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Abstract:

The current research describes a functional trajectory from sensorimotor sequence learning to the

learning of grammatical constructions in language.  A brief review of the functional

neurophysiology of the cortex and basal ganglia will be provided as background for a neural

network model of this system in sensorimotor sequence learning.  Sequential behavior is then

defined in terms of serial, temporal and abstract structure.  The resulting neuro-computational

framework is demonstrated to account for observed sequence learning behavior.  More

interestingly, this framework naturally extends to grammatical constructions as form-to-meaning

mappings.  Predictions from the neuro-computational model concerning parallels in language and

cognitive sequence processing are tested against behavioral and neurophysiological observations

in humans, resulting in a refinement of the allocation of model functions to subdivisions of

Broca’s area.  From a functional perspective this analysis will provide insight on the relation

between the coding structure in human languages, and constraints derived from the underlying

neurophysiological computational mechanisms.
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1.  Introduction:

The human language capability is so distinct from all other behavior, that it has been

tempting to explain it with highly specific dedicated modules and innately specified capabilities.

Clearly, the species specific language capability indicates that there is a genetically coded

language capability.  The current research attempts to determine to what extent the language

capability is built upon preexisting neurophysiological systems dedicated to the processing of

spatiotemporal sensorimotor behavior.

It is worth noting the recent historical context of the problem.  In his review (Chomsky

1959) of Skinners (1957) Verbal Behavior, and subsequent essays, Chomsky defined a research

program for linguistics in which language was addressed primarily from the perspective of its

formal properties.  Learning was largely characterized in terms of grammar induction, and the

behaviorist emphasis on meaning was significantly reduced.  In this context the 'poverty of the

stimulus argument' was developed, essentially stating that from the perspective of learning a

grammar, the input to the child is highly underspecified - it does not constrain the space of

possible grammars.  This argument was bolstered by a famous paper from Gold (1967), which

provided formal proof supporting the poverty of the stimulus argument, essentially proving that

under rigorous constraints of learning success, language cannot be learned by positive evidence

alone, and thus requires some alternative method to restrict the learning problem.  To address this

type of problem, a Universal Grammar was proposed (Chomsky 1965), and language acquisition

was defined in terms of determining the UG parameters for the target language based on limited

input. Of course, these arguments rely on the somewhat arbitrary characterization of the input in

language acquisition, and the characterization of what is being learned, and when.  With respect

to what is being learned, proponents of UG tend to argue for the 'continuity hypothesis' which
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holds that there is a functional continuity between the grammar of the child and that of the adult.

The child has access to the adult UG and once a given parameter is set, it becomes available in a

generalized manner.

More recently both of these assumptions have been challenged.  Research in the

developmental psychology of language acquisition has provided strong arguments for the

'richness of the stimulus.'  In this context, Tomasello (2003) reviews extensive data indicating the

importance of social pragmatic interaction in the acquisition of language.  In this framework, far

from being a question of formal grammar identification, language acquisition involves the

construction of a shared space for attention and meaning that allows the child to learn highly

specific language-meaning relations that later become generalized.   In this context, grammatical

constructions define the functional mappings between the surface form of utterances and the

corresponding structural form of the semantic representations of the meaning of these utterances.

With respect to the continuity hypothesis, this usage based framework stipulates that the initial

form to meaning mappings will be quite specific and non-generalizing, corresponding to the

holophrase period attributed both to development and evolution (Wray 2000, Dominey 2004).

This corresponds then to a form of 'discontinuity hypothesis' in which knowledge of grammar is

first rudimentary, mapping entire utterances to fixed meanings.  Subsequently, free arguments are

introduced into the constructions, allowing variation in specification of agent, object and

recipient roles. Still later, the grammatical forms become truly compositional, an issue that will

be addressed in the discussion.

From this perspective, the objective of the current review is to describe how well

documented neurophysiological capabilities for the perception and generation of sequential

behavior could provide the basis for language processing in this context.  A functional hierarchy

of sequential behavioral structure will first be presented, along with a description of the
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corresponding neurophysiology and simulation background.  In the transition from this

behavioral sequence taxonomy and language processing, a set of primitive language-related

sequencing functions will be identified, along with their simulation. This provides the

background for the specification of how these cognitive sequencing capabilities can provide the

basis for the expression of adult language comprehension capabilities.

A strong prediction from this functional characterization of language processing in the

context of cognitive sequencing is that there is a certain form of functional equivalence between

sequence and language processing, as both can be accounted for by the same model.  This

hypothesis is then validated by results from neuropsychology, event-related brain potential and

functional neuroimagery studies that support this 'equivalence hypothesis.'    Given the functional

success of this characterization, and increasing resolution on the allocation of computational

functions to brain regions, the model is updated to reflect this new level of detail.

