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Abstract. In this paper we introduce a model for the simulation of lan-
guage evolution, which is incorporated in the New Ties project. The New
Ties project aims at evolving a cultural society by integrating evolution-
ary, individual and social learning in large scale multi-agent simulations.
The model presented here introduces a novel implementation of language
games, which allows agents to communicate in a more natural way than
with most other existing implementations of language games. In par-
ticular, we propose a hybrid mechanism that combines cross-situational
learning techniques with more informed feedback mechanisms. In our
study we focus our attention on dealing with referential indeterminacy
after joint attention has been established and on whether the current
model can deal with larger populations than previous studies involving
cross-situational learning. Simulations show that the proposed model can
indeed lead to coherent languages in a quasi realistic world environment
with larger populations.

1 Introduction

For language to evolve, the language has to be transmitted reliably among the
population, which is only possible if the individual agents can learn the language.
In human societies, children have to learn for instance the sounds, words and
grammar of the target language. In the current paper, we focus solely on the
evolution and acquisition of word-meaning mappings. The way children acquire
the meanings of words still remains an open question. Associating the correct
meaning to a word is extremely complicated, as a word may potentially have an
infinite number of meanings [1].

Different mechanisms that children may adopt when acquiring the mean-
ings of words have been suggested, see, e.g., [2] for an overview. For example,
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Tomasello has proposed that joint attention is a primary mechanism [3]. Accord-
ing to this mechanism, children are able to share their attention with adults on
objects, e.g., through gaze following or pointing. Moreover, children can learn
that adults have control over their perceptions and that they can choose to at-
tend to particular objects or aspects of a given situation. This allows children to
focus their attention on the same situation experienced by adults, thus reducing
the number of possible meanings of a word.

This mechanism, however, is not sufficient, because it is still uncertain whether
a word relates to the whole situation, to parts of the situation or even to a
completely different situation. This is known as the referential indeterminacy
problem illustrated by Quine [1] with the following example: Imagine an anthro-
pologist studying a native speaker of an unfamiliar language. As a rabbit crosses
their visual field, the native speaker says “gavagai” and the anthropologist infers
that “gavagai” means rabbit. However, the anthropologist cannot be completely
sure of his inference. In fact, the word “gavagai” can have an infinite number
of possible meanings, including undetached rabbit parts, large ears, it’s running,
good food or even it’s going to rain.

To overcome this problem, additional mechanisms have been proposed to
reduce the referential indeterminacy. Among these is a representational bias
known as the whole object bias [4], according to which children tend to map
novel words to whole objects, rather then to parts of objects. Another mechanism
that children appear to use is the principle of contrast [5], which is based on the
assumption that if a meaning is already associated with a word, it is unlikely
that it can be associated with another word.

There is also evidence that children can acquire the meanings of words more
directly by reducing the number of potential meanings of words across different
situations [6,7]. This cross-situational learning can work statistically by main-
taining the co-occurrence frequencies of words with their possible meanings [8,
9] or simply by maintaining the intersection of all situations in which a word
is used [10,11]. Crucially, cross-situational learning depends on observing a suf-
ficient degree of one-to-one mappings between words and meanings. Although
theoretically, the level of uncertainty (i.e. the number of confounding — or back-
ground — meanings) in situations may be quite large, this may have a large
impact on the time required to learn a language [11].

Cross-situational learning yields poor results when the input language is less
consistent regarding the one-to-one mapping. This has been found in simula-
tion studies of language evolution with increased population sizes [9]. In such
simulations, different agents create many different words expressing the same
meaning when they have not yet communicated with each other. So, the more
agents there are, the more words can enter a language community during the
early stages of evolution. In models that use explicit meaning transfer, there are
positive feedback loops that reduce the number of words sufficiently over time,
allowing the language to converge properly [12]. However, when there is no pos-
itive feedback loop, as is the case with cross-situational learning, there appears
to be no efficient mechanism for reducing the number of words in the language.



