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Abstract

The objective of this research is to develop a system for language learning based on a ‘‘minimum’’ of pre-wired lan-

guage-specific functionality, that is compatible with observations of perceptual and language capabilities in the human

developmental trajectory. In the proposed system, meaning (in terms of descriptions of events and spatial relations) is

extracted from video images based on detection of position, motion, physical contact and their parameters. Meaning

extraction requires attentional mechanisms that are implemented from low-level perceptual primitives. Mapping of sen-

tence form to meaning is performed by learning grammatical constructions, i.e., sentence to meaning mappings as

defined by Goldberg [Goldberg, A. (1995). Constructions. Chicago and London: Univ. of Chicago Press]. These are

stored and retrieved from a ‘‘construction inventory’’ based on the constellation of grammatical function words

uniquely identifying the target sentence structure. The resulting system displays robust acquisition behavior that repro-

duces certain observations from developmental studies, with very modest ‘‘innate’’ language specificity.

� 2004 Published by Elsevier B.V.
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1. Introduction

A challenge of epigenetic robotics is to demon-

strate the successive emergence of behaviors in a
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developmental progression of increasing process-

ing power and complexity. A particularly interest-

ing avenue for this methodology is in language

processing. Generative linguists have posed the

significant challenge to such approaches via the
claim that the learning problem is too undercon-

strained and must thus be addressed by a highly

pre-specified Universal Grammar (Chomsky,

1995). The current research proposes an alterna-
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tive, identifying a restricted set of functional

requirements for language acquisition, and then

demonstrating a possible framework for the suc-

cessive emergence of these behaviors in develop-
mentally plausible systems, culminating in a

grounded robotic system that can learn a small

language about visual scenes that it observes.

1.1. Functional requirements

We adopt a construction-based approach to

language in which acquisition is based on learning
mappings between grammatical structure and

meaning structure (Goldberg, 1995). In this con-

text, the system should be capable of: (1) extract-

ing meaning from the environment, (2) learning

mappings between grammatical structure and

meaning, and (3) identifying-discriminating be-

tween different grammatical structures of input

sentences. In the following sections, we outline
how these requirements can be satisfied in a bio-

logically and developmentally plausible manner.

In this developmental context, Mandler (1999)

suggested that the infant begins to construct mean-

ing from the scene based on the extraction of per-

ceptual primitives. From simple representations

such as contact, support, and attachment (Talmy,

1988), the infant could construct progressively
more elaborate representations of visuospatial

meaning. In this context, the physical event ‘‘colli-

sion’’ can be derived from the perceptual primitive

‘‘contact’’. Kotovsky and Baillargeon (1998)

observed that at 6 months, infants demonstrate

sensitivity to the parameters of objects involved

in a collision, and the resulting effect on the colli-

sion, suggesting indeed that infants can represent
contact as an event predicate with agent and

patient arguments. Similarly, Quinn, Polly, Furer,

Dobson, and Nanter (2002) have demonstrated

that at 6–7 months, infants are sensitive to binary

spatial relations such as above and below.

Bringing this type of perception into the robotic

domain, Siskind (2001) has demonstrated that

force dynamic primitives of contact, support, and
attachment can be extracted from video event se-

quences and used to recognize events including

pick-up, put-down, and stack based on their char-

acterization in an event logic. Related results have
been achieved by Steels and Baillie (2002). The use

of these intermediate representations renders the

systems robust to variability in motion and view

parameters. Most importantly, this research dem-
onstrated that the lexical semantics for a number

of verbs could be established by automatic image

processing.

Once meaning is extracted from the scene, the

significant problem of mapping sentences to mean-

ings remains. The nativist perspective on this prob-

lem holds that the Æsentence, meaningæ data to

which the child is exposed is highly indeterminate,
and underspecifies the mapping to be learned. This

‘‘poverty of the stimulus’’ is a central argument for

the existence of a genetically specified universal

grammar, such that language acquisition consists

of configuring the UG for the appropriate target

language (Chomsky, 1995). In this framework,

once a given parameter is set, its use should apply

to new constructions in a generalized, generative
manner.

An alternative functionalist perspective holds

that learning plays a much more central role in

language acquisition. The infant develops an

inventory of grammatical constructions as map-

pings from form to meaning (Goldberg, 1995).

Developing in the second year of life, these con-

structions are initially rather fixed and specific,
and later become generalized into a more abstract

compositional form employed by the adult (Tom-

asello, 1999, 2003). In this context, construction of

the relation between perceptual and cognitive rep-

resentations and grammatical form plays a central

role in learning language (e.g., Feldman, Lakoff,

Stolcke, & Weber, 1990; Feldman et al., 1996;

Langacker, 1991; Mandler, 1999; Talmy, 1988;
Tomasello, 1999, 2003).

These issues of learnability and innateness have

provided a rich motivation for simulation studies

that have taken a number of different forms. El-

man (1990) demonstrated that recurrent networks

are sensitive to predictable structure in grammati-

cal sequences. Subsequent studies of grammar

induction demonstrate how syntactic structure
can be recovered from sentences (e.g., Stolcke &

Omohundro, 1994). From the ‘‘grounding of lan-

guage in meaning’’ perspective (e.g., Feldman et

al., 1990, 1996; Goldberg, 1995; Langacker,
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1991) in which language is characterized in terms

of its communicative function, rather than in

purely formal terms, Chang and Maia (2001)

exploited the relations between action representa-
tion and simple verb frames in a construction

grammar approach, and Cottrel, Bartell, and

Haupt (1990) associated sequences of words with

simple image sequences. In an effort to consider

more complex grammatical forms, Miikkulainen

(1996) demonstrated a system that learned the

mapping between relative phrase constructions

(e.g., ‘‘The dog that the cat chased bit the kid’’)
and the corresponding multiple event representa-

tions, based on the use of a stack for maintaining

state information during the processing of the next

embedded clause in a recursive manner.

