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Abstract  
Computational models were constructed to investigate how the meanings of basic colour terms 
were learned, and to determine why these words have prototype properties, and why they partition 
the colour space. A Bayesian model of acquisition was able to learn colour term systems with these 
properties, but could equally well learn colour term systems which did not partition the colour 
space or have prototype properties, and so it failed to explain the empirical data concerning these 
words. Computational evolutionary simulations were then conducted by creating a community of 
artificial people using multiple copies of the Bayesian model. These artificial people then learned 
colour words from one-another, and colour term systems were allowed to evolve over a number of 
generations. The emergent colour terms always partitioned the colour space and had prototype 
properties. These results demonstrate that the Bayesian model is able to account for the properties 
of colour term systems only when it is placed in a social context and so they provide evidence of 
the importance of understanding language as a product of both psychology and social interaction.  

1. Introduction  

By studying wide ranges of languages from throughout the world, linguists have established that 
languages vary greatly in terms of their grammatical structures, sound systems and semantics, but they 
have also found that this variation is not without limit. It is possible to identify many properties which 
are common to all or most languages, and to find implicational universals, which allow some property 
of a language to be predicted based on the presence of another feature or construction. This paper is 
concerned with understanding why languages conform to such typological rules, while still showing 
great variation within the limits that they impose. It is concerned with investigating to what extent such 
patterns are the product of properties of the human mind and the mechanism which children use to 
learn language, or whether some such regularities may be best explained as the product of social 
processes. The focus here is on colour term systems, and on investigating whether the properties of 
such systems are best explained within a psychological or a social model.  

Chomsky has been one of the foremost proponents of the hypothesis that the key to understanding 
language is to understand individuals and the way they learn language. Chomsky (1972) conceptualised 
the process of language acquisition as a process of mapping from observed linguistic data to a 
psychological representation of language in the brain, as is illustrated by Figure 1. The particular 
language which a person learns will be determined by the linguistic data to which he is exposed, but the 
nature of the psychological mechanism which children use to learn will also play a role in determining 
the form of the resultant language. Chomsky (1986) introduced the term I-language to refer to 
knowledge of language in the minds of individual speakers, and he argued that linguistics should be 
concerned exclusively with the study of I-language. He considered the properties of observed language 
in the world external to people ( E-language) to be epiphenomenal, although of course it is partly 
through the study of E-language that linguists gain their understanding of I-language. Chomsky stated 
that the range of possible human languages is constrained by the genetically determined properties of 
the human brain, and so it follows that if we want to understand language universals and typology we 
should do so by focussing our study on I-language and language acquisition. 



 

 

 

 

Figure 1 Chomsky's Conceptualisation of Language Acquisition 

In contrast to Chomsky viewpoint, de Saussure (1959) stressed that language is simultaneously a social 
and a psychological phenomenon. While the ability to speak and understand language is a 
psychological ability which must rely on an internalised knowledge of language learned by each 
language user, language is used primarily for communication, and is hence necessarily a social 
phenomenon. In order for our knowledge of language to be useful, there must exist a community of 
speakers who have already adopted the collection of conventions which constitute the language, but 
every time we speak we produce new linguistic data which may cause other speakers to modify their 
own I -languages. (For example they may learn a new word, or come to prefer one grammatical 
construction over another.) This suggests that a better understanding of language may be achieved if we 
conceptualise language as a system which has both psychological and social components, and focus not 
only on language in the brain but also on the social processes in which it is used and through which it 
passes between one generation of speakers and the next. 

Hurford (1987, 1990) conceptualises language as a continuous cycle as depicted in Figure 2. People use 
their internalised knowledge of language to communicate, but this communication takes place in the 
arena of language use. The arena of language use concerns all those factors which influence what 
people say in practice, and how they say it, and so the properties of this arena will determine exactly 
what is said to whom. It is the language that is produced in the arena of language use which goes on to 
form the primary linguistic data from which the next generation of speakers will gain their knowledge 
of language.. Hence in this model it is not only the language acquisition device which places 
constraints on the allowable human languages, but also the properties of the arena of language use. 
From this perspective, the social context in which language is used may be as important in shaping 
language as any characteristics of individual people. 