2. Cognitive Sequencing Hierarchy and a Neural Basis

One of the most prevalent aspects of human behavior is its inextricable embedding in the

relentless flow of time.  All behavior takes place in time, and thus the management of the

temporal structure of perceptual and motor events is of central importance.  Likewise, it must be

the case that behavioral systems can adapt and learn novel sequential structures, rather than

relying on purely fixed patterns.  In order to address the ability to learn and manipulate

behavioral sequences, it is first of interest to define distinct components of sequential structure

and their corresponding neurophysiological correlates.  In this context, a fundamental aspect of

sequential structure is serial order.  From this perspective sequences ABC and ACB are distinct.

A second level of sequential organization is temporal or rhythmic structure.  From this

perspective A---B-C and A-B---C are distinct.  The final level of organization that we will
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consider has to do with the potential relation between two sequences such as ABCBAC and

DEFEDF.  While these sequences vary completely in their serial order they share something in

common at a more abstract level.  They both adhere to a “rule” of the form 123-213 in their

construction, and we say that they share a common abstract structure.  Note that abstract structure

has the interesting property of being generative, in that once the abstract rule is learned it can be

used to generate an open set of new sequences (Dominey et al. 1998).

2.1 Encoding Serial Structure in the Cortico-Striatal System

Looking for the neurophysiological correlate of this ability to manage sequential

behavior, we encounter two of the most prevalent and fundamental aspects of the organization of

the primate brain architecture.   The representational structure of neocortex is organized in a

posterior to anterior spatial gradient from primary sensory and motor to abstract integrative

representation that culminates in the prefrontal cortex (Fuster 1987).  One of the principal

structural characteristics of the frontal and prefrontal cortices is the abundance of 'recurrent'

connections i.e. connections that leave and then reenter the originating cortical area (Goldman-

Rakic 1987).  From a computational perspective, information that is present at a given instant in

time will traverse these recurrent connections and arrive again, later in time.  By this mechanism

the recurrent connections allow past events to influence the processing of newly arriving sensory

events.   This ability to take the temporal history of previous events into account is precisely what

is required for representing sequential structure.  Barone and Joseph (1989) recorded neurons

from the dorsolateral prefrontal cortex of monkeys that had been trained to perform a sequence

reproduction task, in which they first observed a sequential illumination of lighted push buttons,

and were then required to touch the buttons in the remembered sequence.  Visual-tonic neurons
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encoded both the spatial location of a given target, along with its rank within the sequence.  Thus,

a given neuron might represent the left target but only when it was first (and not second or last) in

the sequence.  Dominey et al (1995) developed a neural network simulation of the prefrontal

cortex as a network of recurrently connected neurons that precisely reproduced this sequence

coding property presented in Figure 1.

Figure 1A represents the detailed neurophysiological model from Dominey et al (1995),

and 1B represents the essential functional components of the system referred to as the Temporal

Recurrent Network (TRN) from Dominey and Ramus (2000).  In both cases, the fundamental

capability to encode sequential structure is realized by a recurrently connected network of leaky

integrator neurons corresponding to PFC in A and State-StateD in B.  

Equations (1.1) and (1.2) describe how the 5x5 unit layer State in Fig1B is influenced by

external inputs from Input, recurrent inputs from StateD, and responses from Out. This recurrent

state network was modeled after primate frontal cortex with its recurrent corticocortical

connections (Goldman-Rakic 1987), and allowed us to explain the electrophysiological encoding

of visual space and sequential context (Dominey et al. 1995) recorded in neurons of the primate

prefrontal cortex while monkeys performed learned movement sequences (Barone and Joseph

1989).  Equation (1.1) describes the leaky integrator, s(), corresponding to the membrane

potential or internal activation of State.   In Equation (1.2) the output activity level of State is

generated as a sigmoid function, f(), of  s(t).   The term t is the time, ∆t is the simulation time step

(5ms), τ is the leaky integrator time constant.  As τ increases with respect to ∆t, the charge and

discharge times for the leaky integrator increase. The unit of time in the simulations is referred to

as a simulation time step or sts, and corresponds to a single update cycle of the simulation.
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The connections wIS, wSS and  wOS define the projections from units in Input, StateD, and

Out to State.  These connections are one-to-all, and are mixed excitatory and inhibitory, and do

not change with learning.  This mix of excitatory and inhibitory connections ensures that the

State network does not become saturated by excitatory inputs, and also provides a source of

diversity in coding the conjunctions and disjunctions of input, output and previous state

information.

Recurrent input to State originates from the layer StateD.  StateD (Equation 2.1 and 2.2)

receives input from State, and its 25 leaky integrator neurons have a distribution of time constants

from 20 to 400 simulation time steps, while State units have time constants of 2 simulation time

steps.  This distribution of time constants in StateD introduces a “damping” (hence the D) or low

pass filtering that yields a range of temporal sensitivity similar to that provided by using a

distribution of temporal delays (Kühn & van Hemmen 1992).

sd  (t+∆t) = (1-      )sd  (t) +      (State  (t))i
∆t
τi
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StateD = f(sd(t))        (2.2)
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The model has similarities with previous recurrent models (Elman 1990, Pearlmutter 1995,

Pineda 1989) with three important differences.  First, there is no learning in the recurrent

connections (i.e. those that project from StateD to State and back), only between the State units

and the Out units (or PFC and CD in 1A).  Second, adaptation is based on a simple associative

learning mechanism rather than back-propagation of error, or related error-gradient calculation

methods (Pearlmutter 1995).  Third, in the temporal domain, a) the computing elements are leaky

integrators, and b) simulation time steps are not tightly coupled to input, output and learning

processing.  That is, an input event can be specified to have a duration of any arbitrary number of

times steps, and temporal delays between inputs can likewise be specified.  Eliminating the need

for calculation of weight changes in the recurrent connections makes this technically and

neurophysiologically straightforward.  Indeed, the experimenter's capability to specify the time

delays between external events is an integral part of this model (Dominey et al. 1995).