A possible solution to this problem could be to include an additional mechanism
that imposes a bias toward one-to-one mappings between words and meanings
[13].

In this paper we propose a hybrid model for the evolution of language that
combines joint attention, cross-situational learning and the principle of con-
trast as mechanisms for reducing the referential indeterminacy. In addition, a
feedback mechanism and related adaptations are used as a synonymy damping
mechanism. This model is used to investigate the effect that context size has on
the development of language, but more importantly it is used to investigate how
this model can deal with large populations. The model is embedded in the New
Ties project?®, which aims at developing a benchmark platform for studying the
evolution and development of cultural societies in very large multi-agent systems
[14].

The paper is organised as follows: in the next section, we provide a brief
description of the proposed model (for details, consult [14,15]). In Section 3 we
present some experiments, whose aims are to show that the proposed hybrid
model can lead to the evolution of a coherent lexicon in large population sizes
and with varying context sizes. The results are discussed in Section 4. Finally,
Section 5 concludes.

2 The Model

2.1 New Ties agent architecture

The New Ties project aims at developing a platform for studying the evolution
and development of cultural societies in a very large multi-agent system. In this
system, agents are inserted in an environment consisting of a grid world in which
each point is a location. The world, which is inspired by Epstein & Axtell’s [16]
sugar scape world, is set up with tokens, edible plants, building bricks, agents,
different terrains of varying roughness, etc. The aim for the agents is to evolve
and learn behavioural skills in order for the society to survive over extended
periods of time. As part of these skills, language and culture are to develop.

At each time step each agent receives as input a set of perceptual features
and messages, which constitute the context of an agent, and outputs an action
(see Fig. 1 for the basic agent architecture). These actions are collected by the
environment manager, and when all agents have been processed, the collected
actions are executed and the environment is updated.

The perceptual features an agent receives represent both objects and actions
that occur in its visual field. These features are processed with a categorisation
mechanism based on the discrimination game [17] (a detailed description of this
mechanism is given in [14,18]). Basically, each object is mapped onto a set of
categories, where each category corresponds to a feature. So, if an object is
described by n features, it will be categorised into n categories. Messages are

3 New Ties stands for New Emerging World models Through Individual, Evolutionary
and Social learning. See http://www.new-ties.org
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Fig. 1. The basic architecture of a New Ties agent. Perceptual features of objects and
actions are processed by the categorisation module, while messages are interpreted
with the language interpretation module. The control module outputs actions and the
language production module produces outgoing messages. Various sources of knowledge
are stored in the short- and long-term memories.

processed with a language interpretation module, described in Section 2.2, and
also yield a set of categories. All these categories are stored in the short-term
memory (STM), which can be accessed by the control module, as well as all
other modules.

Once the perceptual features and messages have been processed, the con-
troller is used to determine the action to perform. This controller is represented
by a decision Q-tree (DQT), which is a decision tree that can change during an
agent’s lifetime using reinforcement learning [14]. The possible actions include,
among others, move, turn left, turn right, mate, talk, shout, ... In case the out-
put of the DQT is either the talk or shout action, the agent must produce a
message, which is done by the language production module, described below.
Each action performed costs a certain amount of energy, and when an agent’s
energy level decreases to zero or below, it dies. Energy levels can be increased
by eating plants. Agents also die when they reach a predefined age.

Agents start their life with a small initial DQT, which, as mentioned above,
can be changed by reinforcement learning. This initial DQT is the result of
evolution. When two agents reproduce, they produce an offspring who inherits
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Fig. 2. A simplified illustration of the lexicon. The lexicon consists of two matrices
that associate meanings m; with words w;. The left matrix stores association scores
o;; and the right matrix stores co-occurrence probabilities P;;.

its genome from its parents, subject to cross-over and mutations. This genome
carries the code for producing the initial DQT and other biases, which regulate,
for instance, the ‘socialness’ of the agent. This socialness gene is a bias for
an agent to be social; the more social an agent is, the more frequently it will
communicate and the more likely it is to provide more information regarding the
meaning of a message. Unlike standard evolutionary algorithms, reproduction is
not processed cyclical, but acyclical, i.e., two agents can reproduce when they
decide to, but only if they are of different sex and in nearby locations.

