B.) The reason for this may be envisioned by considering two steps in the 
propagation of the wave from some leftward set of columns to the next set of columns to the right. 
We shall call these columns COL1 and COL2 (which is immediately to the right of COL1). COL1, 
initially more plastic than COL2, determines its function during receipt of input from A and B 
afferents, as has been the case all along. However, COL1 becomes fixated in its function relatively 
early, as the wave moves on to COL2. Now, however, COL2 is receiving input that is, in addition to 
the input coming from A and B afferents, includes the combined functions fixated by the earlier 
plasticity in COL1. Thus, COL2 has, in effect, three afferents: A, B, and COL1. 

In fact, Shrager and Johnson found that the number of first order functions (A, ~A, B, and 
~B) differed significantly from the number of second order functions (B-AND-~A, A-AND-~B, 
A-XOR-B, ~[A-AND-B], A-AND-B, A=B, A>=B, A<=B, and A-OR-B), when the wave was 
present, but not without the wave. Furthermore, as predicted, the density of higher order functions 
increased in regions of the matrix which were plastic later on, as determined by the propagation of 
the TF wave. Finally, when the propagation rate of the wave was tripled from the initial rate, a dif-
ferent picture emerged. Again, the first and second order functional densities were significantly 
different, but this time the mean values were inverted. In the slow wave case the second order 
functions were emphasized, whereas in the in fast wave case the first order functions were empha-
sized.

There is another result which is of great significance, and was the focus of a replication 
and extension by Rebotier and Elman (1996). This result has to do with the problem of how to 
reconcile the desire for a learning rule which is both biologically plausible, and sufficiently pow-
erful. On the one hand, Hebbian learning has a greater biological plausibility than back propaga-
tion learning. Also, Hebbian learning is a form of self-organizing behavior, which is attractive 
because it means an explicit teacher is not required (as in backpropagation). On the other hand, 
Hebbian learning cannot be used to learn certain important problems. These include XOR and 
other functions in which classification cannot be done on the basis of correlations. This is unfortu-
nate, because it means that the learning mechanism which is most natural on biological grounds 
seems to lack necessary computational properties.

Rebotier and Elman constructed a network of the form Shrager and Johnson devised and 
allowed Hebbian learning to take place through all parts of the network (“instant cortex”). Not 
surprisingly, Rebotier and Elman found no units which respond to the XOR of the inputs A and B. 
Rebotier and Elman then repeated the experiment, but this time allowed learning to be modulated 
by a spatial wave of trophic factor, which passed over the network from left to right. This time, a 
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small percentage of units were found which computed XOR. These units tended to be on the right 
side of the network (i.e., the late maturing regions). The reason they could compute XOR is that 
they did not learn until later, after early units had developed with learn simpler functions such as 
AND and OR. These early learning units then became additional inputs to the later learning units. 
Since XOR can be decomposed into the AND and OR functions, this made it possible to learn a 
function which could not otherwise have been learned.

There are thus two important lessons to be learned from the Shrager and Johnson and the 
Rebotier and Elman studies. First, the models demonstrate how the differential functional archi-
tecture of the cortex might arise in early development as an emergent result of the combination of 
organized stimulus input, and a neurotrophic dynamic (whether produced by a natural wave of 
trophic factor or by some other endogenous or exogenous phenomenon). Second, development 
provides the key to another puzzle. The studies show how some complex functions which are not 
normally learned in a static mature system can be learned when learning is carried out over both 
time and space rather than occurring everywhere simultaneously.

A conspiracy theory of language

I began at the outset with a set of questions, and I would like to return to them now, if not 
to provide answers, at least to say how the above simulations suggest we might think about what 
kinds of answers are likely.

The questions—about species uniqueness, the form of language, language learning, uni-
versals and variation—might be answered by simply stipulating that language is an innate prop-
erty of our species, and takes the form it does “just because it does.” This is not only not a very 
illuminating answer, but to the extent that it relies on representational innateness, is also highly 
implausible. Yet language does emerge only in our species; it does assume a constrained set of 
forms; and patterns of acquisition and usage are remarkably similar across languages. How might 
we account for this?

