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1 Intr oduction

Despite considerable diversity among theories about how humans process

language, there are a number of fundamental assumptions which are shared by

most such theories.  This consensus extends to the very basic question about what

counts as a cognitive process.  So although many cognitive scientists are fond of

referring to the brain as a ‘mental organ’ (e.g., Chomsky, 1975)—implying a

similarity to other organs such as the liver or kidneys—it is also assumed that the

brain is an organ with special properties which set it apart.  Brains ‘carry out

computation’ (it is argued); they ‘entertain propositions’; and they ‘support

representations’.  Brains may be organs, but they are very different than the other

organs found in the body.

Obviously, there are substantial differences between brains and kidneys,

just as there are between kidneys and hearts and the skin.  It would be silly to

minimze these differences.  On the other hand, a cautionary note is also in order.

The domains over which the various organs operate are quite different, but their

common biological substrate is quite similar. The brain is indeed quite remarkable,

and does some things which are very similar to human-made symbol processors;

but there are also profound differences between the brain and digital symbol

processors, and attempts to ignore these on grounds of simplification or abstraction

run the risk of fundamentally misunderstanding the nature of neural computation

(Churchland & Sejnowski, 1992).   In a larger sense, I raise the more general
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warning that (as Ed Hutchins has suggested) “cognition may not be what we think

it is”.  Among other things, I will suggest in this chapter that language (and

cognition in general) may be more usefully understood as the behavior of a

dynamical system.  I believe this is a view which both acknowledges the similarity

of the brain to other bodily organs and respects the evolutionary history of the

nervous system, while also acknowledging the very remarkable properties

possessed by the brain.

In the view I will outline, representations are not abstract symbols but

rather regions of state space.  Rules are not operations on symbols but rather

embedded in the dynamics of the system, a dynamics which permits movement

from certain regions to others while making other transitions difficult.   Let me

emphasize from the beginning that I am  not arguing that language behavior is not

rule-governed. Instead, I suggest that thenature of the rules may be different than

what we have conceived them to be.

The remainder of this chapter is organized as follows.  In order to make

clear how the  dynamical approach (instantiated concretely here as a connectionist

network) differs from the standard approach, I begin by summarizing some of the

central characteristics of the traditional approach to language processing.  Then I

shall describe a connectionist model which embodies different operating principles

from the classical approach to symbolic computation.  The results of several

simulations using that architecture are presented and discussed.  Finally, I will

discuss some of the results which may be yielded by this perspective.

2 Grammar and the lexicon: The traditional approach

Language processing is traditionally assumed to involve alexicon, which is the

repository of facts concerning individual words, and a set ofrules which constrain

the ways those words can be combined to form sentences.  From the point of view
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of a listener attempting to process spoken language, the initial problem involves

taking acoustic input and retrieving the relevant word from the lexicon.  This

process is often supposed to involve separate stages oflexical access (in which

contact is made with candidate words based on partial information), and lexical

recognition (or retrieval, or selection; in which a choice is made on a specific

word), although finer-grained distinctions may also be useful (e.g., Tyler &

Frauenfelder, 1987). Subsequent to recognition, the retrieved word must be

inserted into a data structure which will eventually correspond to a sentence; this

procedure is assumed to involve the application of rules.

As described, this scenario may seem simple, straightforward, and not

likely to be controversial.  But in fact, there is considerable debate about a number

of important details.  For instance:

Is the lexicon passive or active?  In some models, the lexicon is a passive

data structure (Forster, 1976).  In other models, lexical items are active (Marslen-

Wilson, 1980; McClelland & Elman, 1986; Morton, 1979) in the style of

Selfridge’s “demons” (Selfridge, 1958).

How is the lexicon organized and what are its entry points?  In active

models, the internal organization of the lexicon is less an issue, because the

lexicon is also usually content addressable, so that there is direct and simultaneous

contact between an unknown input and all relevant lexical representations.  With

passive models, an additional look-up process is required and so the organization

of the lexicon becomes more important for efficient and rapid search.  The lexicon

may be organized along dimensions which reflect phonological, or orthographic,

or syntactic, or syntactic properties; or it may be organized along usage

parameters, such as frequency (Forster, 1976).  Other problems include how to

catalog morphologically related elements (e.g., are “telephone” and “telephonic”

separate entries?  “girl” and “girls”?  “ox” and “oxen”?); how to represent words

with multiple meanings (the various meanings of “bank” may be different enough
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to warrant distinct entries, but what about the various meanings of “run”, some of

which are only subtly different, and others which have more distant but still clearly

related meanings?); whether the lexicon includes information about argument

structure; and so on.

Is recognition all-or-nothing, or graded?  In some theories, recognition

occurs at the point where a spoken word becomes uniquely distinguished from its

competitors (Marslen-Wilson, 1980).  In other models, there may be no consistent

point where recognition occurs; rather, recognition is a graded process subject to

interactions which may hasten or slow down the retrieval of a word in a given

context. The recognition point is a strategically-controlled threshold (McClelland

& Elman, 1986).

How do lexical competitors interact?  If the lexicon is active, there is the

potential for interactions between lexical competitors.  Some models build

inhibitory interactions between words (McClelland & Elman, 1986); others have

suggested that the empirical evidence rules out word-word inhibitions (Marslen-

Wilson, 1987).

How are sentence structures constructed from words?  This single question

has given rise to a vast and complex literature.  The nature of the sentence

structures themselves are fiercely debated, reflecting the diversity of current

syntactic theories. There is in addition considerable controversy around the sort of

information which may play a role in the construction process,  or the degree to

which at least a first-pass parse is restricted to the purely syntactic information

available to it (Frazier & Rayner, 1982; Trueswell, Tanenhaus, & Kello, 1992).

There are thus a considerable number of questions which remain open.

Nonetheless, I believe it is accurate to say that there is also considerable consensus

regarding certain fundamental principles.  I take this consensus to include the

following.

 (a) A commitment todiscrete and context-free symbols.  This is more
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readily obvious in the case of the classical approaches, but many connectionist

models utilize localist representations in which entities are discrete and atomic

(although graded activations may be used to reflect uncertain hypotheses).

A central feature of all of these forms of representation—localist

connectionist as well as symbolic—is that they areintrinsically context-free. The

symbol for a word, for example, is the same regardless of its usage.  This gives

such systems great combinatorial power, but it also limits their ability to reflect

idiosyncratic or contextually-specific behaviors.