The question then is how do these cortical representations of sequence structure become

linked to behavior.  Here we encounter one of the second fundamental organizational principals

of primate (and mammalian) cerebral architecture.  With the exception of the most purely

primary sensory cortices, essentially the entirety of the neocortex projects in a highly structured

and systematic manner onto the striatum - the primary input node of the subcortical basal ganglia

(Alexander et al.  1986).  The basal ganglia then provide access to the sensorimotor system via

their influence on the thalamus.  This is illustrated in Figure 1A as prefrontal cortex (PFC)

projects onto the caudate nucleus (CD) of the striatum, and in 1B as State projects to Output.  The

CD then projects to thalamus and the oculomotor output system (the superior colliculus – SC in

Figure 1).  The question remains, how can this be used for learning behavioral sequences?  Such
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a mechanism would require the arbitrary binding of sequence state encoding activity in PFC with

motor response activity in the caudate nucleus (CD).

In the primate brain, this binding is provided by multiple mechanisms for synaptic

plasticity initiated by the influence of the neurotransmitter dopamine in the striatum (Centonze et

al. 2001).  Extensive investigation of subcortical dopamine producing neurons indicates that their

activation (and resulting release of dopamine in the striatum) is triggered by behaviorally induced

reward, and stimuli that predict the subsequent arrival of reward (Schultz 2004).

During multiple trials in behavioral sequence learning,  the random chance choice of the

correct response in a given behavioral context yields the generation of a reward from the

environment.  This reward triggers the release of dopamine in the striatum (CD in Figure 1A) that

in turn activates a series of molecular events that strengthen the synaptic connections between

cortical PFC neurons encoding the sequential context, and striatal CD neurons encoding the

correct response.  This corresponds in Figure 1B to the modifiable synapses between State and

Out.

The associative memory in Fig 1Bis implemented in a set of modifiable connections (wSO)

between State and Out, described in equation (3). Each time a response is generated in Out, it is

evaluated and the connections between units encoding the current state in State, and the unit

encoding the current response in Out are modified as a function of their rate of activation and

learning rate R.  R is positive for correct responses and negative for incorrect responses.  Weights

are normalized to preserve the total synaptic output weight of each State unit, thus avoiding

saturation with extensive learning.



11

wSO
ij(t+1) = wSO

ij (t)  + R* Statei  *  Outj (3)

The network output is thus directly influenced by the Input, and also by State, via learning

in the w SO synapses, as described in Equations (4.1) and (4.2). In Equation (4.2) the sigmoid

output function f’() is the same as f() in Equations (1.2) and (2.2), and it additionally performs a

winner-take-all function so that only one output neuron is active in the generated response.

o  (t+∆t) = (1 -     ) o  (t) +     (Input  (t) + Σ w State  (t))
i

∆t
τ j=1

n

ij
SO∆t

τi i i
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Out = f’(o(t)) (4.2)

The model reliably simulated both the sequence learning behavior, and the

neurophysiological activity of prefrontal cortex neurons recorded in the behaving primates

described in Barone and Joseph (1989).  Dominey (1995) subsequently demonstrated the ability

of this model to simulate the learning of complex sequences, reinforcing the notion that this

recurrent network has inherent capabilities for encoding sequential structure.  The model is fairly

stable in the face of changes to the fixed parameters.  Thus, the time constants in the StateD units

can vary by up to 100%, and the temporal delays between successive stimuli by up to 200%

before producing significant impairments in sequence learning, depending on the sequence length

and complexity (see Dominey 1995).
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2.2 Encoding Temporal Structure in the Cortico-Striatal System

As described above, then, the corticostriatal system provides a basis for the learning of

serial order in behavioral sequences.  As the observation of essentially any behavioral sequence

will reveal, serial order is not enough.  Intrinsic to the serial order of behavioral sequences is the

superposition of temporal or rhythmic structure upon the serial order.  This is perhaps most

obvious in the rhythmic structure of music and prosodic structure of language.  In a series of

behavioral sequence learning studies using a serial reaction time (SRT) protocol (Nissen &

Bullemer 1987), we exposed human subjects to behavioral sequence learning tasks with

sequences such as ABCABDCD in which each element A-D corresponded to a button press on a

touch sensitive screen, and sequence learning was measured by the successive reduction in

response time to these elements when they occurred in the repeating sequence (Dominey

1998a,b).  We modified this standard serial reaction time task by associating specific delays with

each stimulus while the sequence was being learned.  Simulation studies with the model predicted

that under these conditions, if the temporal delay structure was modified between the training and

the testing sequence, this would modify the representation of the sequence in the recurrent

network, effectively yielding a different sequence than that which was used during training, and

thus resulting in impaired performance with the temporally modified sequence (Dominey 1998b).