2.2 Communication and learning word-meaning mappings

The language evolves in the society by agents’ interacting through language
games. While doing so, each individual constructs its own lexicon, which is rep-
resented in the long-term memory (LTM) by two association matrices (Fig. 2).
Each matrix associates words w; with meanings m;. The first matrix stores as-
sociation scores o;;, while the second stores co-occurrence probabilities F;;. The
former is updated based on feedback the agents may receive regarding the effec-
tiveness (or success) of their interaction. However, as this feedback is not always
available, the agents also maintain the co-occurrence frequencies of words and
the potential meanings as they co-occur in a given situation (or context). The
two matrices are coupled via the association strength, strL;;, which is calculated
as:

St’f’Lz’j = 045 + (]. - aij)Pij- (1)

This coupling allows the agents to infer the right word-meaning mappings
across different situations using the co-occurrence probabilities when there has
been little feedback. However, when there has been sufficient feedback on the
language use of the agents, the association score ¢;; may become high enough
to overrule the co-occurrence probabilities.

Both matrices are updated after each language game. If a language game is
considered successful based on the feedback mechanism, the association score
o;; of the used association is increased by

o =n-05+1-n, (2)



where 7 = 0.9 is a constant learning parameter. In addition, the scores of com-
peting associations are laterally inhibited by

Oij =1 0. (3)

An association ay,, is competing if either the word is the same (n = i) or the
meaning (m = j), but not both. If the game has failed according to the feedback
mechanism, o;; is also decreased this way. The association score is unchanged if
no feedback is processed.

In each game, irrespective of its outcome, the co-occurrence frequencies f;;
of words with potential meanings in that situation are increased, thus affecting
the co-occurrence probabilities:

fij
P; = . 4
1] ZZ fzg ( )

The reason for adopting this dual representation is that earlier studies have
indicated that using the mechanism for updating the association scores (Egs. 2
and 3) work much better than for updating the co-occurrence probabilities (Eq.
4) if there is feedback, while the opposite is true for cross-situational learning
[19].

Unlike standard implementations, such as [17,18], a language game is initi-
ated by an agent when its controller decides to talk or shout*, or otherwise with
a certain probability proportional to socialness gene. This agent (the speaker)
then selects an arbitrary object from its context as a target object® and decides on
how many words it will use to describe the object. This number, expressed in the
task complexity T, is determined by generating a random number between 1 and
5 following a Gaussian distribution with the average age of the target audience
in tens of ‘New Ties years’ (NTYrs)® as its mean and a standard deviation of
0.75. This way, the agent will tend to produce shorter messages when addressing
a young audience and longer messages when addressing an older audience.

Depending on this task complexity, the agent selects arbitrarily T, different
categories that represent the object. Recall that each category relates to one
perceptual feature of an object, such as the object’s colour, shape, distance or
weight. For each category, the speaker then searches its lexicon for associations
that have the highest strength strL;;. If no such association is found, a new
word is invented as an arbitrary string and added to the lexicon. Each word
thus found is then appended to the message which is distributed to the agent(s)
in the speaker’s vicinity.

4 The ‘talk’ action is directed to only one visible agent, while ‘shout’ is directed to all
agents in the audible vicinity of the initiator.

% In later studies we intend to make this selection depending on the decision making
mechanism determined by the DQT, so the communication will be more functional
with respect to the agent’s behaviour.

5 In the current paper, a year in ‘New Ties time’ equals to an unrealistic 365 time
steps.



On certain occasions, for instance, when the hearer had signalled that it
did not understand the speaker, the speaker may accompany the message with
a pointing gesture to draw the attention to the target (such a gesture is only
produced with a probability proportional to the socialness gene mentioned ear-
lier). This way, the agents establish joint attention, but still the hearer does
not necessarily know exactly what feature of the object is signalled (cf. Quine’s
problem).