This assumption also leads to a distinction betweentypes and tokens and

motivates the need forvariable binding.  Types are the canonical context-free

versions of symbols; tokens are the versions which are associated with specific

contexts; and binding is the operation which enforces the association (e.g., by

means of indices, subscripts, or other diacritics).

(b) The view ofrules as operators and thelexicon as operands.  Words in

most models are conceived of as the objects of processing. Even in models in

which lexical entries may be active, once word a is recognized it becomes subject

to grammatical rules which build up higher-level structures.

(c) The static nature of representations.  Although the processing of

language clearly unfolds over over time, the representations which are produced

by traditional models typically have a curiously static quality. This is revealed in

several ways. For instance, it is assumed that the lexicon pre-exists as a data

structure in much the same way that a dictionary exists independently of its use.

Similarly, the higher-level structures created during sentence comprehension are

built up through an accretive process, and the successful product of comprehension

will be a mental structure in which all the constituent parts (words, categories,

relational information) are simultaneously present.  (Presumably these become

inputs to some subsequent interpretive process which constructs discourse

structures.) That is, although processing models (“performance models”) often
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take seriously the temporal dynamics involved in computing target structures, the

target structures themselves are inherited from theories which ignore temporal

considerations (“competence models”).

(d) Thebuilding metaphor.  In the traditional view, the act of constructing

mental representations is similar to the act of constructing a physical edifice.

Indeed, this is precisely what is claimed in the Physical Symbol System

Hypothesis (Simon, 1980).  In this view, words and more abstract constituents are

like the bricks in a building; rules are the mortar which binds them together.  As

processing proceeds, the representation grows much as does a building under

construction.   Successful processing results in a mental edifice which is a

complete and consistent structure, again, much like a building.

I take these assumptions to be widely shared among researchers in the field

of language processing, although they are rarely stated explicitly.  Furthermore,

these assumptions have formed the basis for a large body of empirical literature;

they have played a role in the framing of the questions which are posed, and later

in interpreting the experimental results.   Certainly it is incumbent on any theory

which is offered as replacement to at least provide the framework for describing

the empirical phenomena, as well as improving our understanding of the data.

Why might we be interested in another theory? One reason is that this view

of our mental life which I have just described, that is, a view which relies on

discrete, static, passive, and context-free representations, appears to be sharply at

variance with what is known about the computational properties of the brain

(Churchland & Sejnowski, 1992).  It must also be acknowledged that while the

theories of language which subscribe to the assumptions listed above do provide a

great deal of coverage of data, that coverage is often flawed, internally inconsistent

and ad hoc, and highly controversial.  So it is not unreasonable to raise the

question: Do the shortcomings of the theories arise from assumptions which are

basically flawed?  Might there be other, better ways of understanding the nature of
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the mental processes and representations which underlie language?  In the next

section, I would like to suggest an alternative view of computation, in which

language processing is seen as taking place in a dynamical system.  The lexicon is

viewed as consisting of regions of state space within that system; the grammar

consists of the dynamics (attractors and repellers) which constrain movement in

that space.  As we will see, this approach entails representations which are highly

context-sensitive, continuously varied and probabilistic (but of course 0.0 and 1.0

are also probabilities), and in which the objects of mental representation are better

thought of as trajectories through mental space rather than things which are

constructed.

An entry-point to describing this approach is the question of how one deals

with time and the problem of serial processing. Language, like many other

behaviors, unfolds and is processed over time.  This simple fact—so simple it

seems trivial—turns out to be problematic when explored in detail.   Therefore, I

turn now to the question of time.  I describe a connectionist approach to temporal

processing and show how it can be applied to several linguistic phenomena.  In the

final section I turn to the pay-off and attempt to show how this approach leads to

useful  new views about thelexicon and aboutgrammar.

3 The problem of time

Time is the medium in which all our behaviors unfold;  it is the context within

which we understand the world.  We recognizecausality because causes precede

effects; we learn that coherent motion over time of points on the retinal array is a

good indicator ofobjecthood; and it is difficult to think about phenomena such as

language, or goal-directed behavior, or planning without some way of

representing time.  Time’s arrow is such a central feature of our world that it is

easy to think that, having acknowledged its pervasive presence, little more needs
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to be said.

But time has been the stumbling block of many theories.  An important

issue in models of motor activity, for example, has been the nature of the motor

intention. Does the action plan consist of a literal specification of output sequences

(probably not), or does it represent serial order in a more abstract manner

(probably so, but how; e.g., Fowler, 1977; Jordan & Rosenbaum, 1988; Kelso,

Saltzman, & Tuller, 1986;  MacNeilage, 1970)?  Within the realm of natural

language processing, there is considerable controversy about how information

accumulates over time and what information is available when (e.g.,  Altmann &

Steedman, 1988; Ferreira & Henderson, 1990; Trueswell, Tanenhaus, & Kello, in

press).

Time has been a challenge for connectionist models as well.  Early models,

perhaps reflecting the initial emphasis on the parallel aspects of these models,

typically adopted a spatial representation of time (e.g., McClelland & Rumelhart,

1981).  The basic approach is illustrated in Figure 1.  The temporal order of input

events (first-to-last) is represented by the spatial order (left-to-right) of the input

vector.    There are a number of problems with this approach (see Elman, 1990, for

discussion).  One of the most serious is that the left-to-right spatial ordering has no

intrinsic significance at the level of computation which is meaningful for the

network. All input dimensions are orthogonal to each other in the input vector

space.  The human eye tends to see patterns such as01110000 and00001110 as

having undergone a spatial (or temporal, if we understand these as representing an

ordered sequence) translation, because the notation suggests a special relationship

may exist between adjacent bits.  But this relationship is the result of considerable

processing by the human visual system, and is not intrinsic to the vectors

themselves. The first element in a vector is not “closer” in any useful sense to the

second element than it is to the last element. Most important, is not available to

simple networks of the form shown in Figure 1.  A particularly unfortunate



Elman Page 9

consequence is that there is no basis in such architectures for generalizing what has

been learned about spatial or temporal stimuli to novel patterns.