Indeed, these and related predictions concerning the ability to learn and discriminate between

different temporal structures were borne out in the subsequent behavioral studies (Dominey

1998a).  This indicates that the recurrent prefrontal cortical networks and the plastic cortico-

cortical projection provides the basis for the representation and learning of serial and temporal

structure.
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It is worth noting that the simulated recurrent prefrontal network relies on fixed

randomized recurrent connections, with no learning-related modification of these connections.

Related recurrent networks (e.g. the Simple Recurrent Network – SRN - Elman 1990) often

employ learning on these recurrent synapses, and in order to reduce the computational

complexity of this learning, temporal delays are typically compressed into a single network

update cycle.  For this reason we have referred to the PFC recurrent network as the Temporal

Recurrent Network or TRN, based on its ability to process temporal delays in an efficient and

realistic manner (Dominey and Ramus 2000, Blanc et al 2003).

2.3 Encoding Abstract Structure in the Cortico-Striatal System

During a series of behavioral experiments with complex sequences of the form

ABCDABCEABCFABCGABCH, it was observed that when subjects were exposed to multiple

sequences of this form in which the symbols A-D were systematically substituted by different

locations on the touch sensitive screen, they began to learn the underlying regular structure and to

transfer this learning to new sequences (these unpublished observations were validated in

Dominey et al. 1998). This was evidence that sensorimotor sequence learning can benefit from

abstract structural correspondences between distinct sensorimotor sequences.

We thus set out to study this abstract learning capability in a systematic manner.  This can

be characterized as the ability to learn an abstract rule (e.g. ABCBAC) that can then be used to

generate new sequences (e.g.  HBSBHS).  The ability to learn such abstract sequences in which

variables could be replaced by classes of percepts or actions would clearly be of value in the

sensorimotor domain, as it would allow the generation of novel movement sequences based on

learned, well-formed templates. Interestingly, the recurrent network failed in this type of
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learning, because it lacked the ability to represent the repetitive structure (see Marcus et  al.

1999).  Dominey et al (1998) thus modified the corticostriatal model, adding a working memory

of the last N elements against which new elements could be compared, illustrated in Figure 2.

The neural implementation of a spatial working memory is straightforward, as is that for a

comparator or pattern matcher that determines whether two input vectors are identical or not.

With this working memory and a simple pattern matcher, the sequence ABCBAC was

represented as 'u, u, u, -2, -4, -3'  where ‘u’ indicates a unique or unmatching element, -N

indicates an element that matches with the element N positions back in memory.  This abstract

coding is then represented in the recurrent network, which thus encodes the abstract structure of

the presented sequences.  The idea then is that while serial and temporal structure are encoded in

the corticostriatal system, abstract structure requires additional, dissociated coding capabilities.

In particular, the working memory function will require a neural system that allows the

representation of arbitrary elements within a particular ordered configuration in order to

subsequently manipulate that configuration.  This is functionally similar to the ability to

mnemonically represent arbitrary visual objects at specific spatial locations for subsequent spatial

manipulation.  Indeed, based on the distinction between visual processing systems for object

properties (the ventral system) vs. spatial properties (the dorsal system) Ungerleider et al. (1998)

have extended this neurophysiological distinction to prefrontal cortical memory areas, with the

dorsal spatial processing stream projecting to prefrontal areas adjacent to and partially

overlapping with Broca’s area.  In the Abstract Recurrent Network, we can consider that the

working memory function is thus performed by these prefrontal spatial working memory areas

(see Chang 2002).
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3. Transition to Language

Given these capabilities for serial, temporal and abstract structure processing, we can now

consider how these capabilities can contribute to language processing.   In this context, Dominey

and Ramus (2000)  first demonstrated that the dual process ATRN model could account for

young infants abilities to process the serial, temporal and abstract structure of language-related

sound sequences as revealed in documented experimental studies.  Clearly, however, it would be

more interesting to demonstrate how the model could account for more adult-like language

behavior.

This lead to the non-trivial problem choosing a behavioral measure of language

processing that could be tested on the model.  Within the context of the “formalist” vs.

“functionalist” continuum, we were more interested in a test that would address aspects of

language including comprehension and meaning, rather than purely formal aspects.  A survey of

the neuropsychological literature revealed a behavioral language task that was well suited for

adaptation to the model in this context.  Caplan et al (1985) developed a behavioral protocol to

assess brain-lesioned patients’ ability to determine “who did what to whom” based purely on the

syntactic structure of the target sentences.  They presented subjects with sentences constructed

from a set of nine different grammatical construction types, and for each sentence, asked the

subject to respond by indicating the agent, object, and recipient (always in that canonical order)

of the  action described in the sentence.  This thematic role assignment was performed by the

subjects via their pointing to photographs in the required agent, object, and recipient order.  Thus,

the input was a spoken sentence and the output was the behavioral sequence of pointing to agent,
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object and recipient, always in this 'canonical' order.  In this context, consider the following two

sentences:

(1)  John gave the ball to Mary.