When an agent receives a message, its language interpretation module tries to
interpret each word in the message by searching its lexicon for associations with
the highest strength strL;;. If the association score o;; of this element exceeds
a certain threshold (i.e., g;; > ©, where @ = 0.8), then the hearer assumes the
interpretation to be correct. If not, the hearer may — with a certain probability
proportional to the socialness gene — consider the interpretation to be incorrect
and signal a ‘did not understand’ message, thus soliciting a pointing gesture;
otherwise, the hearer will assume the interpretation was correct.

In case the interpretation was correct, the hearer may — again with a proba-
bility proportional to its socialness gene — signal the speaker that it understood
the message, thus providing feedback so that both agents increase the association
score of used lexical entries and inhibit competing elements as explained above.
In all cases, the co-occurrence probability P;; is increased for all categories in the
context that have an association with the expressed words. In case the speaker
had pointed to the object, this context is reduced to the perceptual features of
this object. Otherwise, the context contains all categories of all visible objects,
which may differ from those the speaker sees — including the target object. All
interpretations are added to the STM, which the controller uses to decide on the
agent’s next action.

When no interpretation could be found in the lexicon, the agent adds the
novel word to its lexicon in association with all categories valid in the cur-
rent context (i.e., either all objects and events perceived or the object that was
pointed to). The frequency counters of these associations are set to 1 and the
association scores ov; are initialised with:

onj=(1- miaX(Uij))Uo, (5)

where max;(0;;) is the maximum association score that meaning m; has with
other words w;, o9 = 0.1 is a constant, and i # N. This way, if the agent has
already associated the meaning (or category) m; with another word w;, the agent
is biased to prefer another meaning with this novel word. Hence, this implements
a notion of the principle of contrast [5]. Note again that the hearer may not have
seen the target object and thus may fail to acquire the proper meaning.

3 Experiments

In the experiments we test the effectiveness of the model described in the pre-
vious section. In particular, we are interested to see whether reasonable levels



of communicative accuracy can be reached with relatively large populations. In
addition, we investigate the influence of considering a different number of percep-
tual features that agents have at their disposal for inferring word-meaning map-
pings. In order to focus on these questions, the evolutionary and reinforcement
learning mechanisms were switched off. So, although agents could reproduce,
each agent has exactly the same hand-crafted controller that did not change
during their lifetimes. As a result, in the simulations reported here, agents only
move, eat, reproduce (with no evolutionary computation involved) and commu-
nicate with each other. When an agent’s energy level decreased below zero, they
died. The same happens when agents reach a certain age (set at 80 ‘New Ties
years’, i.e. 29,200 time steps).

We performed a set of experiments in which we varied the number of features
considered for each object, from a minimum of 2 to a maximum of 10 features.
Varying the number of features has an influence on the number of possible mean-
ings in the language. The following table indicates how many meanings there are
for the different number of features available:

No.offeatures | 2 | 3 | 4 | 5 | 6 | 7| 8|9 |10
No. of meanings| 10 | 16 | 19 | 23 | 26 | 35 | 40 | 45 | 48

Remember that a category relates to one feature, so the more features are
used to describe an object, the more possible meanings can be associated to a
word. Effectively, increasing the number of features increases the context sizes. A
recent mathematical model describing cross-situational learning [11] shows that
learning word-meaning mappings is harder when the context size is larger. So,
we expect that considering a higher number of features will lead to the evolution
of a lower level in communicative accuracy, or to a slower learning rate.

In addition to reducing the number of features, referential indeterminacy
can be reduced by means of pointing. As mentioned, the probability with which
agents point is proportional to the socialness gene. As the evolutionary mecha-
nisms are switched off in these experiments, the socialness gene is now initialised
individually with a random value.

The initial population size is set to 100 agents. When the agents reach the age
of 10 NTYrs (3,650 time steps), they start to reproduce. So, from then onward
the population size can grow, though this may not happen if the agents tend to
die faster than they reproduce.