—Insert Figure 1—

More recent models have explored what is intuitively a more appropriate

idea:  Let time be represented by the effects it has on processing.  If network

connections include feedback loops, then this goal is achieved naturally.  The state

of the network will be some function of the current inputs plus the network’s prior

state.  Various algorithms and architectures have been developed which exploit this

insight (e.g., Elman, 1990; Jordan, 1986; Mozer, 1989; Pearlmutter, 1989;

Rumelhart, Hinton, & Williams, 1986).  Figure 2 shows one architecture, the

Simple Recurrent Network, which was used for the studies to be reported here.

—Insert Figure 2—

In the SRN architecture, at timet hidden units receive external input, and

also collateral input from themselves at timet-1 (the context units are simply used

to implement this delay).  The activation function for any given hidden unit is

the familiar logistic,

but where the net input to the unit at timet, , is now

That is, the net input on any given tick of the clockt includes not only the

weighted sum of inputs and the node’s bias, but the weighted sum of the hidden

unit vector at the prior time step.  (Henceforth, when referring to the state space of

this system, I shall be referring specifically to thek-dimensional space defined by

thek hidden units.)

In the typical feedforward network, hidden units develop  representations

which enable the network to perform the task at hand (Rumelhart, Hinton, &
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Williams, 1986).  These representations may be highly abstract and are function-

based.  That is, the similarity structure of the internal representations reflects the

demands of the task being learned, rather than the similarity of the inputs’ form.

When recurrence is added, the hidden units assume an additional function.  They

now provide the network with memory.  But as is true in the feedforward network,

the encoding of the temporal history is task-relevant and may be highly abstract; it

rarely is the case that the encoding resembles a verbatim tape-recording.

One task for which the SRN has proven useful is prediction.  There are

several reasons why it is attractive to train a network to predict the future.  One

which arises with supervised learning algorithms such as backpropagation of error

is the question of where the teaching information comes from.  In many cases,

there are plausible rationales which justify the teacher.   But the teacher also

reflects important theoretical biases which one might sometimes like to avoid (for

example, if one were interested in using the network to generate alternative

theories).  Since the teacher in the prediction task is simply the time-lagged input,

it represents information which is directly observable from the environment and is

relatively theory neutral.  Furthermore, there is good reason to believe that

anticipating the future plays an important role in learning about the world.  Finally,

prediction is a powerful tool for learningabout temporal structure.  Insofar as the

order of events may reflect upon the past in complex and non-obvious ways, the

network will be required to develop relatively abstract encodings of these

dependencies in order to generate successful predictions.

The SRN architecture, as well as other forms of recurrent networks, have

been used in a variety of applications and has yielded promising results.  The

SRN’s ability to handle temporal sequences makes it a particularly relevant

architecture for modeling language behaviors.  The deeper question which then

arises is whether the solutions found by such recurrent network architectures differ

in any substantial ways from more traditional models.  And if the solutions are
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different, are these differences positive or negative?

4 Rules and representations: A dynamical perspective

We begin with the observation that networks such as that in Figure 2 are

dynamical systems.  This means that their state at any given point in time is some

function which reflects their prior state (see Norton, this volume, for a detailed

review of the definition and characteristics of dynamical systems).  The

computational properties of such networks are not yet  fully known, but it is clear

that they are considerable (Siegelmann & Sontag, 1992).  It also seems reasonable

that the conceptual notions which are associated with discrete automata theory and

symbolic computation may offer less insight into their functioning than the

concepts from dynamical systems theory (e.g., Pollack, 1990).  How might such

networks be applied to problems relevant to language processing, and how might

they suggest a different view of the underlying mechanisms of language?  One

way to approach this is to consider the problem of how the elements of language

may be ordered.

Language is a domain in which the ordering of elements is particularly

complex.  Word order, for instance, reflects the interaction of multiple factors.

These include syntactic constraints, semantic and pragmatic goals, discourse

considerations, and processing constraints (e.g., verb-particle constructions such

as “run up” may be split by a direct object, but not when the noun phrase is long

enough to disrupt the processing of the discontinuous verb as a unit). Whether or

not one subscribes to the view that these knowledge sources exert their effects

autonomously or interactively, there is no question that the final output—the word

stream—reflects their joint interplay.

We know also that the linear order of linguistic elements provides a poor

basis for characterizing the regularities which exist within a sentence.  A noun may
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agree for number with a verb which immediately follows it (as in 1a) or which is

separated by an arbitrarily great distance (as in 1b):

1. (a) Thechildr enpl likepl ice cream.

(b) The girl sg who Emily baby-sits for every other Wednesday while her

parents go to nightschoollikessg ice cream.

Such considerations led Miller and Chomsky (1963) to argue that statistically-

based algorithms are infeasible for language learning, since the number of

sentences which a listener would need to hear in order to know precisely which of

the 14 words which precedelikes in (1b) determines the correct number forlikes

would vastly outnumber the data available (in fact, even conservative estimates

suggest that more time would be needed than is available in an entire individual’s

lifetime).  On the other hand, recognition that the dependencies respect an

underlying hierarchical structure vastly simplifies the problem:  Subject nouns in

English agree for number with their verbs; embedded clauses may intervene but do

not participate in the agreement process.

One way to challenge a simple recurrent network with a problem which has

some relevance to language would therefore be to attempt to train it to predict the

successive words in sentences.  We know that this is a hard problem which cannot

be solved in any general way by simple recourse to linear order. We know also that

this is a task which has some psychological validity.  Human listeners are able to

predict word endings from beginnings;  listeners can predict grammaticality from

partial sentence input; and sequences of words which violate expectations—i.e.,

which are unpredictable—result in distinctive electrical activity in the brain. An

interesting question is whether a network could be trained to predict successive

words.  In the following two simulations we shall see how, in the course of solving

this task, the network develops novel representations of the lexicon and of



Elman Page 13

grammatical rules.

4.1 The lexicon as structured state space

Words may be categorized with respect to many factors.  These include such

traditional notions asnoun, verb,etc.; the argument structures they are associated

with; and semantic features.  Many of these characteristics are predictive of a

word’s syntagmatic properties.   But is the reverse true?  Can distributional facts

be used to infer something about a word’s semantic or categorial features?  The

goal of the first simulation was to see if a network could work backwards in just

this sense.