 

 

 

 

 

 

 

 

 

 

Figure 2 Hurford's Diachronic Spiral  

Hurford (1987) constructed a computational model which simulated the diachronic evolution of 
language. His model was concerned with number constructions, and how individual numerals were 
combined to express numbers of greater values. He created a population of artificial people who knew 
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a series of words which could express the numbers one to ten, and a syntactic construction in which 
two of these numbers could be combined to create a new expression, the meaning of which would be 
the sum of the two numerals which it contained. So, for example, sixteen could be expressed as 'eight 
eight', or as 'six ten'. The simulation would proceed by first choosing a number between 11 and 20 at 
random, and then having one person express this number to another person. Initially the artificial 
people were equally likely to use any combination of numerals which expressed the right value, but 
once they had heard one numeral used more frequently than others, they would prefer to use that 
numeral when forming constructions. After a short period of time all speakers in the community would 
use the numeral ten together with one other numeral for expressing all numbers. This is in accord with 
typological evidence, which shows that the numbers 11 to 19 are typically expressed with a 
construction which appears to be based on the word for ten in the language together with another 
numeral. (For example 'sixteen' in English would appear to be based on the words 'six' and 'ten'.) What 
is interesting about Hurford's model is that he has shown how a community of speakers can come to 
develop a shared language which has a universally attested property, even though each individual 
person in the simulation was capable of learning a language which did not have the property. (For 
example the artificial people could have learned to always use the numeral 'nine' instead of ten.) 
Hurford's model was the first such computational evolutionary model, but now his methodology has 
become firmly established,  and has been used to gain an understanding of a wide range of linguistic 
phenomena as diverse as compositionality (Kirby, 2000) and vowel system typology (de Boer, 2001). 
This paper applies the same methodology to basic colour terms. 

2. Basic Colour Terms  

All languages  have a small number of highly salient colour terms, the denotations of which are not 
limited to a subset of the colours denoted by some other colour term, and it is only these words which 
are considered to be basic colour terms. In English there are eleven such words: 'red', 'orange', 'yellow', 
'green', 'blue', 'purple', 'pink', 'brown', 'black', 'grey' and 'white'. None of the other English colour terms, 
such as 'scarlet', 'mauve' or 'buff' are considered to be basic. By conducting a large cross-linguistic 
survey, Berlin and Kay (1969) determined that all languages have between two and eleven basic colour 
terms. Regardless of how many basic colour terms a language has , the terms tend to partition the 
colour space so that for every colour there is a corresponding colour term which can name it. However, 
the location of the boundaries between colour terms varies between languages, so that, even when there 
are very similar colour terms in different languages, the exact range of colours which each term denotes 
will differ.  

Another important feature of colours terms is that they have prototype properties (Taylor, 1989). Rather 
than a word like 'green' simply denoting a range of colours uniformly, some colours within its 
denotation are better examples of green than are others. We can usually identify a single word which is 
the best examples of a colour category, which is the prototype, and as colours get more dissimilar to 
this prototype they become progressively worse members of the category green. At the margins of a 
word's denotation we find fuzzy boundaries, where it becomes unclear exactly which colours are 
members of the category and which are not. 

When children learn their first language they must learn which ranges of colour each term denotes. 
Children are not usually explicitly taught the range of colours which colour terms can be used to 
identify, so it would seem that the primary source of evidence which children use to learn must be 
derived by observing other people's speech. In order to learn word meanings, children must observe 
examples not only of which words are used, but also of what those words are used to refer to. In the 
case of colour words, these words are used to identify particular colours, and so the evidence from 
which children learn the meanings of these words must consist of examples of colours which these 
words have been used to identify. The task of learning will then be to generalise from such examples to 
determine the full range of colours which come within the word's denotation. 

This paper reports work which investigated what properties colour terms learned by a computational 
model of colour term acquisition would have, and what constraints that model places on the range of 
possible human languages. This was first investigated in the context of learning from data which was 
generated artificially in an attempt to create the same kind of data which a child learning a language 
would encounter. The second simulation used multiple copies of the acquisitional model to simulate a 



whole community of speakers, allowing social interactions between speakers to be modelled, and the 
cumulative effect of the evolution of language over several generations to be determined. 