Recall that all agents are evaluated once during each time step. So, during one
time step, multiple language games can be played by different agents. Moreover,
different agents can speak to one another simultaneously, as they do not wait
for their turn. Playing one language game takes 2-3 time steps: (1) sending a
message, (2) receiving a message, occasionally, (3) signalling feedback and (4)
receiving feedback.

The simulations are evaluated based on communicative accuracy. Commu-
nicative accuracy is calculated each 30 time steps by dividing the total number
of successful language games by the total number of language games played
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Fig. 3. (Top) The evolution of communicative accuracy (y-axis) over time (x-axis) for

the conditions with 2, 6 and 10 features. Notice the odd scale on the y-axis. (Bottom)
Communicative accuracy measured at the end of each simulation, averaged over the
5 trials with their standard deviation. The results relate to the number of perceptual
features varied from 2 to 10 with incremental steps (x-axis).

during this period. A language game is considered successful if the hearer inter-
preted the message from the speaker such that the interpreted category exactly
matched the intended category (so not the object). Simulations were repeated
5 times with different random seeds for each condition and the results reported
are averages over these 5 trials.

Figure 3 (top) shows communicative accuracy for the cases with 2, 6 and 10
features. In all cases, accuracy increased to a level between 0.50 (10 features) and
0.68 (2 features) during the first 30 time steps. After this, accuracy first increased
quite rapidly and then stagnated more or less around 0.57 (10 features), 0.60 (6
features) and 0.73 (2 features). Although the language is not learnt perfectly in
any condition, accuracy is reasonable and much better than chance. For instance,
in the case where there are 6 features, chance is between 1/26 (if all possible



meanings are in the context — cf. above mentioned table) and 1/6 (if the target
object was pointed to).

For comparison, we tested the model in a simulation where pointing was
used to explicitly transfer the intended meaning (i.e. categories) — at least in
those interactions where pointing was used. Under this condition, communicative
accuracy yielded on average 0.9740.02 at the end of the simulations.

It is clear that the levels of communicative accuracy decreased when the
number of features increased up to 6 or 7 features, after which there is no more
significant change (Fig. 3 bottom). Although differences between subsequent
numbers of features are not significant, the difference between using 2 features
and 7 features is. This is consistent with our prediction mentioned earlier and
also with the findings from the mathematical model [11]. However, in the math-
ematical model all word-meaning mappings could be learnt perfectly, but at the
expense of longer learning periods for larger context sizes (i.e. more features).

It is not yet fully understood why there is no more significant change for
variation from 6 to 10 features. One explanation could be that when there are
more than 6 perceptual features, it no longer holds that all objects are described
by every feature, because some features (e.g., shape and colour) are shared by
all objects, while others (e.g., sex) only by some objects.

120

115 q

110

105

100

Avg. population size

95 | q

920 b

85 | 1

80 . . . . . . .
0 5000 10000 15000 20000 25000 30000 35000

Time Steps
Fig. 4. The evolution of the average population size for the case with 6 features. All

other simulations revealed a similar evolution.

Figure 4 shows the evolution of the average population size in the simulations
with 6 features. We see that the first 3,650 time steps (10 NTYrs), the population
size remains constant at 100 agents. This is because during this period, agents
only start reproducing when they reached an age of 10 NTYrs. We then see a
rapid increase of the population size to 110 agent, after which the population
size somewhat fluctuates until it eventually slowly decreases, though the total
number remains larger than 100. The decrease is due to the fact that giving birth
costs a large amount of energy, which is passed on to the offspring. So agents



who are less fit will have a large chance of dying after giving birth. The issue
here is that these changes in the population do not seem to alter the evolution of
accuracy a lot, though around the points where there is a large inflow or outflow
of agents, this does seem to have some effect. This is consistent with findings
from earlier simulations on language evolution, e.g., [20].