“AGENT verb OBJECT to RECIPIENT”; < AGENT, OBJECT, RECIPIENT >

(2)  The ball was given to Mary by John.

“OBJECT was verb to RECIPIENT by AGENT”; < AGENT, OBJECT, RECIPIENT >

For both of these sentences the agent, object, recipient are respectively John, Ball, and

Mary.  In the behavioral task in which the subject should indicate the agent, object and recipient,

in that order for sentence (1), this response sequence can be generated simply by repeating the

nouns in the same order in which they occurred in the input.  We can thus characterize the

structure of the transformation from input to output as AOR-AOR, or 123-123.  Alternatively, in

the analogous type of analysis for sentence (2) the input noun order does not correspond to the

required agent, object, recipient response, and thus must undergo a structural transformation

corresponding to ORA-AOR or 123-312.  Viewed in this manner, the thematic role assignment

task of Caplan et al  (1985) can be reformulated behaviorally as an abstract cognitive sequencing

task, in which subjects must learn the appropriate abstract structure for each of the nine different

grammatical constructions used in the task.

From the perspective of the model, this abstract structure manipulation is part of its built

in capability.  The only remaining problem is to allow the system to learn to recognize and

correctly manipulate multiple abstract structures, each corresponding to a distinct grammatical

construction.  In this context, Bates et al (1982) suggested that across languages, grammatical

constructions are identified by a highly restricted set of cues including word order, word
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category, grammatical function words, and prosodic structure.  Restricting the analysis to

grammatical function words, it can be seen that in (1) and (2) above, if the open class words (i.e.

the nouns and verbs) are considered as fillers for variables 'slots' then the configuration of

remaining grammatical function words forms a sequence that uniquely identifies the

corresponding grammatical constructions.  The grammatical construction frames corresponding

to sentences (1) and (2) are thus illustrated.  In other words, different construction types can be

identified by their configuration of grammatical function words (and or bound morphemes).  This

can then be used as an index to store and retrieve the corresponding form to meaning mapping.

Based on this analysis, Dominey (2001) and Dominey et al (2003) used the dual process

model such that grammatical function words were processed in the recurrent network, and open

class words were processed in the short term working memory.  Through training, the model

learned to associate the pattern of function words encoded in the recurrent network with the

appropriate corresponding abstract transformation structure.  In this manner the model was able

to learn the nine grammatical constructions that were tested in the Caplan test of syntactic

comprehension.     

This raises the issue of how the lexical categorization (i.e. the separation of open and

closed class words) could be achieved.  It has long been observed that across languages,

grammatical function words (such as determiners and prepositions) are generally shorter and less

stressed than content words (e.g. Shi et al. 1999).  Recently, Shi et al (1999) demonstrated that

human infants can reliably perform this perceptual categorization of open vs closed class words

based on these words acoustic properties.  In this context, Blanc et al (2003) formalized such

observations with the proposition that the presence of peaks in the pitch or fundamental

frequency (F0) of the acoustic signal (reflecting in part the presence of accent or stress) would

predict that the associated word is an open class word. Classification based on this F0 peak



18

detection proved reliable, but left open the question of the underlying neuro-computational

mechanisms.  In order to respond to this question, Blanc et al (2003) tested the TRN in this form

of temporal discrimination task based on F0 structure and observed, indeed, that the TRN reliably

performed the lexical categorization task.

4. Neurophysiology and Model Validation

Figure 3 represents the transition from the TRN network to the ATRN network, and the

functional equivalence between abstract sequence processing and thematic role assignment in

syntactic comprehension.  The corresponding analysis outlined above makes a rather remarkable

statement about the underlying neurophysiology of at least certain stereotypical aspects of

sentence processing.  In particular, it implicitly states a form of 'equivalence hypothesis' which

holds that the same neural systems invoked by the processing of nonlinguistic behavioral

sequences that posses the appropriate degree of abstract structure are also responsible for the

thematic role processing as functionally characterized above.  The following sections present data

from neuropsychological and brain imagery tasks that test the predictions of this “equivalence

hypothesis”, and provide additional data for further elaboration of the model.

4.1 Aphasics

The first effort to test this equivalence hypothesis was undertaken with populations of

neurological patients that demonstrated syntactic comprehension deficits as revealed by their

poor performance on the Caplan (et al. 1985) task described above.  The equivalence hypothesis
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predicts that these patients’ impairments on the Caplan task would be correlated with their

impairments on a test of abstract sequence structure processing.  Lelekov et al (2000b) thus tested

patients with lesions in and around Broca's area on the Caplan task, and a task in which they were

required to learn the abstract structure ABCBAC and then judge whether 20 new sequences

corresponded to this abstract structure or not.   As illustrated in Figure 3B and 3C, we predicted

that these two tasks could be realized by a shared neurophysiological mechanism.  As predicted,

the impairments in the two tasks were highly correlated, arguing in favor of a common

underlying mechanism (Lelekov et al. 2000b, Dominey et al. 2003).