The two simulations above (and considerable other evidence discussed in detail in Elman 
et al., 1996) suggests what might be called the Language as conspiracy view. This view is in fact 
consistent with two very robust findings in the embroylogical and developmental genetics litera-
ture: (1) the nonlinear effects of small developmental changes on outcome; and (2) the conserva-
tive nature of the genome and the importance of interactions in development. 

At the turn of the century, the naturalist D’Arcy Thompson published a now classic trea-
tise called On Form and Growth. Thompson pointed out that relatively simple transformations of 
the Cartesian coordinates underlying body plans could produce dramatic differences in body mor-
phology. Thus, the skulls of the human, chimpanzee, baboon, and dog, bear a striking resem-
blance once the transformation is made apparent (see Figure 5). Thompson suggested that what 
appear to be large morphological differences in species might be misleading, in that they involve 
far simpler changes in growth. 

We know now that in fact there are a variety of developmental mechanisms which can 
accomplish transformations of the sort described by Thompson (see McKinney & McNamara, 
1991, for an extensive review). It is clear that small changes in a development trajectory can 
indeed lead to very great differences in outcome. Earlier, in discussing the role of timing, I gave 
the examples of long-bone growth. Similar accounts have been offered for a variety of other 
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changes associated with speciation. Flightlessness, for example, is common among birds which 
live in islands without large mammalian predators; maintenance of the bone and muscle mass nec-
essary for flight are energetically expensive and will be selected against unless there is some adap-
tive advantage to flight. Some groups of birds such as rails have evolved to delay sternum 
formation until relatively late in development. Delaying this important developmental process 
until after hatching pre-adapts the group so that further changes leading to flightlessness (in envi-
ronments where this is advantageous) are easy to achieve.

 An even more dramatic example concerns the process of tooth formation (or lack thereof) 
in the modern bird. The formation of teeth involves a complex interaction between several embry-
onic tissues. One layer of tissue (epithelium) must be brought into contact with another layer of 
tissue (mesenchyme). The mesenchyme induces the epithelium to differentiate into an enamel 
producing organ; the organ-producing epithelium then induces the mesenchyme to differentiate 
into tissue which secretes dentin. In the absence of this second interaction, the mesenchyme 
would become spongy bone. Birds are known to descend from ancestral species that possessed 
teeth, but such toothed birds have not been seen since the Upper Cretaceous. Does this mean the 
genetic information necessary to form teeth has been lost in birds and replaced by “beak-forming 
genes?” Apparently not. Rather, it seems that in birds this interaction has merely been short-cir-
cuited. The interaction can be artificially brought about by bringing dental epithelium from the 
chick into contact with mesenchyme from a mouse (Kollar & Fisher, 1980). Under these condi-
tions, the chick epithelium will form enamel organs, and further interactions may lead to forma-

human
chimpanzee

baboon dog

Figure 5.  Skulls of human, chimpanzee, baboon, dog, drawn with respect to a single Cartesian coordinate system.
Differences in skull size and shape can be produced by transformations on the coordinates. From Thompson (1971),
p. 318, 319, 322.
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tion of complete teeth. 
This last example also illustrates the second major lesson concerning development: In 

mammals, most important developmental phenonena rest on a complex set of interactions; these 
include virtually every possible interaction imagineable, e.g.,  gene/gene, gene/environment, tis-
sue/tissue, tissue/environment, organ/organ, organ/environment, etc.The early view, for example, 
that complex behaviors might directed by single genes has given way, over the past several 
decades, to the realization that even apparently simple traits such as eye color reflect the coordi-
nated interaction of multiple genes. For more complex traits, the number of genes involved may 
figure in the thousands. Furthermore, genes typically play multiple roles, participating in the for-
mation of very different traits.