It is important to stress that these experiments are different from those fo-
cusing only on cross-situational learning as in [8,9,11]. In those experiments,
cross-situational learning was the only learning mechanism. In these experiments,
feedback regarding a game’s success is provided in approximately 12% of the lan-
guage games, while messages were accompanied with a pointing gesture in about
42% of all games. Note that one game can have both a pointing gesture and feed-
back, so none were used in an estimated 50%. Per time step, approximately 27%
of all agents initiated a language game, so assuming that the population size was
on average 105 over the entire period of the experiment, a total of approximately
1 million language games were played at the end of the experiments.

4 Discussion

In this paper we investigate some aspects of learning word-meaning mappings
regarding Quine’s problem of referential indeterminacy. In particular, we are
interested in how agents can evolve a shared lexicon regarding various charac-
teristics of objects without using explicit meaning transfer. Although agents do
not always point to target objects, but when it happens, hearers still cannot
determine exactly what characteristics (or features) of objects are intended by
the speaker. Our proposed solution is to use cross-situational learning for such
instances. However, as this learning mechanism has proved to be relatively slow
and difficult to scale up in terms of population size [9], we combined this method
with learning techniques based on positive feedback and the principle of contrast.

The results achieved with this model are reasonable. The population can de-
velop a communication system with an accuracy of about 50-70% quite rapidly,
while further improvement on accuracy is somewhat slower yielding levels of
accuracy between 60-75% at the end of the simulations. The initial speed of
learning seems very fast, but one has to realise that the agents do not commu-
nicate with all other agents. Instead, the only communicate with agents within
their vicinity. In the current setting, there were groups of around 3-4 agents quite
near to each other. So, although the population is larger than in any previous
study using cross-situational learning, it will take a long time before all agents
would have communicated with many different agents. It is unclear in the cur-
rent simulations what the reach of an agent was (i.e. the number of different
agents it communicated with).

The stagnation of communicative accuracy is thought to be caused by — at
least — three aspects: 1) the influx of new agents, 2) the increase of task complex-
ity and 3) mismatches in perceived contexts by different agents participating in
a language game. The first two aspects start to have an influence at time step
3,650 — the time that the first agents reach an age of 10 NTYrs. This is around



the same period where the stagnation starts to occur. The third aspect is caused
by the ‘situatedness’ of the agents in their environment, because two agents can-
not be at the same location simultaneously, and also because their orientation
can be quite different (see [21] for a discussion). Furthermore, if an object is
obscured by another one for a particular agent, this need not be the case for
another agent. If the other agent already learnt the meaning of this word reli-
ably, there is no problem, but otherwise the hearer will assume the word means
something that he sees. This can be problematic for cross-situational learning,
which heavily depends on consistent and reliable input [9]. Despite all this, the
agents perform well beyond chance. In the future, we will assess in more detail
what the exact effects of these aspects are.

The latter aspect can partly be solved using pointing, though — as mentioned
— this only occurred on average in about 42% of all interactions. Pointing gestures
can be initiated spontaneously by the speaker with a certain probability, but can
also be solicited by the hearers when they send a negative feedback signal. In such
cases, the context is reduced to the number of perceptual features of one object,
which equals 2 in the simplest case investigated and 10 in the most difficult case.
Since the language games will fail frequently early on, many negative feedback
signals are sent, in which case the speaker is likely to repeat the message, but
now accompanied by a pointing gesture. This way, agents can engage in a sort
of ‘dialogue’, where the speaker repeats himself to make himself understood if
requested by the hearer.

It must be stressed that the success is probably only partly due to the cross-
situational learning. It is, to some extent, also due to the positive feedback that
is provided when the hearer considers the language game to be successful. Re-
call that feedback is provided when the association score o;; exceeds a certain
threshold @ or — if this is not the case — with a probability that is inversely pro-
portional to the value of socialness gene (which was assigned randomly in the
current simulations). During the early stages of word learning, we can only ex-
pect the latter case to hold, so when through cross-situational learning a hearer
has selected one possible interpretation, the association score o;; is reinforced
occasionally. This association needs to be reinforced 16 times before the associa-
tion score exceeds the threshold, which is set to ©® = 0.8. Until then, the agents
rely on cross-situational learning, accompanied by occasional ‘blind’ adaptations
of the association scores o;;. This is, then, similar to the synonymy damping
mechanism proposed in [13], which has a positive effect on disambiguating the
language during cross-situational learning.

