
omitting the forms and pointing to the first of these two
triples. For Variation 2, only the form itself need to be
stored.

Denote by v the number of memory accesses required
for locating one item in a hash table using a specific hash
function. This includes the additional accesses required
for resolving hash collisions by methods such as chaining
or double hashing. Then the number of memory accesses
for retrieving w is t = (2 I w[+ l)v for Variation 1,
([w[+ 1)v for Variation 2, 3 [w[v for Variation 3, and
4 I wl v for Variation 4. The hash dictionary can be
stored in an almost full hash table with a good average
and worst case v by using a method such as that proposed
by Schmidt and Shamir [6]. Since the same operators are
calculated for every word, assembly language routines or
even microcoding of them can be prepared, thereby
reducing the CPU cost. On the other hand, more
"collisions" than in normai hashing can be expected:
whenever two distinct dictionary words are transformed
into the same string by our operators, both of them are
stored, since they are induced by different dictionary
words. The problem of locating them is of course taken
care of automatically by the collision handling mecha-
nism associated with the hash function, but the number
of collisions increases. We have not investigated this
effect; instead we wish to thank the referee for pointing
out the desirability of doing so.

The RED method can also be extended to detect
other types of errors, which are not single errors but
occur frequently in optical character recognition, such as
changing one character into two other characters (hori-
zontal splitting); changing two characters into one other
character (catenation); changing two characters into two
other characters (crowding). (The terms are from [5].)
This can be achieved, for example, by storing D~(x)
(1 <_ i _< Ix [- 1) in the hash table for every significant
word x.

Received 4/81; revised 8/81; accepted 3/82

References
1. Bratley, P., and Choueka, Y. Processing terms in document
retrieval systems. To appear.
2. Damerau, F.J. A technique for computer detection and
correction of spelling errors. Comm. ACM 7, 3 (Mar. 1964), 171-176.
3. Mor, M., and Fraenkel, A.S. Retrieval in an environment of
faulty texts or faulty queries. In Proc. 2nd Int. Conf. Databases--
Improving Usability and Responsiveness, Jerusalem, June 1982,
Academic Press, New York.
4. Peterson, J.L. Computer programs for detecting and correcting
spelling errors. Comm. ACM 23, t2 (Dec. 1980), 676-687.
5. Rosenbaum, W.S., and Hilliard, J.J. Multifont OCR
postprocessing system. IBM J. Res. Dev. 19, 4 (July 1975), 398--421.
6. Schmidt, J., and Shamir, E. An improved program for
constructing open hash tables. In J.W. de Bakker and J. van Leeuwen
(Eds.), 7th Colloquium on Automata, Languages and Programming,
July 14-18, 1980, Springer-Verlag, Berlin, pp. 569-581.
7. Shiloach, Y. Fast canonization of circular strings. J. of Algorithms
2 (1981) 107-121.

Technical Note:
Human Aspects Henry Ledgard
of Computing Editor

A Comment on English Neologisms
and Programming Language Keywords

C. M. Eastman
Florida State University

The choice of keywords in the design of programming
languages is compared to the formation of neologisms,
or new words, in natural languages. Examination of
keywords in high-level programming languages shows
that they are formed using mechanisms analogous to
those observed in English. The use of mirror words as
closing keywords is a conspicuous exception.

CR Categories and Subject Descriptors: D.3.3. [Pro-
gramming Languages]: Language Constructs--control
structures

General Terms: Design, Human Factors, Languages
Additional Key Words and Phrases: keywords, nat-

ural language, neologisms

Introduction

High-level programming languages are not natural
languages. They are artificial languages created in order
to convey a sequence of instructions to a machine. They
are written, not spoken. They have a well-defined and
compact syntax. Their vocabularies are restricted.

Yet the designers and users of such programming
languages learn and use natural languages all of their
lives. It would be surprising if this experience with
natural languages did not carry over into the use of
programming languages in many ways [3]. For example,
the choice of keywords by language designers is similar
to neologism formation in English.

English Neologisms

A natural language such as English is not static.
Changes occur in pronunciation, grammar, and vocab-

Author's Present Address: Caroline M. Eastman, Department of
Computer Science and Engineering, Southern Methodist University,
Dallas, TX 75275.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0001-0782/82/1200-0938500.75.

938 Communications December 1982
of Volume 25
the ACM Number 12

ulary. New words are introduced, old words fall into
disuse, the meanings of words change, pronunciation
shifts, and grammatical changes occur. If there is a
written version of the language, that also changes. The
process of language change has been extensively studied
by linguists. Overviews may be found in many linguistics
books, including Samuels [5] and Sturtevant [6].

It seems reasonable that examining the mechanisms
of change in natural languages can provide insights into
the design and use of programming languages. Consider
the example of English neologisms. A neologism is a
new word; it may be either a newly created word or an
existing word whose meaning has changed. The forma-
tion of English neologisms shows parallels to similar
processes related to programming languages, the choice
of keywords by the designer, and the choice of identifiers
by the programmer.