This type of correlation does not necessarily demonstrate a common mechanism,

however, and a stronger argument could be made if it were demonstrated that training in one of

the domains led to a transfer of performance to the other.  We thus set out to achieve this

demonstration by training aphasic patients on an abstract non-linguistic sequence whose

transformation structure corresponds to that required for transforming a complex sentence type

into the simple canonical order AGENT VERB OBJECT.  Transfer of improved performance

from the sequence domain to the sentence processing domain would provide further evidence for

a common underlying mechanism.  Thus, Hoen et al (2002) trained agrammatic aphasic patients

on sequences of the abstract structure ABC-BCA that corresponds to the transformation of

relativised sentences 'It was the ball that John took' to 'John took the ball' (Ball John Took – John

Took Ball).  The patients were evaluated on the Caplan task before and after 10 weekly sessions

of training on nonlinguistic sequences generated from the ABCBCA structure.  The patients

displayed a reliable capability to learn the abstract structure, and most interestingly a reliable

transfer of this training only to the corresponding relativised sentences, and not to other

grammatical construction types.  The observed transfer from sequence learning to sentence
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comprehension, specific to the target grammatical structure, argues in favor of the equivalence

hypothesis.

4.2 Event Related Scalp Potentials

These behavioral correlation data suggest a common underlying mechanism.  In order to

investigate this further, Hoen and Dominey (2000) compared event related brain potentials

(ERPs) evoked during the processing of sentences and abstract sequences.  In ERP studies, an

array of electrodes on the scalp measures electrical current on the scalp generated by active

populations of cortical neurons that form electrical dipoles.  Multiple successive trials are

averaged in order to provide a clear electrical signal, thus these studies require the identification

of specific behavioral events on which to align the recordings for averaging.  In sentence

processing, recordings are thus typically aligned on word onset for successive words.  A number

of ERP studies have demonstrated significant differences in brain activity in response to

grammatical function words vs. content words.  Content words tend to evoke a central negative

effect at about 400ms after word onset, the N400.  In contrast, grammatical function words tend

to evoke a left anterior negativity (LAN)  during a period 400-600 after word onset (Brown et al.

1999).

Grammatical function words indicate the subsequent grammatical sentence structure and

potential transformation processing required for thematic role assignment.  A parallel can be

drawn this role, and the role of “function symbols” such as X and Y that indicate different

transformation processing in sequences ABCXABC and ABCYBAC, respectively.  Of particular

interest was the comparison between grammatical function words in sentences, and function

symbols such as Y in the sequence ABCYBAC during a correctness judgement task.  In this task,
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subjects learned that Y indeed played the role of an abstract function word, signaling the

upcoming transformation of the initial triplet.  Both in natural language sentences and in abstract

sequences, these function symbols evoked a left anterior negativity (LAN) in the 400-600 ms

timeframe that was essentially indistinguishable in these two conditions.  Likewise, in both cases

this LAN effect for function words or symbols was significantly different from the N400 effect

for content words and symbols, respectively (Hoen & Dominey 2004).

These studies indeed indicate a partial overlap in the functional neuroanatomy of sentence

comprehension and abstract sequence processing.  Clearly, however, there are obvious contrasts

between these behaviors, and the corresponding neurophysiological differences are of interest.

Such differences should be revealed using a finer grain of spatial localization.

4.3 Functional MRI

In this context, Hoen et al (2005) have further investigated the underlying neurophysiology in

a functional MRI study comparing language and sequence processing.  Part of the objectives of

this work was to identify not only the common neurophysiological processes, but equally

importantly to identify those processes that differentiate between language and sequence

processing.  Based on the simulation studies, we would predict that sentence and abstract

sequence processing would activate a common brain network functionally associated with the use

of the transformation working memory, and the recurrent network for processing the function

elements depicted in Figure 2.  In addition to this network, language processing would lead to

activation of brain regions associated with the insertion of word meanings into this

transformation processing as required for thematic role assignment.
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Interestingly, within the cortical region of Broca's area this theoretical prediction was

partially resolved, as illustrated in the model in Figure 4.  Subjects were required to read abstract

sequences and sentences (in separate blocks of trials) and to judge whether the stimuli were

structurally/grammatically well formed.  Both during sequence and sentence processing, the pars

opercularis (Broadman's area 44) and adjacent areas 46 and 6 were significantly activated, while

the neighboring BA 45 was activated only for sentence processing (Hoen et al. 2005).

Neuroanatomical studies have confirmed that the cortical network including areas 44, 46 and 6

overlaps with the frontal projection sites of the dorsal visual stream for spatial working memory

(Ungerleider et al. 1998).  As mentioned above, the dorsal stream processing of spatial relations

between arbitrary objects is functionally analogous to the processing of abstract transformation

structures instantiated with arbitrary sequence elements (see Chang 2000).  In contrast, area 45

corresponds to the frontal projection site of the ventral object processing visual stream, and

implements a working memory capability for object properties.  This is coherent within the

context of the model, as this corresponds to the integration of semantic object properties into the

structure mapping process for the assignment of thematic roles.  Thus the model of Figure 4

represents the “evolution” of the model in Figure 2.  One principle change is the introduction of

this lexical semantics or word meaning into the transformation processing mechanism, carried out

by BA 45.  A second change is the representation of the processing of closed class words in

Construction Index which plays the same role as the recurrent network in the model in Figure 2.

