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I ntroduction

If human behavior were list-like, acourting for human behavior would be simple: Just
enumerate the list of passble stereotypies. Alternatively, if behavior were predictable on the
basis of abstrad, full y-productive, context-insensitive rules, ou task would be different but
similarly straightforward: just list the underlying rules.

The problem is that most human behaviors sem to lie somewhere between these two pcss-
biliti es. Neither lists nor rules capture the richnessof cogntive behaviors, which are popuated
by what Plaut, McClelland, Seidenberg, and Patterson have cdled “quasi-regular” domains.
There ae underlying generaliti es to most of what we do (or think), bu the generaliti es are
typicdly partial and tempered by qualificalions. The problem isnot only in knaving when a
generdizaion shoud apply, bu when it shoud nd.

Language isadomain which is particularly interesting from this perspedive, and the
overgeneraizaion d regularities by children who are leaning language is often cited as
evidencefor the rule-like nature of language. However, dthoughmuch has been made of the
productivity of child language leaners, it is also true that chil dren are enormously conservative.
Overgenerdizaions are exceptional, or at least not as common as would would think gven the
vast literature on owergenerali zaions. If thereisany rule, it isthat children do nd make rules as
readily as has been suppased.

Our problem in some senseis how to have it both ways: How dowe acourt for productivity
and generality, while dso acourting for limiti ng effeds of context, item-spedfic information,
frequency, caegory structure, and so on—effeds which themselves range from general and pre-
dictable to puely idiosyncratic?

To many o us, conredionist models have seamed to gve us agoodstart at solving this
problem. It isworth nding that we do nd cometo this position ou of perversity. Many o us,
myself included, began within the symbadli c tradition. My own interest was motivated by
frustration with generatively-based lingustic theories which seemed repeaedly to bump against
the same problems, while ignaiing many athers.

But conredionist models have been criti cized, almost sincetheir beginning, for being inade-
quate to the task. One of the strongest criticismsisthat they canna generali ze properly. Fodar
and Pylyshyn (1988 argued that connedionist models canna acourt for productive behavior or



support inferencing, kecaise they do nd suppat truly compasitional representations. Pinker and
Prince (1988 argued that the generali zaions were incorred (and sometimes too strong). Hadley
(1992 distinguished various types of generalization, and argued that conredionist networks
were cgable only of what he termed wed systematicity.

Most recently, Gary Marcus (1998 has dated, “[current conredionist models] canna
generalize outside the training space”

Thisis an interesting statement, because the daim is bath paentially quite damning bu also
ambiguous. That is, several things might be meant by “generalizing ouside the training space”
In perticular, at least two very diff erent things might be meant.

(1) Thefirst iswhat | take to be the usualy understood sense. A training set is understoodto
consist of afinite number of examples of inpu/out pairings (or associations, or function
mappings, etc.). The domain (input space and range (output space are pre-defined, and
generaizaion accurs when the arred output is producefor an inpu not encourtered duing
training.

Thus, we might ask whether, if anetwork is only trained oninstances of “John” or “boy’ in
subjed position, the network can corredly processinstances of “Johri’ or “boy’ which occur in
objed position. Thisis an important question (and analogous to ore mnsidered experimentally
by child language reseachers) and ore | will return to in the second part of this paper.

(2) The secondsense in which ore muld mean “generdi zaion ouside the training space”is
adifferent and very narrow one. One could mean: A network, having been trained oninpus
which are defined in terms of one set of perceptual feaures, will not know what to dowhen it
encourters an inpu which is defined in terms of anovel set of perceptual fedures. In this case, if
anetwork which had been trained onstimuli presented in the visible light spedrum were unable
to ded with stimuli in the ultra-red region d the spedrum, this would constitute asecond sort of
“fallure to generalizeoutside the training space”.

Thisisinfad the kind d generalization fail ure that Marcus intends.

In remainder of this paper | want to dotwo things. First, | wish to consider examples of this
semndcaegory of generalizationfailure. | take such fail ures to be untroudesome and will sug-
gest they are entirely appropriate in networks, and similar to failures we find in humans and aher
biologicd organisms. Althoughl do nd regard this as avery interesting asped of generalization,
it isworth considering simply to avoid confusions abou just what networks can and canna do.

Then | will return to the first sort of generalization problem, in which a network must ded
with the novel use of inputs; for example, processng words which are encourtered in syntadic
contexts not seen duingtraining. | believethisisin fad avery important issue ébou which we
know some things, bu for which there ae many important questions to be studied. | will report
several recent simulations which study the condtions under which networks generalize, given
scant or gappy ceta.