In a more generalized approach, Dominey

(2000) exploited the regularity that sentence to

meaning mapping is encoded in all languages by

word order and grammatical marking (bound or
free) (Bates, McNew, MacWhinney, Devescovi,

& Smith, 1982). The model is based on the func-

tional neurophysiology of cognitive sequence and

language processing and an associated neural net-

work model that has been demonstrated to simu-

late interesting aspects of infant (Dominey &

Ramus, 2000) and adult language processing

(Dominey, Hoen, Lelekov, & Blanc, 2003). As will
be described below, the model formalizes general-

ized mappings from sentence structure to meaning

structure (grammatical constructions – Goldberg,

1995), and indexes these constructions based on

the configurations of closed class words in the dif-

ferent sentence types. The model in the current

study extends that work in the context of epige-

netic development to address complex hierarchical
structure, and spatial relations in a grounded

learning environment.

1.2. Objectives

The goals of the current study are threefold:

First to test the hypothesis that meaning – in terms

of predicate-argument descriptions of events and
spatial relations – can be extracted from visual

scenes based on the detection of contact and its

parameters in an approach similar to but signifi-

cantly simplified from Siskind (2001); Second to
use these meanings in Æsentence, meaningæ pairs

as inputs to the grammatical construction learning

model of Dominey (2000) in order to demonstrate

that these two systems can be combined to per-
form miniature language acquisition; and finally

to demonstrate that the combined system can pro-

vide insight into the developmental progression in

human language acquisition without the necessity

of a pre-wired parameterized grammar system

(Chomsky, 1995).

1.3. The behavioral learning context

As illustrated in Fig. 1, the human experimenter

enacts and simultaneously narrates visual scenes

made up of events that occur between a red cylin-

der, a green block and a blue semicircle or ‘‘moon’’

on a black matte table surface. A video camera

above the surface provides a video image that is

processed by a color-based recognition and track-
ing system (Smart-Panlab, Barcelona Spain) that

generates a time ordered sequence of the contacts

that occur between objects that is subsequently pro-

cessed for event analysis (below). The simultaneous

narration of the ongoing events is processed by a

commercial speech-to-text (STT) system (IBMVia-

Voice�). Speech and vision data were acquired and

then processed off-line yielding a data set of
matched sentence – scene pairs that were provided

as input to the structure mapping model. For exam-

ple, in Fig. 1, the human takes the blue moon and

uses it to ‘‘give’’ the block to the cylinder. At the

same time, the human narrates this, saying ‘‘The

moon gave the block to the cylinder’’. The STT sys-

tem yields the text string ‘‘The moon gave the block

to the cylinder’’, and the event analysis produces a
description of the form gave(moon, block, cylinder),

thus yielding one Æsentence, meaningæ pair. A total

of 300 Æsentence, meaningæ pairs were tested in the

following experiments. The desired performance

of the model is the ability to understand new sen-

tences, i.e., when given a new sentence to accurately

generate the corresponding meaning.

1.4. Roadmap

In the next sections, we will identify the func-

tional requirements for the system, i.e., what it is



Fig. 1. Perceptually grounded robotic system, and view of the scene from the system�s perspective.
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to do. The first requirement will be to extract mean-

ing from the environment, the secondwill be tomap

sentence structure onto this meaning for a given

sentence type, and the third will be to generalize this

to a variety of different sentence types or grammat-

ical constructions. Experimental results with the

system will then be presented, with extensions to

complex grammatical constructions, and demon-
stration that the semantic predicate-argument

encoding for events can naturally extend to allow

the system to learn about spatial relations. The pos-

sible extension of these semantic representations to

allow the emergence of new semantic structures is

then discussed with respect to the spatial relation

‘‘between,’’ followed by the general discussion.
Fig. 2. Perceptual scene analysis for touch, push, take (with

two and three arguments), and give. Each of these events is

decomposed into a sequence of simple contacts. Agency is

determined as the object that had a greater relative velocity in

the contact.
2. Requirement 1: extracting meaning

For a given video sequence (see snapshot in Fig.

1), the visual scene analysis generates the corre-

sponding event description in the format event

(agent, object, recipient). The temporal schemas

for the different events are displayed in Fig. 2.

2.1. Single event labeling

Events are defined in terms of contacts between

elements. A contact is defined in terms of the time
at which it occurred, the agent, object, and dura-

tion of the contact. The agent is determined as

the causal element that had a larger relative veloc-

ity towards the other element involved in the con-

tact, i.e., ‘‘the one that was moving towards the

other one’’ as in the collision events of Kotovsky

and Baillargeon (1998). Based on these parameters

of contact, scene events are recognized as follows:
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Touch(agent, object): A single contact, in which

(a) the duration of the contact is inferior to

touch_duration (1.5 s), and (b) the object is not dis-

placed during the duration of the contact.
Push(agent, object): Similar to touch, with a

greater contact duration, superior or equal to

touch_duration and inferior to take_duration (5 s),

and object displacement.

Take(agent, object): A single contact in which

(a) the duration of contact is superior or equal to

take_duration, (b) the object is displaced during

the contact, and (c) the agent and object remain
in contact.

Take(agent, object, source): Multiple contacts,

as the agent takes the object from the source. Same

as Take(agent, object), and for the optional second

contact between agent and source (a) the duration

of the contact is inferior to take_duration and (b)

the agent and source do not remain in contact. Fi-

nally, contact between the object and source is
broken during the event.

Give(agent, object, recipient): Multiple contacts

as agent takes object, then initiates contact be-

tween object and recipient.

These event labeling templates (illustrated in

Fig. 2) form the basis for a template matching

algorithm that labels events based on the contact

list, similar to the spanning interval and event logic
of Siskind (2001).

2.2. Complex ‘‘hierarchical’’ events

The events described above are simple in the

sense that they have no hierarchical structure. This

imposes serious limitations on the syntactic com-

plexity of the corresponding sentences (Feldman
et al., 1996; Miikkulainen, 1996). The sentence

‘‘The block that pushed the moon was touched by

the triangle’’ illustrates a complex event that exem-

plifies this issue. We address this issue by explicitly

coding such complex compound events as the set of

their constituent events. Thus, the corresponding

compound event will be recognized and represented

as a pair of temporally successive simple event
descriptions, in this case: push(block, moon), and

touch(triangle, block). The ‘‘block’’ serves as the

link that connects these two simple events in order

to form a complex hierarchical event.
3. Requirement 2: mapping sentences to meaning

Our approach is based on the cross-linguistic

observation that open class words (e.g., nouns,

verbs, adjectives, and adverbs) are assigned to
their thematic roles based on word order and/or

the pattern of closed class words (grammatical

function words or morphemes including preposi-

tions and determiners) in the sentence (Bates et

al., 1982).