A small lexicon of 29 nouns and verbs was used to form simple sentences

(see Elman, 1990, for details).  Each word was represented as a localist vector in

which a single randomly assigned bit was turned on.  This input representation

ensured that there was nothing about the form of the word which was correlated

with its properties, and thus that any classifications would have to be discovered

by the network based solely on distributional behavior.

A network similar to the one shown in Figure 2 was trained on a set of

10,000 sentences, with each word presented in sequence to the network and each

sentence concatenated to the preceding sentence.  The task of the network was to

predict the successive word.  After each word was input, the output (which was the

prediction of the next input) was compared with the actual next word and weights

were adjusted by the backpropagation of error learning algorithm.

At the conclusion of training, the network was tested by comparing its

predictions against the corpus.  Since the corpus was non-deterministic, it was not

reasonable to expect that the network (short of memorizing the sequence) would

be able to make exact predictions.  Instead, the network predicted the cohort of

potential word successors in each context.  The activation of each cohort turned
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out to be highly correlated with the conditional probability of each word, in that

context (the mean cosine of the output vector with the empirically derived

probability distribution was0.916).

This behavior suggests that in order to maximize performance at

prediction, the network identifies inputs as belonging to classes of words based on

distributional properties and co-occurrence information.  These classes were not

represented in the overt form of the word, since these were all orthogonal to each

other.  However, the network is free to learn internal representations at the hidden

unit layer which might capture this implicit information.

To test this possibility, the corpus of sentences was run through the network

a final time.  As each word was input, the hidden unit activation pattern which was

produced by the word, plus the context layer, was saved.  For each of the 29 words,

a mean vector was computed, averaging across all instances of the word in all

contexts.  These mean vectors were taken to be prototypes, and were subjected to

hierarchical clustering.  The point of this was to see whether the inter-vector

distances revealed anything about similarity structure of the hidden unit

representation space (Euclidean distance being taken as a measure of similarity).

The tree in Figure 3 was then constructed from that hierarchical clustering.

—Insert Figure 3 about here—

The similarity structure revealed in this tree indicates that the network

discovered several major categories of words.  The two largest categories

correspond to the input vectors which  are verbs and nouns.  The verb category is

subdivided into those verbs which require a direct object, those which are

intransitive, and those for which (in this corpus) a direct object was optional.  The

noun category is broken into animates and inanimates.  The animates contain two

classes: human and nonhuman, with nonhumans are subdivided into large animals

and small animals.  The inanimates are divided into breakables, edibles, and
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miscellaneous.

First, it must be said that the network obviously knows nothing about the

real semantic content of these categories.  It has simply inferred that such a

category structure exists.  The structure is inferred because it provides the best

basis for accounting for distributional properties.  Obviously, a full account of

language would require an explanation of how this structure is given content

(grounded in the body and in the world).  But it is interesting that the evidence for

the structure can be inferred so easily on the basis only of form-internal evidence,

and this result may encourage caution about just how much information is implicit

in the data and how difficult it may be to use this information to construct a

framework for conceptual representation.

However, my main point is not to suggest that this is the primary way in

which grammatical categories are acquired by children, although I believe that

cooccurrence information may indeed play a role in such learning.  The primary

thing I would like to focus on is what this simulation suggests about the nature of

representation in systems of this sort.  That is, I would like to consider the

representational properties of such networks, apart from the specific conditions

which give rise to those representations.

Where is the lexicon in this network?  Recall the earlier assumptions: The

lexicon is typically conceived of as a passive data structure.  Words are objects of

processing.  They are first subject to acoustic/phonetic analysis, and then their

internal representations must be accessed, recognized, and retrieved from

permanent storage.  Following this, the internal representations have to be inserted

into a grammatical structure.

 The status of words in a system of the sort described here is very different:

Words arenot theobjects of processing as much as they are inputs whichdrive the

processor in a more direct manner.  As Wiles and Bloesch (1992) have suggest, it

is more useful to understand inputs to networks of this sort asoperators  rather
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than asoperands.  Inputs operate on the network’s internal state and move it to

another position in state space.  What the network learns over time is what

response it should make to different words, taking context into account.  Because

words have reliable and systematic effects on behavior, it is not surprising that all

instances of a given word should result in states which are tightly clustered, or that

grammatically or semantically related words should produce similar effects on the

network.  We might choose to think of the internal state that the network is in when

it processes a word as representing that word (in context), but it is more accurate to

think of that state as theresult of processing the word, rather than as a

representation of the word itself.

Note that there is an implicitly hierarchical organization to the regions of

state space associated with different words. This organization is achieved through

the spatial structure.  Conceptual similarity is realized through position in state

space. Words which are conceptually distant produce hidden unit activation

patterns which are spatially far apart. Higher-level categories correspond to large

regions of space; lower-level categories correspond to more restricted subregions.

For example,dragon is a noun and causes the network to move into the noun

region of the state space.  It is also [+animate], which is reflected in the subregion

of noun space which results.  Because large animals typically are described in

different terms and do different things than small animals, the general region of

space corresponding todragon, monster andlion is distinct from that occupied by

mouse, cat, anddog.  The boundaries between these regions may be thought of as

hard in some cases (e.g., nouns are very far from verbs) or softin others (e.g.,

sandwich, cookie, andbread are not very far fromcar, book, androck.  One even

might imagine cases where in certain contexts, tokens of one word might overlap

with tokens of another.  In such cases, one would say that the system has generated
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highly similar construals of the different words.

4.2 Rules as attractors

If the lexicon is represented as regions of state space, what about rules?  We have

already seen that some aspects of grammar are captured in the tokenization of

words, but this is a fairly limited sense of grammar.  The well-formedness of

sentences depends on relationships which are not readily stated in terms of simple

linear order.  Thus the proper generalization about why the main verb in (1b) is in

the plural is that the main subject is plural, and not that the word 14 words prior

was a plural noun.  The ability to express such generalizations would seem to

require a mechanism for explicitly representing abstract grammatical structure,

including constituent relationships (e.g., the notion that some elements are part of

others).  Notations such as phrase structure trees (among others) provide precisely

this capability. It is not obvious how complex grammatical relations might be

expressed using distributed representations. Indeed, it has been argued that

distributed representations (of the sort exemplified by the hidden unit activation

patterns in the previous simulation) cannot  have constituent structure  in any

systematic fashion (Fodor & Pylyshyn, 1988). (As a backup, Fodor and Pylyshyn

suggest that if distributed representationsdo have a systematic constituent

structure, then they are merely implementations of what they call the “classical”

theory, in this case, the Language of Thought, Fodor, 1976.)