Generalization |: Perceiving novel features

When Marcus claims that networks do nd generalize outside their training space what he
hasin mindis primarily what could be cdl ed “perceptual generaizaion.” Marcus's point is essy
toill ustrate, althoughit is also very easy to be mnfused abou exadly what the significance of
the paint is.



First, The problem is not that the networks are unable to ded with nowel inpus. Networks
can, and do,al thetime.

For instance consider the XOR problem. ThisisaBodean functionin which 2-dimensional
inpus of Os and 1s are grouped into two categories acording to the logicd digunction ogerator,
XOR:

Inpu | Output
0O O 0
1 1 0
0 1 1
1 0 1

The four input patterns can be visualized as four pointsin 2-dimensional space(seeFigure
1). Each dmension (x or y) is used to encode one of the two inpus, andis e bythe network as

inpLt input

input #2 0,0- & 1.0 . ;#1 | 2
e 11->0

00->0

irput #1 O 1 - 1

10->1

Figure 1.The four input patterns (00, 11, 01, 10) shown as pointsin 2-D space Ead inpu is encoded as a value
along oredimension (x or y).

avalue dong ore of the network’s two inpu lines.

But we can train anetwork onancther version d XOR in which the values .4 and .6are used
instead of 0 and 1; the logicd relationship remains the same, athoughthe training stimuli occupy
adifferent region d the training space(Figure 2a).
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Figure 2.(a) The four input patterns for XOR are now represented as .4,.4; .6,.6; .4,.6; .6,.4. (b) The network will
generalize dter training onthe four inpu patterns to an infinite number of patterns in the quadrant aroundead
pattern.

If we dotrain thisway, network will generalizeto ather pointsin the quadrant (althoughtyp-
icdly, na within the small er region contained within ({.4,.4}, {.6,.6}} ), that is, to an infinite
number of stimuli (Figure 2b). So networks can generaizeto stimuli it has not seen during
training.

But Marcus knows this, and thisis not what heis concerned abou. What he points out is that
such a network, canna ded with anovel classof inpus containing, in this case, threeinpu
values (seeFigure 3).

o1
=

_
1,0

Network does not generalize to new
input dimensions, not previously seen

Figure 3. If anetwork trained on 2D inpusis sibsequently presented with test inputs which involve athird
dimension, it has noway to generalizeinto this new inpu space—nor shoud it.



Thisis perfedly true. Moreover, it does nat help to train with an extradimension (or input
nock) from the start. If that dimensionis not used, the weight conreding the inpu to the hidden
layer will tend toward 0,and the inpu dimensionwill not longer be “seen.”

Thisis awell-known consequence of badk-propagation leaning. What is interestingis that
while Marcus takes thisto be a cucial flaw in network leaning, a more reasonable interpretation
isthat the network is doing exadly what humans and aher animals do. Consider, for example,
the visual system of cas. Blakemore and Cooper (1970 demonstrated many yeas ago that
systematicdly depriving a cd of exposure to haizontal stripes during ealy life resulted in failure
of neuronsto develop which were sensitive to haizontal stripes.

Figure 4. Blakemore & Cooper (1970 demonstrated that a cd, reared duingits ealy life in an environment which
contained no haizonta stripes, would fail to develop reuronsin the visual system which respondto haizontal

edges.

Similarly, young hman infants appea to be sensiti ve to the full range of speet sounds
foundin al human languages, bu at older ages discriminate only thase phoremic contrasts
foundin their environment. The difficulty of Japanese speersto discriminate r/l or of English
speders to discriminate prevoiced from voicdessunaspirated hil abialsis well-known.

The commonresult is essentialy that, if perceptual experienceis limited—either by
evolution a leaning—ore will not be aleto perceave things outside that experience We do nd
percevein theinfrared, although pt vipers do.

Kegingthisin mind, it isworth panting ou that human infants have afar richer perceptua
experiencethan do retworks. So it is very easy to run an experiment in which infants appea to
generaizeto now stimuli, in cases where networks will nat. In fad, thase stimuli may be novel
within the experiment but are composed of perceptua feaures with which the infant has ample
experience outside the experiment. The perceptual experience of networks on the other hand, is
typicdly (thoughit need na be) limited to the simulation.