1.1 Modelling the Acquisition of Colour Terms  

The acquisitional model learns using the statistical procedure known as Bayesian inference. This 
method of learning is based on Bayes' rule, which was proved by Bayes (1763). The rule allows the 
probability of alternative hypotheses to be calculated given some evidence about which the hypotheses 
make predictions. In the case of learning colour words, the hypotheses would be specifications of the 
range of colours which a colour word denoted, and the evidence would consist of examples of which 
colours a person had observed the colour term being used to identify. The model simplifies the task of 
learning colour terms by concerning itself only with the dimension of hue, and ignoring variations in 
colour due to differences in lightness or saturation1. A consequence of this restriction is that the model 
will be concerned only with those colour terms which differ principally on the dimension of hue, which 
in English are 'red', 'orange', 'yellow', 'green', 'blue' and 'purple'. 

The model does not treat the observed examples as being completely reliable, but allows for the 
possibility that some of them may be erroneous2. This allows the model to learn even when it is 
presented with a small number of incorrect examples. (It would be a poor psychological model if a 
single incorrect example rendered it completely unable to learn, as empirical evidence shows that 
people have little difficulty in learning from such unreliable evidence.) The full technical details of the 
model are somewhat complex, and are not relevant to the issues addressed in this paper. For these 
reasons they will not be described here, although they are specified in detail in Dowman (2001). What 
is important for present purposes is that the model is able to calculate for every colour just how likely it 
is that it comes within a colour word's denotation, and that these probabilities may be used to define the 
degree of membership of each colour in a colour category. In the learned denotations, each colour will 
have a different degree of membership, though generally we would expect the degree of membership to 
be greatest towards the centre of a word's denotation. This is because the model will be most certain 
that these colours can be named by the colour word, while for colours further away from this point the 
model will be less certain of their membership of the category. 

Figure 3 shows one kind of colour term system which is learnable by the bayesian model. The 
examples from which it was learned were created by selecting random colours from within the section 
of the colour space corresponding to each colour word. The axis at the bottom of the graph corresponds 
to hue, with red at the left, moving on to orange, then yellow, green blue and finally purple. Moving 
past purple would return us to the left hand side of the graph, as the hue dimension is circular, and so 
red and purple are adjacent to each other. The vertical axis corresponds to the probability with which 
the model believes that each particular hue comes within the range of colours identified by a colour 
word, with the top of the graph corresponding to high degrees of membership, and the bottom of the 
graph to low degrees of membership. 
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1 Saturation measures to what extent a colour is diluted by grey, with highly saturated colours being the 
least grey, and most eye catching. 

2 In the simulations reported in this paper, the model has an a priori  belief that there is a 0.5 probability 
of examples being erroneous.  



Figure 3 A Learnable Colour Term System of a Type which is Unattested Typologically  

We can see that the colour term system shown in Figure 3 contains two overlapping colour terms which 
both denote hues in the red and yellow part of the colour space. The model has observed ten examples 
of each of these colour terms, and using these it has been able to determine roughly which colours 
come within each term's denotation. Where the curves are close to the top of the graph the model is 
very certain that the colours in that part of the colour space come within the denotation of the colour 
term. Conversely, where the curves are very near the bottom of the graph the model is very sure that 
the corresponding colours do not come within the colour term's denotation. We can see that both of 
these terms display the prototype properties which are characteristic of basic colour terms. Each term 
rises to a single point which is the best example of the term, but the degree of membership in the colour 
term category declines gradually moving away from that point. When the probability of membership is 
an intermediate value, this indicates that the model is unsure whether the colours can be denoted by the 
colour word or not. Hues in these areas correspond to a colour word's fuzzy boundaries, especially 
where the probability of membership is close to 0.5, in which case the model thinks that it is almost 
equally likely that the colour comes within a word's denotation as that it comes outside of it. 