Neologisms in English are rarely created out of thin
air. They have roots in preexisting languages and are
often very closely related to existing words. There are
several common mechanisms by which new words or
new versions of old words are formed. Such words are
usually borrowed from other languages, formed in some
way from preexisting words, or changed in form. On rare
occasions a word may be made up with no obvious
relation to preexisting words. The classification of neol-
ogism formation given here follows that of Samuels [5].

Words that are taken from other languages are loan
words; they may be changed somewhat to fit the patterns
of the new language. English has a large number of such
loan words. The use of English words as programming
language keywords may be viewed as parallel to such
borrowings in natural languages.

Samuels classifies the main mechanisms by which
words are formed from preexisting language elements.
Compound words may be formed by concatenating two
or more other words, as in "blackbird." Phrases, such as
"give up," may acquire a meaning beyond that of the
separate words. Words may be formed from combina-
tions of Greek and Latin roots, e.g., "photograph." Ac-
ronyms such as "radar" may be formed from initial
letters. Blends result from combining parts of other
words, for example, "smog" from "smoke" and "fog."
Suffixes and prefixes may be used. Phonaesthemes, pho-
nemes that have a traditional association of meanings,
may be used in creating new words. For example, "gr"
can carry an unpleasant connotation, as in "grim,"
"greedy," "gruesome," "grumble," and "gross."

Some of these processes have parallels in program-
ming languages. Compounds are frequently used for
keywords and identifiers. Keywords made up of parts of
existing words can be regarded as blends intermediate
between compounds and acronyms. Suffixes, prefixes,
and acronyms are occasionally used. Classical roots and
phonaesthemes are rarely, if ever, used.

Another way in which a "new" word can arise is
through a change in meaning of an old word. For exam-
ple, "silly" at one time meant "blessed." English words

939

which are used in programming languages are often
changed somewhat in meaning. A word may also change
form to such an extent that it may be regarded as a
different word. Many such changes are purely phonetic
and are not considered here. One of the more common
changes reflected in a written language is that of shorten-
ing or abbreviating a long word so that it is easier to
handle, for example, "phone" may be used instead of
"telephone." Keyword abbreviation is quite common in
programming language, for example, "var" is used in
Pascal instead of "variable."

Closing Keywords

An important class of keywords that have been
formed by a mechanism not normally used in English is
the mirror words that are used as closing keywords in
some languages. There have been regular, although far
from universal, negative reactions to such words. Since
these keywords do not relate to English in a conventional
way, these negative reactions are understandable.

Three such mirror words, "fi," "od," and "esac,"
were introduced in Algol 68 [7]. They are used to ter-
minate the scope of the associated keyword. For exam-
ple, "fi" terminates the scope of an "if." The reasons for
introducing such keywords are commendable. The use
of these keywords avoids potential ambiguities by clearly
indicating the end of a group of statements. The words
used are shorter than the customarily suggested alterna-
tives, such as "endcase." These keywords and others
formed in a similar manner have also been used in the
design of other programming languages.

The formation of new words by spelling old ones
backwards does not correspond to common English prac-
tice. The use of such a mechanism depends upon a
written language, and English is primarily spoken. Sim-
ilar situations may be found in some word games such
as palindromes and Pig Latin, and in cryptography.
Examples that are in common use are rare, however.
One such example is the name of a brand of laxative;
"serutan" is "natures" spelled backwards.

Reaction to these mirror words has been mixed. Their
use in Algol has been generally accepted. The continuing
proposal of new mirror words can only be taken as an
endorsement. On the other hand, disgruntled grumblings
can occasionally be detected. Knuth [1] and Richard and
Ledgard [4] both express dissatisfaction.

Kovats [2] argues that the problem with these key-
words is that users regard them as nonsense. " . . . readers
react rather negatively to the occurrence in programs of
words which appear to be nonsense; empirically, of
course, abbreviations (like proc) and concatenations (like
goto) do not seem to be regarded as nonsense and are
therefore not automatically prescribed." Kovats recom-
mends that one criterion for selecting closing keywords
is that they not "appear to be nonsensical"; this criterion

Communications December 1982
of Volume 25
the ACM Number 12

could, of course, be generalized to apply to the selection
of any keyword. He remarks that this criterion is highly
subjective.

As can be seen from the previous discussion, there is
a good reason why mirror words are seen as nonsense,
and abbreviations and concatenations are not. Native
speakers of English make heavy use of abbreviations and
concatenations, both in speaking and writing. They very
rarely use mirror words. Keywords like "proc" and
"goto" have been formed using standard English lan-
guage mechanisms; keywords like "od" have not. So the
recommendation that such keywords be avoided is not,
in fact, as subjective as it seems.

Acknowledgment. I would like to thank Robin Carter
and Henry Ledgard for assistance and encouragement.