This problem will be espeaally severe for networks which use locdi st representations, in
which ore perceptua dimensionisassgned to every different entity. In such cases the network
redly doeshaveto see dl possbleinpusin order to be aleto respondat al to them. Marcusis
quite keen onthis, espedally since many simulations of language processng have employed
locdli st representations.



Why are locdi st representations used in the first place?There ae & least two reasons why
modelers may chocseto use locdli st representations.

(1) First, locdi st representations of outputs are useful from the point of view of the modeler
gua network analyst. Because locdi st representations assgn ead passble output resporseto a
separate unit, the adivations of the outputs can be interpreted (for certain tasks) as a probability
estimate. This can provide us with a useful measure of the performance, espedally if wewish to
compare the network’ s performancewith ather probabilit y-based models..

(2) Second, locdi st representations of inputs make the leaning problem deliberately harder
for networks because they ladk any form-based simil arity structure. The 1-in-n encoding o locd-
ist representations yields a set of orthogoral vedors, eat ore equally similar (i.e., equidistant in
Euclidean space to al others. Thusthere is noinformationto be gleaned from the form of the
inpus abou how they are to betreded, a how they might be functionally similar to ore ancther.
Again, the use of locdi st representations represents a dhoice on the part of the modeler, refleding
strategic goals (e.g., to make leaning celiberately difficult) rather than being dctated by reces-
Sity.

Arelocalist representations realistic? Clealy nat. The mmplex entities we percavein the
red world haverich feaural descriptions. The overlap and similarity structure of these feaural
representations play an important role in suppating generali zaion (although puely form-based
similarity is nat enoughto get alongin the world; tigers and cas may look similar, but don't try
to kegp atiger asahouse pet). Locdist representations are dso tremendowsly costly. Each entity
requires a perceptua dimensionfor itself. Thisisas unredistic and as costly asif natura
languages were to assgn a spedfic frequency in the soundspedrum for ead urique word in our
language. Given the resolving paver of our auditory systems, we would end upwith very small
vocabularies.

Are localist representations necessary? Not at all. In EIman (1990 asimulation was
described in which a network, trained onsimple sentences of words that were encoded in alocd-
ist fashion, could extrad the lexicogrammaticd category structure underlying the grammar, as
sea bythe ways in which the hidden unit representations clustered. But it is passbleto runthe
same simulation wsing dstributed representations and get similar results (Figure 5).

The battom lines are (1) locdi st representations are useful but not necessary to the mnrec
tionist models Marcusis concerned abou; and (2) it is obviously true that distributed representa
tions are more redi stic; they aff ord a richer medium for representing the world, in which form-
based simil arity (“what you look like”) can be used dongwith function-based similarity (“who
you hang ou with”) to motivate generali zation.
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Figure 5. Hierarchicd cluster of hidden unt adivations from a network which was trained onsimple sentences,
with eat word encoded as randamly chaosen distributed representation.

Generalization I1: Using wordsin novel contexts

| would liketo turn now to the first sense of “generalizing ouside the training space”,
because | think this raises more interesting isaues.

The question can be posed, in spedfic form, thus: Can a network, trained oy on sentences
in which agiven noun(e.g.,“boy’) appeas only in subjed position, ded appropriately with
novel sentences in which that word appeas in ancther syntadic context, e.g., ohed pasition.
This 2ort of generdlizaionis an instance of what Hadley (1992 has cdled “ strong
systematicity”, and it has been claimed that simple reaurrent networks are not cgpable of this sort
of generalizaion (Hadley, 1992 Marcus, 1998.

The questionis an important one, becaise it isvery likely that the natural language input
which children (and even adults) hea is extremely limited in just this ort of way. Althoughit is



definitely the case that children’slinguistic input is bath very rich and very extensive (Hart &
Risley, 1995 estimate that by age 3, children hea between 10and 30millionwords), it is also
amost certainly na the cae that children hea al possble wordsin all possble syntadic
contexts. Indeed, as one' s vocabulary increases, the probability of encourtering many words only
afew timesandin limited syntadic contexts increases.

Thus, theinpu from which we lean is bath very extensive but also very gappy. If networks
canna extrapolate the gpropriate use of aword to anovel context from limited expaosure in the
way that humans do, we (modelers) arein serious troule.