In contrast the colour term on the right hand side of the graph has quite different characteristics. This 
colour word was learned from examples generated in the same way as for the other two colour words, 
but in this case the model has observed 60 examples of colours named by the colour term. There is a 
range of hues for which the model has a very high degree of certainty that  they are members of the 
colour category, and in this part of the graph the curve is very flat and very close to the top of the 
graph. However, for almost all other colours the model is very certain that they cannot be named by the 
colour term, which is indicated by the curve being very close to the bottom of the graph. There are only 
a very few colours for which the degree of membership is at an intermediate value, and so the 
boundaries of the colour category are demarcated by almost vertical lines.  

This colour term does not have prototype properties, as it does not have fuzzy boundaries, and the 
degree of membership of colours in the category is almost completely constant throughout its 
denotation. (The degree of membership does in fact rise to a single maximum close to the centre of the 
colour category, but this cannot be seen on the graph because both the colour with the greatest degree 
of membership and those immediately surrounding it have almost identical degrees of  membership). 
This colour term clearly does not resemble the colour terms seen in real human languages, and so these 
results show that the Bayesian model is able to learn languages with properties which are unattested 
typologically. 

If we look at the colour term system as a whole, we can identify another property of this system which 
is not in accord with the colour term systems which have been observed in real languages, and that is 
that the colour terms do not partition the colour space. Rather than having a single word which can be 
used to name each range of colours, we have two overlapping colour terms with their foci in almost the 
same part of the colour space, something which is not usually observed in real languages3. There is a 
further inconsistency between this colour term system and those observed in real languages, and that is 
that there are large gaps between the overlapping colour terms and the other term, so that many colours 
are left without any corresponding linguistic label. In contrast, empirical evidence shows that colours 
terms almost always partition the colour space, so that for every colour there is a corresponding colour 
word which may be used to name it4. If  Figure 3 corresponded to a real language, then we would 

                                                           

3 MacLaury (1997) identifies a phenomenon that is se en in some languages, that he names 'co-
extension', in which two overlapping colour words denote roughly the same range of colours. However, 
in such cases each colour term tends to have its prototype in a different part of the colour space, so this 
phenomenon does not correspond to the case of the overlapping colour terms seen here. 

4 Kay and Maffi (1999) do report the existence of a very small minority of languages in which the 
colour terms do not appear to partition the colour space. However, such colour term systems are 
exceptional, so it would seem that we are more in need of an explanation of why almost all languages 
partition the colour space, rather than an explanation of why a minority do not. Once an explanation of 
why partition occurs has been developed, we may then be able to explain non-partition as a chance 



observe a series of colour terms, with little or no gap between them, and only minimal overlapping of 
neighbouring terms. 

1.2 Simulating Colour Term Evolution 

The results of the previous section clearly show that the acquisitional model alone is insufficient to 
explain the empirical data concerning colour term universals, and so the program was extended so that 
it could model not only learning, but also the social processes in which language is used, and through 
which it is passed on to each new generation of speakers. Rather than just using a single model of 
acquisition and presenting it with random examples, multiple copies of the model were created in order 
to simulate a whole community of people5. These artificial people were then made to talk to each other, 
and to learn from one -another. This process was simulated over a number of generations, until 
eventually the simulation was stopped and the properties of the emergent language were examined. 

In the initial state of the model, each person had observed a single random colour anywhere in the 
colour space, together with a colour word which had been used to name it. Initially the colour words 
known by each person were all different, so that there would be no coherent language in the 
community. Each person was assigned a random age, varying from zero to the maximum age to which 
people in the simulation could live. The simulations then proceeded by choosing a speaker and a hearer 
at random (the only restriction being that these could not both be the same person). A colour for the 
speaker to name would then be chosen at random, and the speaker would find the word which they 
thought most likely to be a correct label for the colour. This word, together with the corresponding 
colour, would then be observed by the hearer and remembered by him6 as an example. He would then 
use this example to help determine the best word to choose when it came to be his turn to be the 
speaker. This procedure was then repeated many times, to simulate people talking to each other and 
using colour terms. However, one time in every thousand, instead of the speaker choosing the best 
word based on the observations they had made, they would be creative instead, and make up a 
completely new word. This occasional creative behaviour is necessary, because otherwise there would 
be no way for new words to enter the language, or for the overall number of terms known within the 
community to increase. 