The mapping of sentence form onto meaning

for sentence comprehension takes place at two dis-

tinct levels: Words are associated with individual
components of event descriptions and grammatical

structure is associated with functional roles within

scene events (Fig. 3). The first level has been ad-

dressed by Siskind (1996), Roy and Pentland

(2002), and Steels (2001) and we treat it here in a

relatively simple but effective manner. Our princi-

ple interest lies more in the second level of map-

ping between scene and sentence structure, and
the ability to handle a large variety of different

mappings, or grammatical constructions. Fig.

3(a) and (b) illustrates how two different grammat-

ical constructions are processed by the model. The

passive construction ‘‘object was verb to recipient

by agent’’ in (a) and the active construction ‘‘agent

verb object to recipient’’ in (b) both map (with dif-

ferent transformations) to the semantic representa-
tion of the event ACTION(AGENT, OBJECT,

RECIPIENT) as illustrated. Eqs. (1)–(7) imple-

ment the model depicted in Fig. 3, and are derived

from a neurophysiologically motivated model of

sensorimotor sequence learning (Dominey, 2000;

Dominey et al., 2003; Dominey & Hoen, 2005).

In these equations, ‘‘=’’ designates an update of

the left side by the right side. The associative mem-
ories are implemented as neural networks that

correspond to modifiable cortico-cortico and

cortico-striatal synapses. The ConstructionIndex

corresponds functionally to a recurrent cortico-

cortical network that has here been simplified for

computational complexity reduction (see Dominey

et al., 2003 for more extensive presentation of the

underlying neurophysiology). Corresponding hu-
man neurophysiology can be seen in Hoen, Pa-

chot-Clouard, Segebarth, and Dominey (2005)

and Dominey and Hoen (2005). Once the model



Fig. 3. Model Overview: Processing of active and passive

sentence types in A, B, respectively. 1. On input, open and

closed class words are segregated. Open class words populate

the Open Class Array (OCA), while closed class words populate

the ConstructionIndex. Visual Scene Analysis populates the

Scene Event Array (SEA) with the extracted meaning as scene

elements. 2. Words in OCA are translated to Predicted

Referents via the WordToReferent mapping to populate the

Predicted Referents Array (PRA). 3. PRA elements are mapped

onto their roles in the Scene Event Array (SEA) by the

SentenceToScene mapping, specific to each sentence type. 4.

This mapping is retrieved from Construction Inventory, via the

ConstructionIndex that encodes the closed class words that

characterize each sentence type. Words in sentences, and

elements in the scene are coded as single ON bits in respective

25-element vectors. Note the different SentToScene mapping

for active and passive in A and B.
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has been trained on well formed Æsentence, mean-

ingæ pairs, it can then process new sentences that

were not used in training (with the leaned vocabu-

lary or lexicon) and generate for these sentences

their corresponding meaning. This is the desired

output processing of the trained model. Perfor-

mance is measured by comparing this predicted

meaning to the actual meaning that is provided
in the Æsentence, meaningæ input pair.

3.1. Word meaning

Eq. (1) describes the associative memory,

WordToReferent, that links word vectors in the
OpenClassArray (OCA) with their referent vectors

in the SceneEventArray (SEA). For all k, m,

1 6 k 6 6, corresponding to the maximum number

of words in the OCA, and 1 6 m 6 6, correspond-
ing to the maximum number of elements in the

SEA. For all i and j, 1 6 i,j 6 25, corresponding

to the word and scene item vector sizes, respec-

tively. In the initial learning phases, there is no

influence of syntactic knowledge and the word-ref-

erent associations are stored in the WordToRefer-

ent matrix (Eq. (1)) by associating every word with

every referent in the current scene (a = 1), exploit-
ing the cross-situational regularity (Siskind, 1996)

that a given word will have a higher coincidence

with referent to which it refers than with other ref-

erents. This initial word learning contributes to

learning the mapping between sentence and scene

structure (Eqs. (4)–(6)). Then, knowledge of the

syntactic structure, encoded in SentenceToScene

can be used to identify the appropriate referent
(in the SEA) for a given word (in the OCA), corre-

sponding to a zero value of a in Eq. (1). In the cur-

rent studies, this transition is made manually. In

actual development, a threshold of confidence in

the syntactic knowledge could be used to deter-

mine this transition automatically. In this ‘‘syntac-

tic bootstrapping’’ mode, for the new word

‘‘gugle,’’ for example, syntactic knowledge of
Agent-Event-Object structure of the sentence

‘‘John pushed the gugle’’ can be used to assign

’’gugle’’ to the object of push, rather than

‘‘blindly’’ associating it with all of the possible ref-

erents as was done before the SentenceToScene

knowledge was acquired.

WordToReferentði; jÞ
¼ WordToReferentði; jÞ þOCAðk; iÞ
� SEAðm; jÞ � Maxða;SentenceToSceneðm; kÞÞ:

ð1Þ
3.2. Mapping sentence to meaning

In terms of the architecture in Fig. 3, this map-

ping can be characterized in the following succes-

sive steps. First, words in the Open Class Array
are decoded into their corresponding scene refer-

ents (via the WordToReferent mapping) to yield
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the Predicted Referents Array that contains the

translated words while preserving their original or-

der from the OCA

PRAðk; jÞ ¼
Xn

i¼1

OCAðk; iÞ � WordToReferentði; jÞ:

ð2Þ

Next, each sentence type will correspond to a spe-
cific form to meaning mapping between the PRA

and the SEA, encoded in the SentenceToScene ar-

ray. The problem will be to retrieve for each sen-

tence type or grammatical form, the appropriate

corresponding SentenceToScene mapping.
4. Requirement 3: discriminating between
grammatical forms

In the present approach, the first step in dis-

criminating between grammatical structures is to

discriminate between open class (e.g., nouns and

verbs) and closed class (e.g., determiners and prep-

ositions) words. Newborn infants are sensitive to

the perceptual properties that distinguish these
two categories (Shi, Werker, & Morgan, 1999),

and in adults these categories are processed by dis-

sociable neural systems (Brown, Hagoort, & ter

Keurs, 1999). Similarly, artificial neural networks

can also learn to make this function/content dis-

tinction (Blanc, Dodane, & Dominey, 2003; Mor-

gan, Shi, & Allopenna, 1996). Thus, for the

speech input that is provided to the learning mod-
el, open and closed class words are directed to sep-

arate processing streams that preserve their order

and identity, as indicated in Fig. 3.