Asit turns out, networks do generalize However, the condtions which enable such
generdizdion are interesting, and remind ws that the phenomenon d generali zation acossgaps
intheinpu isnaot quite & smple a has metimes been implied in the discusson o
systematicity and poductivity. Thisisill ustrated in the foll owing simulation (which, bythe way,
used locdi st representations, just to make the paint that for thisissue nothing criticaly hingeson
locdist vs. distributed representations).

Simulation

The network’ s task was to processastring d sentences, one word at atime, and predict suc-
cessve words (e.g., ElIman, 1990Q. Words differed with regard to their frequency of occurrencein
the grammar, and verbs diff ered with regard to pcssble aguments, as well as preferred argu-
ments. There were anumber of simple grammaticd constructions, several of which are shownin
Figure 6 (font sizes indicate probability of occurrencein the wrpus). A set of corporawere

see
bO}' glﬂ Tuz ohserve bO: gll‘l Bue
adulw\xialk-to adult =
percewe/ give mones
lazd-mer securties

boy airl _
gd)id{gli Sue &mls&rquh /_‘.!E]illssh chazge
~—=donate

bo;:j l%tlflf—"’ eat-— . hamburger
mouse Cat mﬁst ;:ZZE[ e
tird gobble———9*

dog / taste sandwich

lion™ ﬁdge vibhle
Figure 6. Schematic representation d some of the grammatica constructions used to generate atraining

database. Colored lines conred words which form sample sentences; font sizeindicates probability of
occurrencein the arpus.



constructed consisting d randam sentences from this grammar and ranging in sizefrom very
small (20 sentences) to medium (1,000sentences) to large (5,000.

Althoughthere were only 1,030 diff erent passble sentences in this language, the low
frequencies of some of the nours mean that not all possble sentences occurred, evenin
reasonably large samplings (e.g. 5,000sentences). In fad, arandam sample of approximately a
half milli on sentencesis neaded in order to ensure that all sentences are likely to appea.

Thus the data on which the network was trained are very gappy, which is probably avery
redistic goproximation d the situation in which chil dren find themselves.

In deliberately constructing atraining set for the network which is gappy, we ae ale to ask
under what condtions the network generalizes aaossgaps (or doesn’t). For example, in the net-
work’ s artificial language, verbs of communication require human agents and dred objeds.
Thus, any o set of words*“girl”, “boy”, “adult”, “Sue”, or “Bob” must serve & the agent and
direa objead of the verb “talk-to.” However, with small corpora, particularly given that not all of
these words occur equally often, it is poassble that one or more may never appea in the training
set as either agent of dired objed. In fad, it was easy to finda wrpus of 1,000sentencesin
which “boy’ never appeasat al in dred objed position for any verb. The questionis then,
never having seen “boy’ asadired objed (althoughit does occur in the corpus as agent), will the
network be unableto predict “boy” as apaossble dired objed foll owing the verb “talk-to”?

Figure 7 shows the networks' behavior at threepointsintime: After 1,000training trail s,
after 5,000training trials, and after 10,000training trials. During ealy leaning (1,000and 5,000
trials) the networks expedations conform fairly closely to the raw statistics of the data. Given
the sentencefragment “Girl talksto...” the network predicts a human dred objed much more
than it doesthe lexicd item “boy.” During these ealy stages of learning, the network can be said
to be operating more or lesswith arote strategy (cf. Plunkett & Marchman, 1993 for asimil ar
pattern of leaning d the past tense). However, at 10,000training trials, the networks
predictions change markedly: Now “boy’ is predicted as agrammaticdly accetableitem in
dired objed pasition—despite the fad that thisword never occursin that position.
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Figure 7. Network’ s predictions of “boy’, compared with mean adivations for other human nours and for verbs,
in the context “the girl talksto. . .

Why daes this occur? The answer isfairly straightforward.

In this smulation, the network sees only afradion d the passble sentences. But
importantly, although“boy’ isnever seenin dred objed pasition, it is e in shared contexts
with ather human words. For example, humans (but not other animals, food, etc.) appea asthe
agent of verbs such as“eat”, “give”, “transfer.” Conversely, humans (including “boy’) do nd
appea as agents of other verbs (e.g., “terrify”, “chase”, which in this language require animal
agents). Theword “boy’ shares morein common with ather human words than it does with non
human nours, or with verbs.

In networks, as for human, similarity is a powerful motive forcewhich can drive
generdizaion. Similarity may be amatter form (“who youlooklike”) or behavior (“who you
hang ou with”). In this smulation, words were encoded with locdi st representations, so there
was no form-based simil arity. But as we have just seen, there were behavior-based simil arities
between “boy’ and aher “humans.”