The fact that the grammar of the first simulation was extremely simple

made it difficult to explore these issues.  Sentences were all declarative and

monoclausal.  This simulation sheds little light on the grammatical potential of

such networks.

A better test would be train the network to predict words in complex

sentences which contain long-distance dependencies.  This was done in Elman

(1991b) using a strategy which was similar to the one outlined in the prior
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simulation, except that sentences had the following characteristics:

(1) Nouns and verbs agreed for number.    Singular nouns required singular

verbs; plural nouns selected plural verbs.

(2) Verbs differed with regard to their verb argument structure.  Some verbs

were transitive; others were intransitive; and others were optionally transitive.

(3)  Nouns could be modified by relative clauses.   Relative clauses could

either be object-relatives (the head had the object role in the clause) or subject-

relative (the head was the subject of the clause), and either subject or object nouns

could be relativized.

As in the previous simulation, words were represented in localist fashion so

that information about neither the grammatical category (noun or verb) nor the

number (singular or plural) was contained in the form of the word.  The network

also only saw positive instances; only grammatical sentences were presented.

The three properties interact in ways which were designed to make the

prediction task difficult.  The prediction of number is easy in a sentence such as

(2a), but harder in (2b).

2. (a) The boyspl chasepl the dogs.

(b) The boyspl who the dogsg chasessg runpl away.

In the first case, the verb follows immediately.  In the second case, the first noun

agrees with the second verb (run) and is plural;  the verb which is actually closest

to it (chase) is in the singular because it agrees with the interveningword (dog).

Relative clauses cause similar complications for verb argument structure.

In (3), it is not difficult for the network to learn thatchase requires a direct object,
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see permits (but does not require) one, andlives is intransitive.

3. (a) The cats chase the dog.

(b) The girls see.    The girls see the car.

(c) The patient lives.

On the other hand, consider (4):

4. The dog who the cats chase run away.

The direct object of the verbchasein the relative clause isdog.  However, dog is

also the head of the clause (as well as the subject of the main clause).Chase in this

grammar is obligatorily transitive, but the network must learn that when it occurs

in such structures the object position is left empty (gapped) because the direct

object has already been mentioned (filled) as the clause head.

These data illustrate the sorts of phenomena which have been used by

linguists to argue for abstract representations with constituent structure (Chomsky,

1957); they have also been used to motivate the claim that language processing

requires some form of pushdown store or stack mechanism.  They therefore

impose a difficult set of demands on a recurrent network.

However, after training a network on such stimuli (Elman, 1991b) it

appeared the network was able to make correct predictions (mean cosine between

outputs and empirically derived conditional probability distributions: 0.852;

perfect performance would have been 1.0).  These predictions honored the

grammatical constraints which were present in the training data.  The network was

able to correctly predict the number of a main sentence verb even in the presence

of  intervening clauses (which might have the same or conflicting number

agreement between nouns and verbs).  The network also not only learned about

verb argument structure differences, but correctly “remembered” when an object-

relative head had appeared, so that it would not predict a noun following an

embedded transitive verb.  Figure 4 shows the predictions made by the network
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during testing with a novel sentence.

—Insert Figure 4 about here—

How is this behavior achieved?  What is the nature of the underlying

knowledge possessed by the network which allows it to perform in a way which

conforms with the grammar?  It is not likely that the  network simply memorized

the training data, because the network was able to generalize its performance to

novel sentences and structures it had never seen before.  But just how general was

thesolution, and just how systematic?

In the previous simulation, hierarchical clustering was used to measure the

similarity structure between internal representations of words.  This gives us an

indirect means of determining the spatial structure of the representation space.  It

does not let us actually determine what that structure is.1  So one would like to be

able to visualize the internal state space more directly.  This is also important

because it would allow us to study the ways in which the network’s internal state

changes over time as it processes a sentence.  These trajectories might tell us

something about how the grammar is encoded.

One difficulty which arises in trying to visualize movement in the hidden

1. For example, imagine a tree with two major branches, each of which has two sub-branch-

es.  We can be certain that the items on the major branches occupy different regions of state

space.  More precisely, they lie along the dimension of major variation in that space.  We

can say nothing about other dimensions of variation, however. Two sub-branches may di-

vide in similar ways.  For example, [+human] and [-human] animates may each have

branches for [+large] and [-large] elements.  But it is impossible to know whether [+large,

+human] and [+large, -human] elements differ from their [-large] counterparts in exactly

the same way,i.e., by lying along some common axis corresponding to size.  Clustering

tells us only about distance relationships, not about the organization of space which under-

lies those relationships.
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unit activation space over time is that it is an extremely high-dimensional space

(70 dimensions, in the current simulation).  These representations are distributed,

which typically has the consequence that interpretable information cannot be

obtained by examining activity of single hidden units.  Information is more often

encoded along dimensions which are represented across multiple hidden units.

This is not to say, however, that the information is not there, of course,

simply that one needs to discover the proper viewing perspective to get at it.  One

way of doing this is to carry out a principal components analysis (PCA) over the

hidden unit activation vectors.  PCA allows us to discover the dimensions along

which there is variation in the vectors; it also makes it possible to visualize the

vectors in a coordinate system which is aligned with this variation.  This new

coordinate system has the effect of giving a somewhat more localized description

to the hidden unit activation patterns.  Since the dimensions are ordered with

respect to amount of variance accounted for, we can now look at the trajectories of

the hidden unit patterns along selected dimensions of the state space.2

—Insert Figures 5, 6, and 7 about here—

In Figures 5, 6, and 7 we see the movement over time through various

plans in the hidden unit state space as the trained network processes various test

sentences.  Figure 5 compares the path through state space (along the second

principal component) as the network processes the sentencesboys hear boysand

boy hears boy. PCA 2 encodes the number of the main clause subject noun, and

2.  There are limitations to the use of PCA to analyze hidden unit vectors.  PCA yields a

rotation of the original coordinate system which requires that the new axes be orthogonal.