Given this capability to discriminate between

open and closed class words, we are still faced with

the problem of using this information to discrimi-

nate between different sentence types. To solve this

problem, we recall that each sentence type will
have a unique constellation of closed class words

and/or bound morphemes (Bates et al., 1982) that

can be coded in a ConstructionIndex (Eq. (3)) that

forms a unique identifier for each sentence type.

The ConstructionIndex is a 25 element vector.

Each function word is encoded as a single bit in

a 25 element FunctionWord vector. When a func-
tion word is encountered during sentence process-

ing, the current contents of ConstructionIndex are

shifted (with wrap-around) by n + m bits, where n

corresponds to the bit that is on in the Function-
Word and m corresponds to the number of open

class words that have been encountered since the

previous function word (or the beginning of the

sentence). Finally, a vector addition is performed

on this result and the FunctionWord vector. Thus,

the appropriate SentenceToScene mapping for

each sentence type can be indexed in Construction-

Inventory by its corresponding ConstructionIn-
dex. We have previously demonstrated how a

recurrent network can perform this Construction-

Index function as a form of discrimination be-

tween seqeunces of closed class elements

(Dominey et al., 2003)

ConstructionIndex ¼ fcircularShiftðConstructionIndex;
FunctionWordÞ: ð3Þ

The link between the ConstructionIndex and

the corresponding SentenceToScene mapping is
established as follows. As each new sentence is

processed, we first reconstruct the specific Senten-

ceToScene mapping for that sentence (Eq. (4)), by

mapping words to referents (in PRA) and referents

to scene elements (in SEA). The resulting, Senten-

ceToSceneCurrent encodes the correspondence be-

tween word order (that is preserved in the PRA

Eq. (2)) and thematic roles in the SEA. Note that
the quality of SentenceToSceneCurrent will de-

pend on the quality of acquired word meanings

in WordToReferent. Thus, syntactic learning re-

quires a minimum baseline of semantic knowledge.

Given the SentenceToSceneCurrent mapping for

the current sentence, we can now associate this

mapping in the ConstructionInventory with the

corresponding function word configuration or
ConstructionIndex for that sentence, expressed in

Eq. (5). In Eqs. (5) and (6), SentenceToScene is lin-

earized for simplification of the matrix

multiplication

SentenceToSceneCurrentðm; kÞ

¼
Xn

i¼1

PRAðk; iÞ � SEAðm; iÞ; ð4Þ



Fig. 4. Representation of complex (relativised) Æsentence,
meaningæ mappings. Relativised sentences contain two com-

plete events (see construction types 5–10 in Section 5.3). By

adding a second SceneEventArray, and a second SentenceTo-

Scene mapping, the model can accommodate relativised

sentences.
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ConstructionInventoryði; jÞ
¼ ConstructionInventoryði; jÞ

þ ConstructionIndexðiÞ
� SentenceToSceneCurrentðjÞ: ð5Þ

Finally, once this learning has occurred, for new

sentences we can now extract the SentenceToScene

mapping from the learned ConstructionInventory

by using the ConstructionIndex as an index into
this associative memory, illustrated in Eq. (6).

To accommodate the dual scenes for complex

events, Eqs. (4)–(7) are instantiated twice each,

to represent the two components of the dual scene.

In the case of simple scenes, the second component

of the dual scene representation is null. This exten-

sion is illustrated with an example in Fig. 4

SentenceToSceneðiÞ ¼
Xn

i¼1

ConstructionInventoryði; jÞ

� ConstructionIndexðjÞ:
ð6Þ

We evaluate performance of the model by using

the WordToReferent and SentenceToScene

knowledge to construct for a given input sentence

the ‘‘predicted scene’’. That is, the model will con-

struct an internal representation of the scene that

should correspond to the input sentence. This is
achieved by first converting the Open-Class-Array

into its corresponding scene items in the Predicted-

Referents-Array as specified in Eq. (2). The refer-

ents are then re-ordered into the proper scene

representation via application of the SentenceTo-

Scene transformation as described as

PSAðm; iÞ ¼ PRAðk; iÞ � SentenceToSceneðm; kÞ:
ð7Þ

When learning has proceeded correctly, the

PSA contents should match those of the SEA that

is directly derived from input to the model. We

then quantify performance error in terms of the
number of mismatches between PSA and SEA.
5. Experimental results

Hirsh-Pasek and Golinkoff (1996) indicate that

children use knowledge of word meaning to acquire
a fixed Subject Verb Object template around 18

months, then expand this to non-canonical sentence

forms (i.e., those whose word order deviates from

the ‘‘canonical’’ SVO, such as the passive which is

OVS) at around 24+ months. Tomasello (1999)

indicates that fixed grammatical constructions will

be used initially and that these will then provide

the basis for the development of more generalized
constructions (Goldberg, 1995). The following

experiments attempt to reproduce particular steps

in this type of developmental progression. Training

yields in changes in the associative WordToRefer-

ent mappings encoding the lexicon, and changes

in the ConstructionInventory encoding the form

to meaning mappings, indexed by the Construc-

tionIndex. The ability to handle non-canonical
forms with the same architecture that is initially

used with the canonical forms in acquisition of the

lexicon is an example of how the model simulates

and indeed relies on developmental progression.

5.1. Learning of active forms for simple events

Here, we illustrate a variety of different gram-
matical construction types, with example sentences

for each.

1. Active: The block pushed the triangle.
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Æ‘‘agent verb object’’, verb(agent, object)æ
2. Dative: The block gave the triangle to the

moon.