The model retains the essential property that the constellation of closed class words or function

words is used as an index (the Construction Index) into a structured inventory (the Construction

Inventory) of mappings (Transformation) from the input order of open class elements onto the

canonically ordered arguments of the meaning representation.
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5. Co-Influence Between Neurophysiological Mechanisms and the Structure of Language

What is the potential effect on language of this cerebral organization?  One of the principal

differences between the prefrontal cortex of non-human primates and humans is the displacement

of cortical areas for spatial and non-spatial working memory in man respectively above and

below their locations in the monkey brain, making room for new areas in the posterior peri-

sylvian cortex, including Broca’s area, associated with language processing (Ungerleider et al.

1998).  Within this setting of cortical evolution, it is thus of great interest that functionally, our

model of sentence processing relies on specialized forms of working memory in order to perform

the transformation from a sentence to a representation of meaning.  One of these working

memory functions, linked with activation of Brodmann’s area 45 and seen only in sentence (not

sequence) processing, is associated with the semantic value of words and the integration of this

meaning into a mapping mechanism.  This is consistent with the characterization of BA 45 as the

frontal working memory component of the semantic “object” stream.  In contrast, the working

memory associated with the actual transformation process appears to activate Brodmann’s areas

44 and 46, for transformation processing in sentences as well as non-linguistic sequences.  Again,

consistent with characterization of this region as involved in spatial “structural” working

memory.  Thus, the resulting system allows the use of systematic transformations of grammatical

structures onto meaning structures, guided by special percept cues – corresponding to function

words (and the general class of such cues evoked by Bates and MacWhinney) in language.

As noted above, there is a vast richness across languages with respect to the variety of

different mappings of grammatical structures (e.g. active, passive, etc.) onto meaning

representations.  All languages must provide a method for encoding these possible mappings for

each sentence type.  Likewise, the brain must be capable of adapting to all of the possible

strategies employed within natural languages.  The intersection of these two sets of constraints
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(1) on how meaning can be encoded, and (2) on the functional organization of the code reading

machine, results in the set of constraints that define natural languages.  Bates and MacWhinney

proposed that the punctuation of the code must be based either on word order regularities (e.g. the

first noun is always the agent, the second the object etc.) or on the use of special markers (e.g.

grammatical function words like “the” and ‘by”, or attached grammatical morphemes, or

prosodic markers) that indicate the functional roles of associated words or groups of words, and

the possible combination of these strategies.  Simulation and neurophysiological results indicate

that there are specialized neurophysiological structures for the realization of these functions.  It is

thus interesting to note the close correspondence between these characteristics of natural

languages that were derived from extensive cross-linguistic studies (e.g. Bates et al. 1982), and

the computing capabilities of the corresponding neural machinery described here.

6. Discussion and Conclusions

The stated objective of this study was to present a trajectory leading from a characterization

of the neurophysiology of behavioral sequence learning to a corresponding characterization of the

learning and use of grammatical constructions.  In this context, a neurophysiologically driven

model of cortex and basal ganglia in sequence learning was described, along with its sequence

processing capabilities.  The model was then extended to address abstract rules for sequence

generation.  This functional extension provided the essential mechanisms of structure mapping

required for making the transition to grammatical constructions as form-to-meaning mappings.

Behavioral and brain imagery evidence supporting the proposed model was reviewed and used to

refine the allocation of  brain areas to computational functions in the model.  With respect to

insights concerning relations between evolution and acquisition of language, the simulation

studies reviewed in this paper provide a characterization of the functional requirements that must
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be accounted for in both cases.  Current and future research will address how this model captures

interesting aspects of the notion of grammatical constructions (Dominey & Boucher 2004), and

how this can be of value in simulation and robotic studies of language acquisition (Dominey &

Boucher 2005).

As presented, the story leaves at least two important questions open.  First – it is important

in this model to have a predicate-argument form of representation of meaning onto which

sentence structure can be mapped.  Recent work on the perception of action by human and non-

human primates has revealed the existence of neural systems that represent action – independent

of the agent (the “mirror neuron” system) (Rizzolatti & Arbib 1998).  Combined with

proprioceptive information that allows the differentiation between self and other’s movement, the

neurophysiological basis for event representation thus appears well founded.  In addition,

Hurford (2003) has provided convincing evidence for the neural basis of predicate-argument

representations.