However, it need not be the case that the dimensions of variation in the hidden unit space

are orthogonal to one another; this is especially true if the output units which receive the

hidden unit vectors as input are nonlinear.  It would be preferable to carry out a nonlinear

PCA or use some other technique which both relaxed the requirement of orthogonality and

which took into account the effect of the hidden-to-output nonlinearity.
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the difference in the position along this dimension correlates with whether the

subject is singular or plural.  Figure 6 compares trajectories for sentences with

verbs which have different argument expectations;chases requires a direct object,

seespermits one, andwalksprecludes one.  As can be seen, these differences in

argument structure are reflected in a displacement in state space from upper left to

lower right.  Finally, Figure 7 illustrates the path through state space for various

sentences which differ in degree of embedding.  The actual degree of embedding is

captured by the displacement in state space of the embedded clauses; sentences

with multiple embeddings appear somewhat as spirals.

These trajectories illustrate the general principle at work in this network.

The network has learned to represent differences in lexical items as different

regions in the hidden unit state space.  The sequential dependencies which exist

among words in sentences are captured by the movement over time through this

space as the network processes successive words in the sentence.  These

dependencies are actually encoded in the weights which map inputs (i.e.,the

current state plus new word) to the next state.  The weights may be thought of as

implementing the grammatical rules which allow well-formed sequences to be

processed and to yield valid expectations about successive words.   Furthermore,

the rules are general.  The network weights create attractors in the state space, so

that the network is able to respond sensibly to novel inputs, as when unfamiliar

words are encountered in familiar contexts.

5 Discussion

The image of language processing just outlined does not look very much like the

traditional picture which we began with.  Instead of a dictionary-like lexicon, we

have a state space partitioned into various regions.  Instead of symbolic rules and
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phrase structure trees, we have a dynamical system in which grammatical

constructions are represented by trajectories through state space.  Let me now

consider what implications this approach might have for understanding several

aspects of language processing.

5.1 Beyond sentences

Although I have focused here on processing of sentences, obviously language

processing in real situations typically involves discourse which extends over many

sentences.  It is not clear, in the traditional scheme, how information which is

represented in sentence structures might be kept available for discourse purposes.

The problem is just that on the one hand, there are clearly limitations on how much

information can be stored, so obviously not everything can be preserved; but on

the other hand, there are many aspects of sentence-level processing which may be

crucially affected by prior sentences.  These include not only anaphora, but also

such things as argument structure expectations (e.g., the verbto give normally

requires a direct object and an indirect object, but in certain contexts these need

not appear overtly if understood:Do you plan to give money to the United Way?

No, I gave last week.).

The network’s approach to language processing handles such requirements

in a natural manner.  The network is a system which might be characterized as

highly opportunistic.  It learns to perform a task, in this case prediction, doing just

what it needs to do.  Notice that in Figure 5, for example, the information about the

number of the subject noun is maintained only until the verb which agrees with the

subject has been processed.  From that point on, the two sentences are identical.

This happens because once the verb is encountered, subject number is no longer

relevant to any aspect of the prediction task. (This emphasizes the importance of

the task, because presumably tasks other than prediction could easily require that
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the subject number be maintained for longer.)

This approach to preserving information suggests that such networks

would readily adapt to processing multiple sentences in discourse, since there is no

particular reanalysis or re-representation of information which is required at

sentence boundaries and no reason why some information cannot be preserved

across sentences.  Indeed, St. John (1992) and Harris & Elman (1990) have

demonstrated that networks of this kind readily adapt to processing paragraphs and

short stories.  (The emphasis on functionality is reminiscent of suggestions made

by Agre & Chapman (1987) and Brooks (1989).  These authors argue that animals

need not perfectly represent everything which is in their environment, nor store it

indefinitely.  Instead, they need merely be able to process that which is relevant to

the task at hand.)

5.2 Types and tokens

Consider the first simulation, and the network’s use of state space to represent

words.  This is directly relevant to the way in which the system addresses the

types/tokenproblem which arises in symbolic systems.

In symbolic systems, because representations are abstract and context-free,

a binding mechanism is required to attach an instantiation of a type to a particular

token.  In the network, on the other hand, tokens are distinguished from one

another by virtue of producing small but potentially discriminable differences in

the state space.John23, John43, andJohn192 (using subscripts to indicate different

occurrences of the same lexical item) will be physically different vectors.  Their

identity as tokens of the same type is captured by the fact that they are all located

in a region which may be designated as theJohn space, and which contains no

other vectors.  Thus, one can speak of this bounded region as corresponding to the
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lexical type,John.

The  differences in context, however, create differences in the state.

Furthermore, these differences are systematic.  The clustering tree in Figure 3 was

carried out over the mean vector for each word, averaged across contexts.  If the

actual hidden unit activation patterns are used, the tree is of course quite large

since there are hundreds of tokens of each word.  Inspection of the tree reveals two

important facts.  First, all tokens of a type are more similar to one another than to

any other type, so the arborization of tokens ofboy anddog do not mix (although,

as was pointed out, such overlap is not impossible and may in some circumstances

be desirable).  Second, there is a substructure to the spatial distribution of tokens

which is true of multiple types.  Tokens ofboy used as subject occur more closely

to one another than to the tokens ofboy as object.  This is also true of the tokens of

girl .  Moreover, the spatial dimension along which subject-tokens vary from

object-tokens is the same for all nouns.  Subject-tokens of all nouns are positioned

in the same region of this dimension, and object-tokens are positioned in a

different region.  This means that rather than proliferating an undesirable number

of representations, this tokenization of types actually encodes grammatically

relevant information.  Note that the tokenization process does not involve creation

of new syntactic or semantic atoms.  It is, instead, a systematic process.  The state

space dimensions along which token variation occurs may be interpreted

meaningfully.  The token’s location in state space is thus at least functionally

compositional (in the sense described by van Gelder, 1990).

5.3 Polysemy and accommodation

Polysemy refers to the case where a word has multiple senses.  Accommodation is

used to describe the phenomenon in which word meanings are contextually altered

(Langacker, 1987).  The network approach to language processing provides an
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account for both phenomena, and shows how they may be related.

Although there are clear instances where the same phonological form has

entirely different meanings (bank, for instance), in many cases polysemy is a

matter of degree.  There may be senses which are different, although

metaphorically related, as in (5):

5. (a) Arturo Barrios runs very fast!