A parameter in the model controlled how long each person lived for, measured in terms of how many 
times a person would speak during their lifetime. The actual life span of each person was varied 
randomly by an amount of up to 20% either above or below  the chosen average life span. Once a 
person reached the end of their life span they would be replaced by a new person with an age of zero 
who had not observed any colour term examples. (If a person should ever be chosen as the speaker 
before they had observed any colour terms, then the program would just go back and choose another 
person instead.) 

Figure 4 shows the result of one experiment, where the simulation was run for a period of time equal to 
ten average life spans, and where on average each person heard 60 examples during their lifetime. This 
graph shows the colour words learned by one person in this simulation who was near the end of his life 
span. It shows that a language has evolved which has six colour terms, each of which is focussed in a 
different part of the colour space, and each of which has prototype properties. The terms roughly 
partition the colour space, with the colour terms dividing up the colour space with only small overlaps 

                                                                                                                                                                      

occurrence, especially if the explanation relies on rules which only make statistical rather than absolute 
predictions. 

5 In all the simulations reported in this paper ten artificial people were used. Varying the number of 
people used in the simulations does not appear to have a significant effect on the results, but as the 
number of people is increased the program tends to run more slowly. Clearly a real language 
community would contain more than ten people, but increasing the number of people simulated would 
not seem to be necessary for present purposes. 

6 For convenience I refer to all agents in the simulation as though they were male, although, as no 
distinction is made in the model concerning the sex of the artificial people, this decision is completely 
arbitrary. 



or gaps between them. All the other people in the simulation who were over a certain age had learned 
very similar colour term systems, each containing the same six terms. (Although the location of the 
category foci and boundaries varied slightly between people, as each would have observed a unique set 
of examples.) The colour term systems of the youngest members of the community were somewhat 
more variable, as these people would not have observed enough data to determine accurately the 
correct denotation for all the colour terms, and may not even have observed any examples at all of 
some terms. 
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Figure 4 A Colour Term System which Emerged in an Evolutionary Simulation 

The simulation has produced a colour term system which appears to have the general properties of 
colour term systems found in real languages, in that it partitions the colour space, and each term clearly 
has prototype properties. Repeating the simulation produced similar results, although there was some 
variation as to the exact number of colour terms which emerged. We might expect that if people 
observed more colour term examples during their lifetimes, then towards the end of their lives they 
would learn the denotations of the words with a very high degree of confidence and precision. This 
would cause words to lose their prototype properties and become like the rightmost term in Figure 3. 
However, this does not happen in practice during the evolutionary simulations. When the average 
number of examples which a person observes during their lifetime is increased, the emerging colour 
term systems tend to have more words, and so the number of examples of each word observed by each 
speaker remains more or less constant. Conversely, decreasing the number of examples observed by 
each speaker tends to produce colour term systems with fewer colour terms, but again people will 
observe a similar number of examples of each term. 

3. Discussion  

The results of the simulations clearly show that both partition and non-partition colour term systems are 
learnable by the acquisitional model, as are colour terms with prototype properties and those without. 
As empirical observations have found that languages do partition the colour space, and that basic 
colour terms do have prototype properties, it would appear that the acquisitional model fails to 
sufficiently constrain the range of learn able languages. That at least is the view consistent with 
Chomsky's (Chomsky 1986) focus on language acquisition and speaker's individual knowledge of 
language as the primary objects of study in linguistics This is because, if we took as our primary data 
colour term systems of the type which emerged in the evolutionary simulations, we would reach the 
conclusion that people are equipped with an innate language acquisition device which forces the 
learned colour term systems to both partition the colour space and to have prototype properties, as all 
the systems which emerged in these simulations had those properties. However, in the case of the 
simulations reported here, we can see that any such conclusion would be completely incorrect, as there 
is nothing in the acquisitional model which gives any preference to learning colour term systems which 
conform to the property of partition, and the model is quite capable of learning colour term denotations 
which do not have prototype properties. The simulations therefore demonstrate that I-language is too 
narrow a concept to allow us to understand the observed properties of colour term systems. 