Æ‘‘agent verb object to recipient’’, verb(agent,
object)æ

For this first experiment, 17 Æsentence, meaningæ
pairs were generated that employed the five differ-

ent events, and narrations in the active voice, cor-

responding to the grammatical forms illustrated in

sentences 1 and 2. Example sentences 1–10 are

accompanied by their corresponding grammatical
constructions in which the nouns and verbs can

be substituted with new values to create new sen-

tences of the same type. The model was trained

for 32 epochs with the 17 Æsentence, meaningæ pairs
for a total of 544 Æsentence, meaningæ pairs. Dur-

ing the first 200 Æsentence, meaningæ pair trials, a
in Eq. (1) was 1 (i.e., no syntactic bootstrapping

before syntax is acquired), and thereafter it was
0. This was necessary in order to avoid the effect

of syntactic random knowledge on semantic learn-

ing in the initial learning stages. Performance was

measured by comparing the ‘‘meaning’’ that the

model generated from an input sentence with the

actual meaning provided in the Æsentence, mean-

ingæ pair. Generalization was tested using new, un-

trained Æsentence, meaningæ pairs. The trained
system displayed error free performance for all

17 sentences and generalization to new sentences

that had not previously been tested. These error

free results are obtained under ideal noise free con-

ditions. We have observed that the introduction of

processing noise (that more closely resembles the

child�s environment) still allows effective learning,

with graceful degradation proportional to the
noise (Dominey & Inui, 2004).

5.2. Passive forms

This experiment examined learning active and

passive grammatical forms, employing grammati-

cal forms 1–4. Word meanings were used from

Experiment 5.1, so only the structural SentenceTo-
Scene mappings were learned.

3. Passive: The triangle was pushed by the block.

Æ‘‘object was verb by agent’’, verb(agent, object)æ
4. Dative Passive: The moon was given to the tri-

angle by the block.

Æ‘‘object was verb to recipient by agent’’, verb(a-

gent, object)æ

17 new Æsentence, meaningæ pairs were gener-

ated with active and passive grammatical forms

for the narration. Within three training epochs

with the 17 sentences (51 Æsentence, meaningæ
pairs), error free performance was achieved, with

confirmation of error free generalization to new

untrained sentences of these types. The rapid

learning indicates the importance of lexicon in
establishing the form to meaning mapping for

the grammatical constructions.

5.3. Relative forms for complex events

Here, we consider complex scenes narrated by

relative clause sentences and their processing by

the model as illustrated in Fig. 4. 11 complex Æsen-
tence, meaningæ pairs were generated with narra-

tion corresponding to the grammatical forms

indicated in 5–10:

5. The block that pushed the triangle touched the

moon.

Æ‘‘agent that verb1 object verb2 object2’’, ver-

b1(agent, object1), verb2(agent, object2)æ
6. The block pushed the triangle that touched the

moon.

Æ‘‘agent2 verb2 agent1 that verb1 object1’’, ver-

b1(agent1, object1), verb2(agent2, agent1)æ
7. The block that pushed the triangle was touched

by the moon.

Æ‘‘agent1 that verb1 object1 was verb2 by

agent2’’, verb1(agent1, object1), verb2(agent2,
agent1)æ
8. The block pushed the triangle that was touched

by the moon.

Æ‘‘agent2 verb2 object1 that was verb1 by

agent1’’, verb1(agent1, object1), verb2(agent2,

object1)æ
9. The block that was pushed by the triangle

touched the moon.
Æ‘‘object1 that was verb1 by agent1 verb2 ob-

ject2’’, verb1(agent1, object1), verb2(object1,

object2)æ
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10.

The block was pushed by the triangle that

touched the moon.

Æ‘‘object2 was verb2 by agent1 that verb1 ob-

ject1’’, verb1(agent1, object1), verb2(agent1,
object2)æ

After presentation of 88 Æsentence, meaningæ
pairs, the model performed without error for these

six grammatical forms, and displayed error-free

generalization to new sentences that had not been

used during the training for all six grammatical

forms.

5.4. Combined test with and without lexicon

The objective of the final experiment was to ver-

ify that the model was capable of learning the 10

grammatical forms together in a single learning

session. A total of 27 Æsentence, meaningæ pairs,

used in Experiments 5.2 and 5.3, were employed
that exercised the ensemble of 10 grammatical

forms. After exposure to six presentations of the

27 Æsentence, meaningæ trials, the model performed

without error. Likewise, in the generalization test

the learned values were fixed, and the model dem-

onstrated error-free performance on new sen-

tences, for all 10 grammatical forms, that had

not been used during the training.
The rapid acquisition of the grammatical con-

structions in the presence of pre-learned WordTo-

Referent knowledge is quite striking, and indicates

the power of semantic bootstrapping that uses

knowledge of word meaning to understand gram-

matical structure. To further examine this effect,

we re-ran these Experiments 5.1–5.4 without using

the WordToReferent knowledge (i.e., word mean-
ings) that had been acquired in Experiment 5.1. In

this case, the results were equally striking. The ac-

tive and passive forms in Experiment 5.2 required

more than 90 training epochs to achieve error free

performance, vs. 3 when word meanings are pro-

vided, and 32 training epochs when only the active

forms were employed in Experiment 5.1. Training

with the relativised constructions in Experiment
5.3 without pre-learned WordToReferent knowl-

edge failed to converge, as did the combined test

in Experiment 5.4. This indicates the importance
of acquiring an initial lexicon in the context of sim-

ple grammatical constructions, or even single word

utterances in order to provide the basis for acqui-

sition of more complex grammatical constructions.
This is consistent with the developmental observa-

tion that infants initially acquire a restricted set of

concrete nouns from which they can bootstrap

grammar, and further vocabulary (reviewed in

Dominey (2000)).

5.5. Generalization to extended construction set

As illustrated above the model can accommo-

date 10 distinct form-meaning mappings or gram-

matical constructions, including constructions

involving ‘‘dual’’ events in the meaning representa-

tion that correspond to relative clauses. Still, this is

a relatively limited size for the construction inven-

tory. We have subsequently demonstrated that the

model can accommodate 38 different grammatical
constructions that combine verbs with two or three

arguments, active and passive forms and relativisa-

tion, along with additional sentence types includ-

ing: conjoined (John took the key and opened

the door), reflexive (The boy said that the dog

was chased by the cat), and reflexive pronoun

(The block said that it pushed the cylinder) sen-

tence types. The consideration of these sentence
types requires us to address how their meanings

are represented. Indeed, our current scene analysis

capabilities do not include the detection of reflex-

ive verbs such as ‘‘said’’ and so the meanings were

hand coded for these sentences. Conjoined sen-

tences are represented by the two corresponding

events, e.g. took(John, key), open(John, door) for

the conjoined example above. Reflexives are repre-
sented, for example, as said(boy), chased(cat, dog).