(b) This clock runs slow.

(c)  My dad runs the grocery store down the block.

In other cases, the differences are far more subtle, though just as real:

6. (a)  Frank Shorter runs the marathon faster than I ever will.

(b)  The rabbit runs across the road.

(c)  The young toddler runs to her mother.

In (6), the construal ofruns is slightly different, depending on who is doing the

running.  But just as in (5), the way in which the verb is interpreted depends on

context.  As Langacker (1987) has described the process:

It must be emphasized that syntagmatic combination involves more than the simple

addition of components.  A composite structure is an integrated system formed by

coordinating its components in a specific, often elaborate manner.  In fact, it often has

properties that go beyond what one might expect from its components alone.....  [O]ne

component may need to be adjusted in certain details when integrated to form a

composite structure;  I refer to this asaccommodation.  For example, the meaning of

run as applied to humans must be adjusted in certain respects when extended to four

legged animals such as horses, dogs, and cats... in a technical sense, this extension

creates a newsemantic variant of the lexical item.  (pp. 76-77).

In Figure 8 we see that the network’s representations of words in context

demonstrates just this sort of accommodation.  Trajectories are shown for various

sentences, all of which contain the main verbburn.  The representation of the verb
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varies, depending on the subject noun.  The simulations shown here do not exploit

the variants of the verb, but it is clear that this is a basic property of such networks.

—Insert Figure 8 about here—

5.4 “Leaky recursion” and processing complex sentences

The sensitivity to context which is illustrated in Figure 8 also occurs across levels

of organization.  The network is able to represent constituent structure (in the form

of embedded sentences), but it is also true that the representation of embedded

elements may be affected by words at other syntactic levels.

This means that the network does not implement a stack or pushdown

machine of the classical sort, and would seem not to implement true recursion, in

which information at each level of processing is encapsulated and unaffected by

information at other levels.  Is this good or bad?

If one is designed a programming language, this sort of “leaky” recursion is

highly undesirable.  It is important that the value of variables local to one call of a

procedure not be affected by their value at other levels.  True recursion provides

this sort of encapsulation of information.  I would suggest that the appearance of a

similar sort of recursion in natural language is deceptive, however, and that while

natural language may require one aspect of what recursion provides (constituent

structure and self-embedding) it may not require the sort of informational firewalls

between levels of organization.

Indeed, embedded material typically has an elaborative function.  Relative

clauses, for example, provide information about the head of a noun phrase (which

is at a higher level of organization).  Adverbial clauses perform a similar function

for main clause verbs.  In general, then, subordination involves a conceptual

dependence between clauses.  Thus, it may be important that a language

processing mechanism facilitate rather than impede interactions across levels of
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information.

There are specific consequences for processing which may be observed in a

system of this sort, which only loosely approximates recursion.   First, the finite

bound on precision means that right-branching sentences (such as 7a) will be

processed better than center-embedded sentences (such as 7b):

7. (a) The woman saw the boy that heard the man that left.

(b) The man the boy the woman saw heard left.

It has been known for many years that sentences of the first sort are processed in

humans more easily and accurately than sentences of the second kind, and a

number of reasons have been suggested (e.g., Miller & Isard, 1964).  In the case of

the network, such an asymmetry arises because right-branching structures do not

require that information be carried forward over embedded material, whereas in

center-embedded sentences information from the matrix sentence must be saved

over intervening embedded clauses.

But it is also true that not all center-embedded sentences are equally

difficult to comprehend.  Intelligibility may be improved in the presence of

semantic constraints.  Compare the following, in (8):

8. (a) The man the woman the boy saw heard left.

(b) The claim the horse he entered in the race at the last minute was a

ringer was absolutely false.

In (8b) the three subject nouns create strong—and different—expectations about

possible verbs and objects.  This semantic information might be expected to help

the hearer more quickly resolve the possible subject/verb/object associations and

assist processing (Bever, 1970; King & Just, 1991).  The verbs in (8a), on the other

hand, provide no such help.  All three nouns might  plausible be the subject of all

three verbs.

In a series of simulations, Weckerly & Elman (1992) demonstrated that a
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simple recurrent network exhibited similar performance characteristics.  It was

better able to process right-branching structures, compared to center-embedded

sentences.  And center-embedded sentences which contained strong semantic

constraints were processed better compared to center-embedded sentences without

such constraints.  Essentially, the presence of constraints meant that the internal

state vectors generated during processing were more distinct (further apart in state

space) and therefore preserved information better than the vectors in sentences

in which nouns were more similar.

5.5 The immediate availability of lexically-specific information

One question which has generated considerable controversy concerns the time-

course of processing, and when certain information may be available and used in

the process of sentence processing.  One proposal is that there is a first-pass parse

during which only category-general syntactic information is available (Frazier &

Rayner, 1982).  The other major position is that considerably more information,

including lexically-specific constraints on argument structure, is available and

used in processing (Taraban & McClelland, 1990).  Trueswell, Tanenhaus, and

Kello (in press) present empirical evidence from a variety of experimental

paradigms which strongly suggests that listeners are able to use subcategorization

information in resolving the syntactic structure of a noun phrase which would

otherwise be ambiguous.  For example, in (9), the verbforgotpermits both a noun

phrase complement and also a sentential complement; at the point in time whenthe

solution has been read, either (9a) or (9b) is possible.

9. (a) The student forgot the solution was in the back of the book.

(b) The student forgot the solution.

In (10), on the other hand,hope is strongly biased toward taking a sentential
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complement.

10. (a) The student hoped the solution was in the back of the book.

(b) *The student hoped the solution.

Trueswell and his colleagues found that subjects appeared not only to be sensitive

to the preferred complement for these verbs, but that behavior was significantly

correlated with the statistical patterns of usage (determined through corpus

analysis).  That is, insofar as the actual usage of a verb might be more or less

biased in a particular direction, subjects’ expectations were more or less consistent

with that usage.  This is exactly the pattern of behavior which would be expected

given the model of processing which has been described here, and we are currently

attempting to model these data.

6 Conclusions

Over recent years, there has been considerable work in attempting to understand

various aspects of speech and language in terms of dynamical systems.  Some of

the most elegant and well-developed work has focused on motor control,

particularly within the domain of speech (e.g., Fowler, 1980; Kelso, Saltzman, &

Tuller, 1986).  Some of this work makes explicit reference to consequences for

theories of phonology (e.g., Browman & Goldstein, 1985; Pierrehumbert &

Pierrehumbert, 1990).