These more astrad similarities are typicaly captured in the internal representations that
network construct ontheir hidden layers, and they are what fadlit ate generali zaion. The overall



behaviors which “boy’ shareswith “girl”, “Sue”, “Bob’, etc., are sufficient to cause the network
to develop an internal representation for “boy’ which closely resembles that of the other human
words. Figure 8 shows a hierarchicd clustering d the internal representations of the lexicd items
known to the network, after 10,000training trials. The similar of the interna representation o
“boy’ to representations of other human noursisindicated bythe proximity in hidden unt space
of “boy’ to those other items.
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Figure 8. Hierarchicd clustering d the internal representations (hidden urit adivation petterns) of the lexicd
items known to the network, after 10,000training trials.

However, the internal representations for thase other words must refled the posshility of
appeaingin dred objed pasition following communicaion verbs (sincethe network does e
many of them occurring that position). Sincethe representation for “boy’ is smilar, “boy”
inherits the same behavior. The network’ s knowledge dou what “boy’ can dois very much
affeded by what other similar words can do.

Of coursg, if the examples are too scant such generali zations are not made. With limited
experience, the pattern of interlocking relationship which motivates the astrad caegoriesisnot



reveded. Thisisvery much in line with what Michad Tomasell o (among dhers) has nated with
regard to children’saayuisition d caegories and constructions. Categories sich as “nouri and
“verb” do nd start out as primitives; rather, they are acceted over time. At intermediate stages
diff erent words may be more or lessassmil ated to what will become alult caegories (Olguin &
Tomasello, 1993 Tomasello & Olguin, 1993.

Thereisaflip side to this coin: Sometimes gaps are intentional. For instance, the fad that
“ungasp” isnot apaossble word (although*unclench” isjust fine; seeLi & MacWhinney, 1996
for anetwork simulation d how this can be leaned), or that even though bah “the ice melted”
or “she melted theice” are accetable paraphrases, ore can say only “the icedisappeaed” and
nat “she disappeaed theice” In ather words, some gaps are not acddental but systematic—even
if exadly what is g/stematic éou the gap is not obvious. Thus together with the problem of
generdizaionwe have the related problem of over-generdizaion. Will t he network always
generalizethrough @ps?

The aaswer is no. Such generali zations depend onthe relative anourt of data and experience
which are avail able. If the word “boy’ appeas overall with low probability, bu there ae
sufficient other examples to warrant the inferencethat “boy’ has properties smilar to aher
words, the network will generalizeto “boy’ what it knows abou the other words. However, if
“boy’ isafrequently occurring item, except in ore mntext, the network is lesslikely to infer that
agapisacddental. It isasif the network redizes that the gap is naot due to incomplete data
(because the word is very frequent) and so must be the result of a systematic property of the
word.

This can be seen by all owing the network to continue training ona crpus in which “boy” is
absent (seeFigure 9).
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Figure 9. Network predictions at four stagesin leaning.



Althoughat 10,000training trials the network generali zes the use of “boy” to oljed
pasition, if thereis sgnificantly more training in which “boy” does not appea whereit isnow
predicted the network retreas from that generali zaion. This occurs because of theindired
negative evidence provided when the network’s predictions are not confirmed by the data.

Thus the network goes throughthreestages. In ealy leaning, the network hews close to the
observed fads andis conservative in its predictions. With additional training, the network leans
generali zaions abou classes of words, and this allows it to generalizeto the novel use of
familiar words. At this stage, whil e the network’s experienceis gill somewhat limited, gaps are
treded as acadental. However, with additional training, if the gaps persist the network leansto
identify them as such. It isasif the network recognizes that it has now seen enoughsentences
that absences can nolonger be atributed to small sample size and must be diagnastic of a
systematic property of the word’ s usage.