Received 2/82; revised 4/82; accepted 5/82

References
1. Knuth, D.E. Structured programming with goto statements.
Computing Surveys, 6, 4, (Dec. 1974) 261-301.
2. Kovats, T.A. Program readability, closing keywords and prcfLx-
style intermediate keywords. SIGPLAN Notices, 13, 11, (Nov. 1978)
30--42.
3. Naur, Peter. Programming languages, natural languages, and
mathematics. Comm. A CM, 18, 12, (Dec. 1975), 676--682.
4. Richard, Frederic and Ledgard, Henry F. A reminder for
language designers. SIGPLAN Notices, 12, 12 (Dec. 1977), 73-82.
5. Samucls, M.L. Linguistic Evolution With Special Reference to
English. Cambridge University Press, London, England, 1972.
6. Sturtevant, E.H. An Introduction to Linguistic Science. Yale
University Press, New Haven, Conn., 1947.
7. van Wijngaarden, A., MaiUoux, B.J., Peck, J.E.L., Koster,
C.H.A., Sintzoff, M., Lindsey, C.H., Meertens, L.G.L.T., and Fisker,
R.G. Revised report on the algorithmic language ALGOL 68. Acta
Informatica, 5, Nos. 1, 2, and 3, 1975, 1-236.

ABSTRA CTS from other ACM Publications
In the A C M T r a n s a c t i o n s on D a t a b a s e
S y s t e m s / D e c e m b e r Issue

A Unifying Model of Physical Databases
by D.S. Batory and C.C. Gotlieb

A unifying model for the study of database performance is proposed.
Applications of the model are shown to relate and extend important
work concerning batched searching, transposed files, index selection,
dynamic hash, based files, generalized access path structures, differ-
ential files, network databases, and multifile query processing

Categories and Subject Descriptors: H.2.2 [Database Management]:
Physical Design

General Terms: Design, Performance

Additional Key Words and Phrases: Unifying model, decomposition,
simple files, linksets

For Correspondence: D.S. Batory, Computer and Information Sci-
ences Dept., University of Florida, Gainesville, FL 32611.

A Practical Guide to the Design of Differential File for
Recovery of On-line Databases by Houtan Aghili and
Dennis G. Severance

The concept of a differential file has previously been proposed as an
efficient means of collecting database updates for on-line systems.
This paper studies the problem of datababse backup and recovery
for such systems, and presents an analytic model of their operation.
Five key design decisions are identified and an optimization proce-
dure for each is developed. A design algorithm that quickly provides
parameters for a near-optimal differential file architecture is pro-
vided.

Categories and Subject Descriptors: E.2 [Data]: Data Storage Rep-
resentations; G. 1 [Mathematics of Computing]: Numerical Analysis;
H.2.2 [Database Management]: Physical Design; H.2.7 [Database
Management]: Database Administration

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Backup and recovery, database
maintenance, differential files, hashing functions, numerical
methods, optimization, reorganization

For Correspondence: H. Aghili, IBM Research Laboratory, San
Jose, CA 95193.

Performance Analysis of Linear Hashing with Partial
Expansions by Per-.~ke Larson

Linear hashing with partial expansions is a new file organization
primarily intended for files which grow and shrink dynamically.
This paper presents a mathematical analysis of the expected perform-
ance of the new scheme. The following performance measures are
considered: length of successful and unsuccessful searches, accesses
required to insert or delete a record, and the size of the overflow
area. The performance is cyclical. For all performance measures, the
necessary formulas are derived for computing the expected perform-
ance at any point of a cycle and the average over a cycle. Further-
more, the expected worst case in connection with searching is
analyzed. The overall performance depends on several file parame-
ters. The numerical results show that for many realistic parameter
combinations the performance is expected to be extremely good.
Even the longest search is expected to be of quite reasonable length.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Prob-
lems-sorting and searching;, H.2.2 [Database Management]: Physi-
cal Design--Access methods; H.3.2 [Information Storage and Re-
trieval]: Information Storage--File organization
General Terms: Algorithms, Performance

Additional Key Words and Phrases: Hashing, dynamic hashing
schemes, linear hashing, extendible hashing

For Correspondence: P-A.. Larson, Dept. of Computer Science,
University of Waterloo, Waterloo, Ont., Canada N2L 3G 1.

Deadlock Freedom Using Edge Locks
by Henry F. Korth

We define a series of locking protocols for database systems that all
have three main features: freedom from deadlock, multiple granu-
larity, and support for general collections of locking primitives. A
rooted directed acyclic graph is used to represent multiple granular-
ities, as in System R. Deadlock freedom is guaranteed by extending
the System R protocol to require locks on edges of the graph in
addition to the locks required on nodes.

Categories and Subject Descriptors: H.2.4 [Database Management]:
Systems-- Transaction processing
General Terms: Algorithms; Theory

Additional Key Words and Phrases: Concurrency control, locking,
serializability
For Correspondence: H.F. Korth, IBM T.J. Watson Research Cen-
ter, Yorktown Heights, NY 10598.

940