This assumes indeed, for reflexive verbs (e.g. said,

saw), that the meaning representation includes the

second event as an argument to the first. Finally,

for the reflexive pronoun types, in the meaning

representation the pronoun�s referent is explicit,

as in said(block), push(block, cylinder) for ‘‘The

block said that it pushed the cylinder.’’
For this testing, the ConstructionInventory is

implemented as a lookup table in which the Con-

structionIndex is paired with the corresponding

SentenceToScene mapping during a single learning
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trial. Based on the tenets of the construction gram-

mar framework (Goldberg, 1995), if a sentence is

encountered that has a form (i.e., ConstructionIn-

dex) that does not have a corresponding entry in
the ConstructionInventory, then a new construc-

tion is defined. Thus, one exposure to a sentence

of a new construction type allows the model to

generalize to any new sentence of that type. In this

sense, developing the capacity to handle a sim-

ple initial set of constructions leads to a highly

extensible system. Using the training procedures

as described above, with a pre-learned lexicon
(WordToReferent), the model successfully learned

all of the constructions, and demonstrated general-

ization to new sentences that it was not trained on.

That the model can accommodate these 38 dif-

ferent grammatical constructions with no modifi-

cations indicates its capability to generalize to

new constructions. That is, the method of forming

the ConstructionIndex based on the configuration
of closed class words is a reliable method for dis-

criminating between different grammatical con-

structions, whether the ConstructionIndex is then

used in an associative memory or the functionally

equivalent lookup table. This translates to a (par-

tial) validation of the hypothesis that across lan-

guages, thematic role assignment is encoded by a

limited set of parameters including word order
and grammatical marking, and that distinct gram-

matical constructions will have distinct and identi-

fying ensembles of these parameters.

5.6. Extension of the construction framework to

spatial relations and attention

The concept of ‘‘emergence’’ entails that exist-
ing processes can provide the basis for the emer-

gence of new behavioral functionality. We have

seen how the construction framework provides a

basis for encoding the structural mappings be-

tween sentences and meaning in an organized

and generalized manner. In theory, this construc-

tion framework should extend to analogous cogni-

tive domains. Here, we will investigate how this
framework can be extended to the domain of spa-

tial relations. The extension involves two compo-

nents. First, we should demonstrate that the

concept of using simple perceptual primitives
which can easily be extracted from the topographic

retinal image can be applied to spatial relations as

well as physical events for extracting meaning

from vision. Second, we should demonstrate that
this meaning can be encoded in a predicate-argu-

ment format that is compatible with the ‘‘stan-

dard’’ meaning representation in the grammatical

construction learning model.

Quinn et al. (2002) and Quinn (2003) have dem-

onstrated that by the age of 6–7 months, infants

can learn binary spatial relations such as left, right,

above, below in a generalized manner, as revealed
by their ability to discriminate in familiarization-

test experiments. That is, they can apply this rela-

tional knowledge to scenes with new objects in

these spatial relations. In theory, the predicate-

argument representation for event structure that

we have described above can provide the basis

for representing spatial relations in the form Left

(X,Y), Above(X,Y), etc., where X is the object that
holds the spatial relation with the referent Y. That

is, Left(X,Y) corresponds to ‘‘X is left of Y’’. In

order to extract spatial relations from vision, we

return to the visual processing system described

above. Based on the observations of Quinn

(2003) we can consider that by 6–7 months, the

perceptual primitives of Relation(X,Y) are avail-

able, where Relation corresponds to Left, Right,
Above, and Below. The mapping of sentence struc-

ture onto the predicate argument then can proceed

as described above for event meaning.

One interesting problem presents itself however,

related to referential ambiguity. Fig. 5 illustrates

the spatial configuration after a human user has

placed the cylinder in its current position and said

‘‘The cylinder is below the triangle’’. Given this
image, any one of the four objects could be the

subject of the relation, and any one of the remain-

ing three could be the referent, thus yielding 12

possible relations. The problem then is one of ref-

erential uncertainty, or ‘‘what is the speaker talk-

ing about?’’

Tomasello (2003) clearly emphasizes the crucial

role of shared attention between the speaker and
listener in solving this referential uncertainty.

One of the most primitive forms of attention is re-

lated to the detection of movement, and the act of

‘‘showing’’ something almost always involves



Fig. 5. Spatial attention for relation selection. The human user

shows the robot a spatial relation and describes it. How does

the robot know which of the multiple relations is the relevant

one? (a) The cylinder (lower left) has been moved into its

current position, and now holds spatial relations with the three

other objects. (b) Based on parameters of (1) minimal distance

from the target object and (2) minimal angular distance from

the four principal directions (above, below, left, right).. In this

case, the most relevant relation (indicated by the height of the

two highest peaks) is Below(Cylinder, Triangle).
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either pointing to or moving the object. In this

context, Kellman, Gleitman, and Spelke (1987)

demonstrated that as early as 16 weeks, infants

are sensitive to object motion that can provide
the basis for object identification, discriminating

retinal displacement due to their own movement

from that due to displacement of objects. Thus,

we employed a simple attention mechanism based

on motion to select the last object in motion (cyl-

inder in the example of Fig. 5) as the target object.

Still, the intended referent for the ‘‘below’’ relation

could be any one of the multiple other objets, and
so the problem of referential ambiguity must still

be resolved. We hypothesize that this redundancy

is resolved in human interaction based on two per-

ceptual parameters. First, spatial proximity, or dis-

tance from the target will be used. That is, the

observer will give more attentional preference to

relations involving the target object and other ob-

jects that are closest to it. The second parameter is
the angular ‘‘relevance’’ of the relations, quantified

in terms of the angular distance from the cardinal

positions above, below, left, and right. Fig. 5(b)

represents the application of this perceptual atten-

tion mechanism that selects the relation

Below(Cylinder, Triangle) as the most relevant, re-

vealed by the height of the peak for the triangle in

5B.
In order to validate this attentional strategy for

extracting spatial relations, we collected data from

four human subjects who were instructed to

‘‘teach’’ the robot the spatial relations by demon-

strating and narrating spatial relations with the

four colored blocks. The resulting data were 74

training examples, each consisting of the short vi-

deo sequence in which the subject ‘‘showed’’ or
demonstrated a spatial relation, and provided the

corresponding description of the demonstrated

relation. The spatial attention mechanism deter-

mined the most relevant spatial relation for the vi-

deo sequence in each case in order to extract the

‘‘meaning’’ in terms of a spatial relation. Of the

resulting 74 meanings that were automatically ex-

tracted using this mechanism, 67 (95%) corre-
sponded exactly to the meaning described by the

subject, i.e., to the subject�s intended meaning.