The extensions which Hurford (1987, 1990) makes to Chomsky's model of language acquisition are 
uncontroversial, in that it is clear that we learn language from other people, and so the language which 
provides the input to our language acquisition devices will be determined by other individual's I-
languages, and the social context in which language is used. What is controversial about Hurford's 
model is whether it is necessary to consider the diachronic perspective when understanding central 
aspects of synchronic language. In the evolutionary simulations of colour term systems we saw new 



properties emerging which were not predictable from the properties of the acquisitional model, and so 
this demonstrates that, in this situation, the social processes in which language is used are as important 
as individual psychology in understanding the properties of colour term systems. This is cle arly 
supportive of de Saussure's (de Saussure, 1959) view that language is simultaneously a social and a 
psychological phenomenon. It seems that we can only understand the synchronic properties of language 
through considering the diachronic processes of language evolution, although the nature of diachronic 
change is determined by synchronic processes. 

I believe that this model also exemplifies the value of the computational evolutionary modelling 
methodology in helping us to gain a better understanding of l anguage. Surprising new properties 
emerged in the evolutionary simulations, properties which it would have been difficult to predict 
simply by extrapolating from the properties of the acquisitional model. This raises some interesting 
questions regarding other computational models of language acquisition. For example, Ellefson and 
Christiansen (2000) constructed a recurrent neural network which they used to model the acquisition of 
syntactic rules concerning question formation. They found that the neural network could learn simple 
artificial languages in which the question formation rules were of the type found in real languages 
better than it could learn artificial languages in which the question formation rules violated universal 
constraints on the syntax of question formation. They suggested that this learning bias has caused 
languages to evolve in such a way that they all conform to what now appears to be a universal rule. 
However, in the light of the findings of this paper, it would be interesting to inve stigate whether 
Ellefson and Christiansen's model would in fact produce languages with the predicted properties if a 
community of speakers was modelled over several generations, and whether any other unexpected 
properties would emerge. At present most acquisitional models take too much time to learn to make 
such simulations practicable, but as computers become more powerful there will be increasing 
opportunities to make use this kind of evolutionary methodology. 

There is one major characteristic of basic colour term systems which the model makes no attempt to 
explain, and that is the typological patterns of colour terms across languages. Berlin and Kay (1969) 
showed that there were regularities in the way that languages lexicalise the colour space, so that the 
properties of colour term systems are partly predictable. For example, if a language has only two colour 
terms then these will divide up the colour space so that one term denotes white, yellow, red and very 
light colours, and the other denotes black, blue, green and very dark colours. We never see colour terms 
which denote both red and blue colours, or terms where yellow or red are grouped with black instead of 
with white. Berlin and Kay proposed that the development of colour term systems follows an 
evolutionary sequence, where the number of terms grows from two to eleven over the course of several 
generations. Biases which made some colour term systems more learnable than other ones could cause 
languages to evolve in such a way that at each stage of their evolution they conformed to the observed 
typological patterns. Work is in progress to add such learning biases to the acquisitional model, so that 
the plausibility of Berlin and Kay's evolutionary hypothesis can be investigated. If the model is then 
able to account for the typological data then this will clearly support Berlin and Kay's evolutionary 
hypothesis, but it will also provide further support for the validity of the present model.  

In conclusion, this paper has presented evidence which suggests that colour term systems partition the 
colour space as a result of diachronic processes, and that there is no reason to suppose that any 
component of an innate language acquisition device, or any aspect of the ontogenetic process, prevents 
us from learning basic colour terms which either overlap, or which leave large ranges of colour without 
any corresponding colour term. It was also proposed that the mechanism that we use to learn colour 
terms may be equally able to learn colour terms which have prototype properties as ones which do not. 
Colour terms in real languages may have prototype properties only because of the social processes 
which moderate the number of colour terms which emerge in a language. In general, the synchronic 
properties of a language may best be understood by placing the language in a diachronic context, and 
so using existing acquisitional models as part of an evolutionary simulation may increase their 
explanatory power, thus demonstrating the importance of the computational evolutionary approach in 
linguistics. 
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