As an example of this last point, consider courtship in the fruitfly, Drosophila melano-
gaster. Courtship involves at least six distinct phases, each with a different set of behaviors.A 
great deal has been discovered about the mechanisms which are required for the sequence of 
behaviors which lead to successful mating. The total repertoire depends on nine or more different 
regions of the central nervous system. The genetic basis for the behaviors is also beginning to be 
worked out, with the discovery that the genes which are involved in courtship also play a role in 
other behaviors. Thus, the period gene, which is involved in controlling the rhythm of the court-
ship song, also plays a role in regulating the fly’s circadian rhythms. Other aspects of the court-
ship require that the male respond adaptively to the female’s behaviorl; the CaMKII and eag genes 
which are known to play a role in learning and memory in the fruitfly, are then called into play 
(Greenspan, 1995; see Hall, 1994, for a full review of the genetic basis of courtship behavior).

The complex interactions and the importance of genes as regulators may occasionally give 
rise to what looks like a one gene-one trait relationship. For instance, two (of the many) species of 
fruitfly found only in Hawaii differ minimally (and are in fact interfertile), primarily in head 
shape. One species, D. silvestris, has the normal round-shaped head. The other, D. heteroneura, 
has a bizarrely shaped head that looks like a hammerhead shark. This difference is mostly associ-
ated with a single gene—but this gene is involved with complex epistatic interactions with three 
or four other genes and it is a quantitative change in the interaction which gives rise to a qualita-
tive change in trait (Val, 1976). 

Or consider the recent discovery of a family in Costa Rica which has a family history, 
going back over two hundred years, of acquired deafness (Lynch et al., 1997). The deafness onsets 
around puberty and  leads to hearing loss, initially in the low-frequency range but eventually 
becoming total.  Because of the very high family incidence and the long family history (and the 
total lack of incidence in the family’s village), a genetic basis for the disorder was sought and 
eventually found. It turned out that the deafness could be attributed to a mutation in a single gene. 
The mutation’s effect was that the last 52 of the 1,265 amino acids coded for by the gene were 
incorrectly specified.

A gene for deafness?  Not at all. A nearly similar gene called Diaphonous is also found in 
the fruitfly. The diaphanous gene produces a protein which controls the assembly of actin. Actin 
is one of the most prevalent proteins found in the body; it organizes the tiny fibers found in cell 
plasma which determine a cell's structural properties (rigidity, ability to move, to deform, etc.) It 
seems likely that the mutation was selectively producing deafness only because the hair cells in 
the ear are particularly sensitive to loss of stiffness. Since the mutation was slight, the degenerate 
form of the protein was sufficient for most of its uses in the rest of the body. It was only in the hair 
cells that the deficiency could not be tolerated.

The recurring lesson, whenever one looks at complex phenotypic traits in mammals, is 
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that the traits are produced by a sometimes large number of interactions. The underlying genetic 
substrate is enormously conservative, evolutionarily. What makes innovation possible is that the 
interactions are sufficiently complex and that small alterations in developmental pathways can 
lead to very large differences in outcome. 

Seen in this light, we should doubt that the novelty of language lies in having evolutionary 
and developmental origins which differ radically from those underlying communicative behaviors 
in similar species. Rather, is makes sense to view language as a behavior which results from allo-
metric transformations (a la D’Arcy Thompson) over a set of behaviors which are present as well 
in other closely related species. Language is simply the result of a number of tweeks and twiddles, 
each of which may in fact be quite minor, but which in the aggregate and through interaction yield 
what appears to be a radically new behavior. It is in this sense that language is a conspiracy. 

Of course, in very significant ways, language is a radically new behavior. At a phenome-
nological level, it is quite unlike anything else that we (or any other species) do. It has features 
which are remarkable and unique. The crucial difference between this view and the view of lan-
guage as a separable domain-specific module (in the sense of Tooby & Cosmides, 1992) is that the 
uniqueness emerges out of an interaction involving small differences in domain-nonspecific 
behaviors.

If this view of language as conspiracy is correct, then it should be possible to list in detail 
the behaviors which participate in the conspiracy. We should be able to identify the ways in which 
the human version of those behaviors differ from that in other species. And we should ultimately 
be able to formulate a theory of interaction which provides an account not only for human lan-
guage but for other non-human primate communication systems. They too are unique, in their 
own ways. While we are probably far from having such a full account, I believe that the simula-
tions offered here illustrate such an account’s viability.
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