Fig. 6 illustrates the robustness of the two

underlying assumptions with respect to human
performance. In Fig. 6(a), we see that the human

subjects reliably demonstrated relations in a perti-

nent manner, adhering closely to the four principal

axes. Likewise, Fig. 6(b) illustrates that in the large

majority of the examples, subjects placed the tar-

get object closer to the referent object than to the

other objects in the scene. This demonstrates that

perceptual primitives of motion, distance, and an-
gle can be reliably used in order to construct a

higher level attention capability.

The 74 resulting Æsentence, relation-meaningæ
pairs were then used as input to the grammatical

construction learning model. Fig. 7 illustrates the

learning curve for this data. After 15 exposures

to data set, the model converges to a stable perfor-

mance. Of the 74 input Æsentence, meaningæ pairs,
67 are well formed, and 7 are not well formed,

i.e., the extracted relation does not correspond to



Fig. 7. Learning performance of grammatical construction

learning model with the 74 relational training examples. Each

cycle (epoch) corresponds to a full pass through the 74

Æsentence, relationæ pairs. Final errors are due to incorrect

Æsentence, meaningæ data in the input.
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the described meaning. After training, the model

correctly identifies the 7 non-well-formed Æsen-
tence, meaningæ pairs, and performs at 91% correct

(61/67) for the remaining correct pairs. Interest-
ingly, the misunderstood correct sentences directly

followed the erroneous pairs in the training data,

indicating that learning with wrong examples has

a short-termed impairment effect on subsequent

performance. More importantly, we verified that

based on training with correct examples, the model

could generalize this knowledge to a new Æsen-
tence, relation-meaningæ generalization data set.

5.7. Semantic compositionality and the emergence

of the ‘‘between’’ relation

The previous section demonstrated that percep-

tual primitives could be used to extract relevant

spatial relations from visual scenes and that the

grammatical construction learning model could
accommodate these spatial relations for learning

Æsentence, relationæ pairs. While this demonstrates

that the initial system could extend to learning new

types of meaning (i.e., spatial relations), it does not

really get at the emergence of new behavior.

Interestingly, this issue can be approached from

the perspective of Quinn�s observation of the

development of the relation ‘‘between’’. The ability
to discriminate ‘‘between’’ occurs significantly la-

ter than that for above–below and left–right (9

months vs 6 months, respectively) (Quinn, Adams,

Kennedy, Shettler, & Wasnik, 2003). This suggests
Fig. 6. (a) Location of the target with respect to referent object in the

subjects place the target object closely aligned with appropriate directi

between target and other objects. Lowest curve is for the intended

subjects almost invariably place the target closest to the intended refe
that the ternary relation ‘‘between’’ is more com-

plex than the binary relations above–below and

left–right. It also suggests that between could in

fact be constructed from these more primitive
relations.

This provides a potentially interesting scenario

for emergence. As illustrated in Fig. 4, the model

is capable of representing two predicate-argument

meanings in parallel. This was initially provided to

account for dual event meanings in relativised

sentences, but can in fact be used for arbitrary

predicate-argument structures. In a spatial array
Relation(target, referent) relations. Note that the experimental

on (left, right, above, below), and not ambiguously. (b) Distance

referent, extracted from the verbal descriptions. As predicted,

rent.
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X–Y–Z, in which Y is between X and Z, the com-

posite relation ‘‘between’’ can be decomposed into

the relations Y is left of Z and Y is right of X. As

illustrated in Fig. 8, these two relations can be
encoded in the two SceneEventArrays, and the sys-

tem should then map the sentence ‘‘Y is between X

and Z’’ onto this dual meaning structure.

In order to test this capability, we ‘‘showed’’ the

between relation to the robot in 10 trials. In each

case, the ‘‘between’’ object was placed between

the two referent objects, and the corresponding

description was provided. We modified the spatial
attention mechanism to provide the two most rel-

evant relations (defined as described above as a

function of proximity and angular pertinence),

rather than the single most relevant. In the 10

training trials, the two resulting relations were al-

ways of the form Left(Y,Z) and Right(Y,X). The

model was then trained with the 10 corresponding

ÆX is between Y and Z; (Left(Y,Z), Right(Y,X))æ
complex pairs, and two learning results were ob-

served. First, from the lexical level, the word ‘‘be-

tween’’ became ambiguously associated with the

‘‘meanings’’ left and right. Second, from the phra-

sal construction level, the construction ‘‘X is be-

tween Y and Z’’ became correctly associated with

the mapping to Left(Y,Z) and Right(Y,X), as illus-

trated in Fig. 8(a).
While these initial results are encouraging, they

also raise important issues of limitations. First, the

mapping of lexical item ‘‘between’’ onto meanings

‘‘left’’ and ‘‘right’’ is not ideal. Second, if the rela-
Fig. 8. (a) Representation of ‘‘BETWEEN’’ in the existing architectur

of arbitrary composite relations.
tions are extracted in the order Right(Y,X) and

Left(Y,Z) (rather than the reverse) then the system

will not recognize this as between, although it is

spatially equivalent. The solution to both of these
problems is the introduction of an intermediate le-

vel of representation in which primitives can be

combined to form composite relations that are di-

rectly mapped into their constructions. This type

of architectural change would provide the basis

for an open-ended flexibility for the learning of di-

verse composite relational structures including

spatial structures (e.g., arch, stack, ‘‘T’’, etc.) as
well as temporal and logical structures (if–then,

before, after, because, etc.). These learning capa-

bilities will be explored in our future research.
6. Discussion

Already at birth, infants are sensitive to the pro-
sodic structure of language that allows them to

perform the first crucial discrimination between

content and function words in acquiring the struc-

ture of their language (Shi et al., 1999). Indeed, we

have demonstrated that a temporal recurrent net-

work of leaky integrator neurons is sensitive to

the temporal structure of language (Dominey &

Ramus, 2000) and can perform lexical categoriza-
tion of open and closed class words (Blanc et al.,

2003). At the same time during the first year of life,

the infant begins to construct meaning from the

perceptual world (Mandler, 1999) exploiting per-
e. (b) More general representation for allowing the construction
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ceptual primitives including force dynamic proper-

ties such as contact, support, and attachment (Tal-

my, 1988) in order to construct meaning in terms

of physical events (Kotovsky & Baillargeon,
1998; Mandler, 1999).