The lexicon and grammar

Finaly, this smulation also reveds an interesting relationship between growth in the lexicon
and the emergence of grammar, reminiscent of that noted by Bates and Goodman (1997). For the
network, what it meansto knowv aword isto knowv how to useit, i.e., its grammaticd properties.
Aswe' ve se, this knowledge does nat require exhaustive experiencewith aword in all posshble
contexts. Aslongasthereis aufficient experiencewith ather words which can coll edively
establish a cdegory, the network will extrapolate to nowel uses. If overall experienceistoo
limited, and the network sees too few words or words in too few contexts, generali zaions will
not occur. Put anather way, we might exped overall grammatica knowledge to increase to the
corpus Sze, independently of experience

Such apasitive relationship between the size and richnessof the lexicon and gammaticd
performanceis shown in Figure 10. Twenty-two corporawere aeaed; the smallest contained 20
sentences and the largest contained 5,000sentences. Eacdh corpus was used to train a diff erent
network. Eadch network was trained for the same period d time (80,000sweeps) in order to hdd
training experience onstant. Grammaticd performancewas measured by cdculating hav well a
network’s empiricd predictions abou word usage compared with the adual posshiliti es, given
the grammar (both adual and theoreticd predictions can be represented as vedors; what is
shown is the @sine, which measures the simil arity between them).
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Figure 10. Incresse in ggammaticd performance a afunction o increasing corpus sze, holding training sweeps
constant. Grammaticdity is measured as the wsine of two vedors: the networks' predictions of passble
successor words, and the grammaticdly possble succesors.

If performancewere smply dependent on experience, ore might have expeded that
networks with small er-sized corporawould do letter than the largest corpora. That’s because,
since dl networks experienced the same anourt of training, retworks with small er corpora have
lessto lean. The oppdasite pattern is found Grammaticd performanceimproves dramaticdly for
networks that are trained onmore sentences, even thoughead sentenceis sen relatively fewer
times. The improvement is gredest in the small er range of corpus szes and the rate of
improvement rapidly drops.

The fall-off in rate of improvement is not becaise networks which have seen 1,000 © more
sentences have esentialy seen al sentences. They have not. A randam sample of 1,000
sentences on average antains only abou 30% of all possble sentences (recdl that a half million
sentences are needed to seethe full set). Nor isthe rapid rate of improvement at ealy stages due
simply to the fad larger corpora dlow networksto see d wordsin all contexts. This greaer
experienceundoultedly plays an important role, but it is also true that grammatica performance
canincreasein larger corpora even for words whose frequency of occurrence happens (by
chance) to be no geaer than in smaller corpora.

For example, in Figure 11 we seethe change in glammaticd performancefor six words, as a
function o ocaurringin dfferent sized corpora. All six words improve & the @rpus sze
increases. Y et the asolute frequency of occurrencefor these six words was identicd in all cor-



pora. Their improvement was due to their greder ability to piggybad off the what the networks
with larger data sets were aleto lean from other words in the same cdegory.
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Figure 11. Increase in grammaticd performance & afunction d increasing corpus sze, holding constant both
training sweeps and a so frequency of occurrence of ead word in the various corpora.

This sort of relationship between lexicon and the grammar is just what Bates and
Goodman (1997 have reported for children. It haslong keen known that most children undergo a
rapid acceerationin the growth dof their vocabulary, which usually occurs smetime between 16
and 20months. What Bates and Goodman dscovered isthat thereis avery tight relationship
between this “vocabulary burst” and the eanergence of grammar. When ore of these
developmental landmarksis delayed or accéerated, so too isthe other. There ae doultlessmany
fadors which play arolein bah vocabulary and gammaticd growth, and which are not captured
in the present simulation. However, the role of vocabulary sizein generalizaion, and the role of
generdizdionin suppating gammar, which is demonstrated in this smulation povides a
plausible acount for at least one of the fadors underlying the vocabulary-grammar relationship.
Detail s of thisrelationship are now being studied throughfurther smulations.

Conclusion

| have tried to show that smple reaurrent networks doin fad generalizeto now inpus and
to nowel uses of inpus. It is true that networks are subjed—as are we—to perceptual limit ations.



A network which is not designed to percave dongagiven inpu dimension, a whichis
systematicdly deprived of experiencein that dimension, will fare no ketter than a human who
has nat evolved to seein theinfrared, a a cd whoisreaed in an environment containing no
horizontal stripes.

But the more important observationis that the generalization processis complex, subtle,
often pertial, andrarely straightforward. There ae aiticd effeds of corpus Sze corpus dructure,
and the time ourse of leaning, and many open questions remain. For instance, nat only isthe
sizeof a mrpus and the frequency of exemplarsimportant, bu the way in which the data ae
structured can play a aucial rolein caegorizaion (e.g., Rodriguez, 1998. Some of the dfeds
are urter-intuitive. But if the generali zation processin networksis complex, subtle, often
partial, andrarely straightforward, | believe thisis also true of humans as well.
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