The second issue has to do with compositionality.  The advantage of learning a grammar is

that this knowledge can be used to generate and understand new grammatical constructions that

have not previously been experienced.  The current implementation of the construction grammar

approach has the limitation that a sentence generated from a given grammatical construction

cannot be understood until the system has been exposed to a well formed <sentence, meaning>

pair using that construction, in order to acquire the appropriate mapping.  Interestingly, this

limitation appears to mimic the same limitation observed in human language development.  It

appears that young children during their second year largely limit their constructions to those that

have been in speech they have heard (Clark 2003, Tomasello 2003), and the use of such a

strategy should take the initial language learner quite some way on the path to adult language

capability.  Thereafter, the application of pattern finding mechanisms can begin to detect the
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grammatical marking of phrase structure (e.g. “that” and relative clauses), so that new

constructions can be generated by replacing simple nouns with noun phrases.  Thus “The book is

on the table” can lead to “The book that we read is on the table”.

In conclusion, the current research attempts to present a coherent trajectory starting with the

functional neurophysiology of sensorimotor sequence learning, and leading to the use of

grammatical constructions in language.  Inherent in this approach is the idea that the principal

source of the basic initial structure in language derives from the structure inherent in the

conceptual representations that preceded language (Dominey 2002; Jackendoff 1999, 2002).

Language then corresponds to the mapping between these conceptual structures and the linear

sequences of words in sentences.  This mapping capability in turn derives from structural

mapping capabilities that are of clear value in the sensorimotor domain.  The ability to use

abstract sequences like ABCBAC and then fill in A-C with specific sensorimotor components

(e.g. objects that are to be manipulated) provides a powerful mechanism for generating novel

movement sequences that are invariant to changes in the objects being manipulated while

preserving the relations between them.  In this context, language remains a uniquely human

capability.  The point to be made is that a significant portion of this human capability relies on

neurophysiologically grounded information processing capabilities that are likely specific neither

to humans nor to language.
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Figure 1. A.  The model is based on the functional neuroanatomy of the primate corticostriatal system

(Dominey, Arbib & Joseph 1995).  Visual inputs traverse the retina and visual system to provide a

retinotopic representation of the visual input in Posterior Parietal Cortex and the Frontal Eye Fields (FEF).

A non-topographic signal projects from PP to the Prefrontal Cortex (PFC).  For movement production, the

tonic inhibition of the superior colliculus (SC) from substantia nigra pars reticulata (SNr) is temporarily

inhibited by the GABAergic (inhibitory) input to SNr from the caudate nucleus (CD) of the striatum.

Caudate cells that code motor outputs are influenced by topographic inputs from FEF and by modifiable

non-topographic inputs from PFC.  The PFC is a dynamic recurrent network that encodes sequence

context.  In a sequence learning task, when the correct response is generated, reward related activity of the

SNc dopamine (DA) neurons strengthens the PFC-CD synapses that were active in generating the correct

response.  The caudate thus provides a movement selection function.  In this manner, the model can learn

context dependant behavior including sequence discrimination and reproduction.  B.  Simplified version of

the model where the recurrent network is explicitly represented as two recurrently connected layers State

and StateD (corresponding to PFC), and learning occurs in an associative memory linking State and

Output (corresponding to the modifiable connections between PFC and CD in A).
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Figure 2.  Abstract Temporal Recurrent Network (ATRN) model.  The temporal recurrent

network (TRN), corresponding to a schematized version of the model in Figure 1, exploits

recurrent network (i.e. prefrontal cortex) dynamics to encode serial and temporal structure.  To

encode the abstract structure common to isomorphic sequences such as HBSBHS and YPBPYB,

the abstract recurrent network (ARN) stores the N previous elements of the current sequence in a

working memory.  The Recognition function compares the current sequence element to working

memory contents to detect the abstract repetitive structure.  The abstracted coding is represented

in the recurrent State network.   In the expression of abstract structure knowledge, the contents of

the working memory are selectively extracted into the  output stream by the activation of

selection neurons by State neurons.
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Figure 3.  Transition from sequence processing to grammatical constructions.  A.  Temporal

recurrent network.  Recurrent network State encodes serial and temporal structure, and influences

behavior via modifiable State-Output connections.  B.  Addition of a Working Memory capability

storage of ordered input sequence for recognition of repetitive transformational structure.

Abstract structure rules are associated with the sequence of function elements encoded in State.

C.  Use of the abstract sequence processing model to perform thematic role assignment.  See text

for explanations.
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Figure 4.  Structure-Mapping Architecture.  A.  Sentence Comprehension:  1. Lexical categorization -

Open and closed class words processed in separate streams. 2. Open class words in Open Class Array are

translated to their referent meanings via the WordToReferent mapping.   Insertion of this referent semantic

content into the Predicted Referents Array (PRA) is realized in pars triangularis Ba45. 3. PRA elements

are mapped onto their roles in the SceneEventArray by the Transformation mapping, specific to each

sentence type.  4.  This mapping is retrieved from Construction Inventory, via the ConstructionIndex that

encodes the closed class words that characterize each grammatical construction  type.  The structure

mapping process is associated with activation of pars opercularis Ba44.  B.  Abstract Sequence

Processing:  Lexical categorization takes place for function and content elements of non-linguistic

sequences (see Hoen & Dominey 2000).  As with sentences, function elements allow retrieval of learned

transformation from ConstructionInventory via ConstructionIndex.