In this context, the current work illustrates how

computer vision systems are now able to exploit

such physical regularities in order to form predi-

cate-argument descriptions of visual scenes (see

also Siskind, 2001; Steels & Baillie, 2002). While

this level of analysis concentrates on physical

events, it should extend to more open ended
semantics with respect to time, causation and

agency, to the extent that these aspects are com-

posed from or encoded in the physical event

structure.

Combined with learning mechanisms that ex-

ploit cross-situational statistics of word meanings

(Siskind, 1996) and the mapping between gram-

matical structure and event structure, as illustrated
here, learning systems can move from word to sen-

tence in language acquisition. There, the synergy

between word learning that allows syntactic struc-

ture to be revealed, and the syntactic structure

which in turn facilitates new word acquisition al-

lows for a rapid learning capability. The current

research links these elements together in a

grounded robotic platform for the study of lan-
guage acquisition and comprehension. Interest-

ingly, these results are obtained with largely

domain general mechanisms for learning associa-

tive mappings and structural transformations.

Specifically, what is innate is: (1) an associative

memory (WordToReferent) that associates words

to referents, (2) a structure mapping mechanism

(SentenceToScene) that performs a structural
transformation from sentence to meaning, (3) an

associative memory (ConstructionInventory) that

allows the storage and retrieval of these transfor-

mations, (4) a form of recurrent network for pro-

cessing closed class elements (grammatical

function words) that acts as an index (Construc-

tionIndex) into this memory, and finally, (5) a dis-

crimination mechanism that separates elements
into the open or closed class processing stream.

All of these functions have been implemented as

biologically plausible neural networks (Dominey

et al., 2003), and none of these functions is inher-
ently language-related. What makes them become

language related is their organization in the speci-

fied configuration, including the perceptual

grounding. This is in striking contrast to proposi-
tions of a Universal Grammar that is by definition

modular and fully language specific.

With respect to this language processing, the

system demonstrates an interesting, though limited

generalization capability. Once a given grammati-

cal construction has been learned (e.g., one of

the 10 numbered constructions in Section 5), that

construction can then be used to generalize in a
systematic manner to all new sentences built from

that construction. The ‘‘slots’’ in the construction

are simply filled in with new nouns and verbs. This

explains the error free generalization to new sen-

tences. The limitation is that the system must first

be exposed to a well-formed construction (Æsen-
tence, meaningæ pair) in order to learn the defining

structural mapping.
Similarly, the extraction of events from the dy-

namic scenes was ‘‘hard coded’’ in a parser that

looked for specific categories of contact sequences

that correspond to push, touch, take, and give

(Fig. 2). A more realistic approach would be to ex-

tract only the true primitive – contact – and then

learn to associate structured sequences of contacts

with the corresponding event types. This would
allow much more flexibility in the extraction of

meaning. Interestingly, this issue is partially ad-

dressed in Section 5.7 (see also Fig. 8(b)), in which

a structured ensemble of perceptual–semantic

primitives becomes associated with a composite

semantic structure. Again, this direction will be

pursued in our future research.

A related limitation concerns the syntactic com-
plexity and compositionality. Miikkulainen (1996)

demonstrated an elegant and efficient mechanism

for handling relativised sentences in a hybrid neu-

ral network. In order to do so, the system required

two additional capabilities that are not in the cur-

rent model, including a hard coded parser, and a

stack. The point of interest in the current approach

is that ‘‘hierarchical’’ sentences are processed with-
out a stack, relying on the semantic representation

of the meaning as the only data structure required.

Likewise, Miikkulainen�s hard coded parser is re-

placed by a system that learns sentence form to
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meaning mappings. The advantage is in the ex-

treme simplicity of the system, and the price is

the limit in compositionality. That is, rather than

using a fully generalized recursive stack-based
parsing strategy, our system uses a form of ‘‘shal-

low’’ parsing that directly maps sentences with

recursive structure onto their corresponding mean-

ing representations without explicitly performing

recursion. Interestingly, recent human experimen-

tal studies suggest that at least in certain condi-

tions, humans tend to rely on these simpler

mechanisms (Sanford & Sturt, 2002). Our future
work in this context will examine how embedded

noun phrases in relativised sentences can be ex-

tracted via statistical learning methods, with the

goal of producing a learned compositionality

capability when existing constructions are not

sufficient.

We note that the experiments presented here

employed a form of batch learning in which multi-
ple exposures to Æsentence, meaningæ pairs were

presented to the system. In a sense, this is unsatis-

factory in that it does not reflect on-line human–

robot interaction. Indeed, the Æsentence, meaningæ
pairs could have been generated and presented in

real-time in a functionally equivalent manner,

though this would have produced excessively long

interaction sessions with respect to the humans.
However, once the lexical and construction knowl-

edge has been acquired, we have now demon-

strated how it can be used for quite satisfactory

real-time human–robot interaction (Dominey,

Boucher, & Inui, 2004).

In conclusion, the current study demonstrates:

(1) that the perceptual primitive of contact (avail-

able to infants at 5 months) can be used to perform
event description in a manner that is similar to but

significantly simpler than Siskind (2001), and can

be extended to accommodate spatial relation

encoding, (2) that a novel implementation of prin-

ciples from construction grammar can be used to

map sentence form to these meanings together in

an integrated system, (3) that relative clauses can

be processed in a manner that is similar to, but re-
quires less specific machinery (e.g. no stack) than

that in Miikkulainen (1996), and finally (4) that

the resulting system displays robust acquisition

behavior that reproduces certain observations
from developmental studies with very modest ‘‘in-

nate’’ language specificity.
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