More recently, attention has been turned to systems which might operate at

so-called higher-levels of language processing.  One of the principal challenges

has been whether or not these dynamical systems can deal in a satisfactory way

with the apparently recursive nature of grammatical structure.

I have attempted to show in this chapter that indeed, networks which

possess dynamical characteristics have a number of properties which capture
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important aspects of language, including their embedded nature.  The framework

appears to differ from traditional view of language processors in the way in which

it represents lexical and grammatical information.  Nonetheless, these networks

exhibit behaviors which are highly relevant for language.  They are able to induce

lexical category structure from statistical regularities in usage; and they are able to

represent constituent structure to a certain degree.  They are not perfect, but their

imperfections strongly resemble those observed in human language users.

Let me close, however, with an obvious caveat.  None of the work

described here qualifies as a full model of language use.  The range of phenomena

illustrated is suggestive, but limited.  As any linguist will note, there are many,

many questions which remain unanswered.  The models are also disembodied in a

way which makes it difficult to capture any natural semantic relationship with the

world.  These networks are  essentially exclusively language processors and their

language use is unconnected with an ecologically plausible activity. Finally, and

related to prior point, the view of language use in these networks is deficient in that

it is solely reactive.  These networks are input/output devices.  Given an input,

they produce the output which is appropriate for that training regime.  The

networks are thus tightly coupled with the world in a manner which leaves little

room for endogenously generated activity.  There is no possibility here for either

spontaneous speech or for reflective internal language.  Put most bluntly, these are

networks that do not think!

These same criticisms may be levelled, of course, at many other current

and more traditional models of language, so they should not be taken as inherent

deficiencies of the approach.  Indeed, I suspect that the view of linguistic behavior

as deriving from a dynamical system probably allows for greater opportunities for

remedying these shortcomings.  One exciting approach involves embedding such

networks in environments in which their activity is subject to  evolutionary

pressure, and viewing them as examples of artificial life (e.g., Nolfi, Elman, &
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Parisi, in press).  But in any event, it is obvious that much remains to be done.
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Guidelines for Further Reading

A good collection of recent work in connectionist models of language may be

found in N. Sharkey (Ed.),Connectionist Natural Language Processing: Readings

from Connection Science. Oxford: Intellect.  The initial description of simple

recurrent networks appears in Elman, J.L. (1990). Finding structure in time.

Cognitive Science, 14, 179-211.  Additional studies with SRNs are reported in

Cleeremans, A., Servan-Schreiber, D., & McClelland, J.L. (1989).  Finite state

automata and simple recurrent networks.Neural Computation,1, 372-381; and in

Elman, J.L.  (1991).  Distributed representations, simple recurrent networks, and

grammatical structure.Machine Learning, 7, 195-225.  A discussion of recurrent

networks as dynamical systems is found in Pollack, J.B. (1990).  The induction of

dynamical recognizers.Machine Learning,7, 227-252.
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Figure Legends

Figure 1. A feed-forward network which represents time through space.  Circles

represent nodes; arrows between layers indicate full connectivity between

nodes in adjacent layers. The network is feed-forward because activations at

each level depend only on the input received from below.  At the conclusion

of processing an input, all activations are thus lost.  A sequence of inputs can

be represented in such an architecture by associating the first node (on the

left) with the first element in the sequence; the second node with the second

element; and so on.

Figure 2. A simple recurrent network (SRN). Solid lines indicate full

connectivity between layers, with weights which are trainable.  The dotted

line indicates a fixed one-to-one connection between hidden and context

layers. The context units are used to save the activations of the hidden units

on any time step. Then on the next time step, the hidden units are activated

not only by new input but by the information in the context units—which is

just the hidden units’ own activations on the prior time step. An input

sequence is processed by presenting each element in the sequence one at a

time, allowing the network to be activated at each step in time, and then

proceeding to the next element.  Note that although hidden unit activations

may depend on prior inputs, by virtue of prior inputs’ effects on the recycled

hidden unit/context unit activations, the hidden units do not record the input

sequence in any veridical manner.  Instead, the task of the network is to learn

to encode temporal events in some more abstract manner which allows the

network to perform the task at hand.

Figure 3. Hierarchical clustering diagram of hidden units activations in the
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simulation with simple sentences.  After training, sentences are passed

through the network, and the hidden unit activation pattern for each word is

recorded.  The clustering diagram indicates the similarity structure among

these patterns.  This structure, which reflects the grammatical factors that

influence word position, is inferred by the network; the patterns which

represent the actual inputs are orthogonal and carry none of this information.

Figure 4.  The predictions made by the network in the simulation with complex

sentences, as the network processes the sentence “boys who Mary chases

feed cats.”  Each panel displays the activations of output units after

successive words; outputs are summed across groups for purposes of

displaying the data.  “V” and “N” refer to verbs and nouns; “sg” and “pl”

refer to singular and plural; “prop” refers to proper nouns; and “t”, “i”, and “t/

i” refer to transitive verbs, intransitive verbs, and optionally transitive verbs.

Figure 5.  Trajectories through hidden unit state space as the network processes the

sentences “boy hears boy” and “boys hear boy”.  The number (singular vs.

plural) of the subject is indicated by the position in state space along the

second principal component.

Figure 6.  Trajectories through hidden unit state space as the network processes the

sentences “boy chases boy”, “boy sees boy”, and “boy walks.”  Transitivity

of the verb is encoded by is position along an axis which cuts across the first

and third principal components.

Figure 7.  Trajectories through hidden units state space (principal components 1

and 11) as the network processes the sentences “boy chases boy”, “boy

chases boy who chases boy”, “boy who chases boy chases boy”, and “boy

chases boy who chases boy who chases boy” (to assist in reading the plots,

the final word of each sentence is terminated with a “]S”).

Figure 8.  Trajectories through hidden units state space (principal components 1
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and 2) as the network processes the sentences “{john, mary, lion, tiger, boy,

girl} burns house”, as well as “{museum, house} burns” (the final word of

each sentences is terminated with “]S”).  The internal representations of the

word “burns” varies slightly as a function of the verb’s subject.
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