In [22], we investigated the role of feedback in a related model simulating
the Talking Heads experiment. There it was found that only when feedback
was used frequently enough, the results were better than when feedback was not
used at all (i.e. when the learners could only rely on a variant of cross-situational
learning). However, in those simulations feedback forced the speaker to point at
the object and, since in those simulations objects were represented by only one
category, pointing identified the target meaning more precisely. We are currently
investigating more thoroughly what the role of feedback is in this model.



It is also important to realise that the language is relatively small. In case
there are 2 features, an agent has only 10 categories, but in case of 10 features an
agent has a total of 48 categories. Although learning individual words can take
longer when there are less meanings (because it can take longer before distracting
meanings no longer compete), this does not hold for the entire language, provided
the context size is substantially smaller than the total number of meanings [11].
So, the smaller the language, the easier it should be learnt.

It is yet unclear what the influence of the principle of contrast is in this model,
because we did not compare these results with a simulation where the principle
of contrast was switched off. This will be carried out in future experiments. It
is interesting to note, however, that we implemented the principle of contrast
as a loose bias, rather than as a strong principle that would rule out competing
word-meaning mappings entirely.

One may wonder why this particular study is carried out in a complex envi-
ronment as the current one, while a similar study could have been carried out in
a much more simpler simulation setting. We agree this is true, but it is impor-
tant to realise that this is the first in a series of experiments being set up in the
New Ties project. There are many more planned; some of which may indeed be
done using a simpler set up (e.g., for investigating the effect of the principle of
contrast), but most will relate to the evolution of more complex behaviours that
would allow the population to remain viable over extended periods of time. Such
experiments will involve various combinations of learning mechanisms to allow
the population to evolve and learn how to behave properly in their complex en-
vironment. These learning mechanisms include evolutionary learning, individual
(reinforcement) learning and social learning. Especially the latter is of interest,
because we intend to set up experiments in which the language that evolves will
be used to share information concerning the way the controller is structured,
thus allowing agents to copy such structures in order to acquire more similar
controllers.

5 Conclusions

In this paper we have presented a new hybrid model for the simulation of lan-
guage evolution, and in particular the evolution of shared lexicons. This model
is incorporated in the New Ties project, whose aim is to set up large scale sim-
ulations to study the evolution of cultural societies by combining evolutionary,
individual and social learning techniques.

Using the model we show how a combination of different learning mecha-
nisms, which include pointing as a means of establishing joint attention, the
principle of contrast, a positive feedback mechanism and cross-situation learn-
ing allow agents to infer the meaning of words. In particular, we show that this
model can — in contrast to previous studies [9] — deal well with relatively large
populations. One reason for this ability is that the feedback mechanism acts as

a synonymy damping mechanism, similar to a recent study by De Beule et al.
[13].



The study further shows that the model is quite robust (but definitely not
perfect) when agents need to infer the meaning when there is more referential
indeterminacy, though learning is somewhat hampered in terms of communica-
tive accuracy. Indirectly, this confirms another recent study by Smith et al. [11],
who mathematically proved that cross-situational learning can work well with
different levels of referential indeterminacy, though the learning speed is affected
such that higher levels of indeterminacy require longer learning periods. The dif-
ference with the current study is that in the mathematical study language can
be learnt with 100% accuracy, but under the assumption that an ideal language
exists which needs to be learnt by one individual who receives consistent input.
In the current simulation, such assumptions do not hold.

As one of the objectives of the New Ties project is to set up a benchmark
platform for studying the evolution of cultural societies, which includes the evo-
lution of language, we believe this study is a first promising step showing what
sort of studies can be carried out with this platform.
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