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Abstract. Typically, multi-agent models for studying the evolution of
perceptually grounded lexicons assume that agents perceive the same
set of objects, and that there is either joint attention, corrective feed-
back or cross-situational learning. In this paper we address these two as-
sumptions, by introducing a new multi-agent model for the evolution of
perceptually grounded lexicons, where agents do not perceive the same
set of objects, and where agents receive a cue to focus their attention
to objects, thus simulating a Theory of Mind. In addition, we vary the
amount of corrective feedback provided to guide learning word-meanings.
Results of simulations show that the proposed model is quite robust to
the strength of these cues and the amount of feedback received.

1 Introduction

In the past decade, a number of studies have investigated the emerge of perceptu-
ally grounded lexicons in multi-robot systems [14, 13]. The aim of such studies is
to investigate under what conditions a population of (possibly simulated) robots
can evolve a shared vocabulary (or lexicon) that allow them to communicate
about objects that are in their environment. Typically, these studies assume
that the lexicons evolve culturally through inter-agent communication, individ-
ual adaptation and self-organisation [12]. These perceptually grounded studies
extend other ungrounded models in which the meanings of the lexicons are
predefined as in, e.g., [6, 8], by allowing the agents to develop their meanings
from scratch based on their sensing of the environment. Typically, the lexicons
and meanings are constructed through language games [12] in which two agents
communicate about an object they detect in a certain context. This way, the
grounded models add more realism to the ungrounded models, as they do not
assume that agents have an innate set of meanings.

The grounded models, however, still build upon many assumptions. One such
assumption is that agents perceive the same set of objects. Especially in sim-
ulations – both grounded [10, 17] and ungrounded [8, 5, 18] – this is taken for
granted. In studies using real robots, this is assumed, though not necessarily



achieved [16]. When two agents communicate, one cannot simply assume that
the context of one agent is similar to the other agent’s context. Agents located
in different places see different things – even if they are located close to each
other and looking in a similar direction.

The problem agents face when learning the meaning of words is that when
hearing a novel word, logically, this word can have an infinite number of meanings
or references – even if the target is pointed at [9]. So, in order to learn the meaning
of a word, an agent has to reduce the number of possible meanings. Humans are
exceptionally good at this, and it is generally assumed that humans have some
innate or acquired means to infer what a speaker’s intention is, see, e.g., [2] for an
overview. Among these means are joint attention [15], Theory of Mind (ToM) [2],
and receiving corrective feedback on the meaning of words [3]. In joint attention,
the participants of a communication act focus their attention to an object or
event while actively checking that they share their attention. In a way, this
requires that the participants understand each other as having similar intentions
[15]. Loosely speaking, this is a part of the Theory of Mind. However, ToM is
more: it allows someone to form theories regarding the intentions of speakers by
simulating that he or she is the speaker (him)herself. For instance, a child may
know that its caregiver is hungry and can therefore infer the caregiver is more
interested in food than in a doll. The problem with joint attention and ToM is
that it is not always precise. Suppose a rabbit passes by and someone shouts
‘gavagai’, even if you establish joint attention, you cannot be sure ‘gavagai’
refers to the rabbit; it may also refer to undetached rabbit parts or that it is
going to rain [9]. To further reduce the number of possible meanings for a word,
caregivers sometimes provide corrective feedback on the meaning of childrens’
utterances. Although the availability of corrective feedback is highly disputed [2],
recent analysis has shown that it is actually abundant, especially with respect
to the meaning of words [3]. However, corrective feedback is not always present.
In those cases, we assume that children can learn the meaning of words across
situations by focusing on the covariance between word meaning pairs. There is
some recent evidence that children indeed use such a learning strategy [1].

The current study addresses the two issues discussed and introduces a model
in which a perceptually grounded lexicon is developed by a population of sim-
ulated robots based on the Talking Heads experiment [13]. In this model, the
contexts that agents perceive while playing a language game differ from each
other. In addition, as suggested in [16, 18], the three models are integrated to-
gether with a naive implementation of ToM. The ToM is implemented by intro-
ducing attention cues that focus the (possibly joint) attention on objects in a
context. In this study, these cues are assigned randomly, but in future work we
intend to implement this by having the agents estimate these cues autonomously
based on some knowledge about intentions [19]. Using these cues and a verbal
hint provided by the speaker, the hearer will guess the reference of the uttered
word, and in some cases the agents evaluate corrective feedback. In addition,
co-occurrence frequencies are maintained to allow for cross-situational statisti-
cal learning [20]. The experiments reported in this paper investigate the effect



of using these attention cues and to what extent the model is still robust when
we vary the amount of corrective feedback available to the learners.

The next section introduces the new model. In Section 3 we experimentally
assess the validity of the proposed model, and finally Section 4 concludes.

2 The Model

The model we propose here is implemented in the Talking Heads simulation
toolkit THSim3 [17] and extends the iterated learning model (ILM) [7] in combi-
nation with the language game model [13]. The ILM implements a generational
turnover in which a population of adults transmits its acquired lexicon to the
next generation of learners culturally by engaging in a series of language games.
A language game is played by two agents, which are randomly selected from the
population at the start of each game: a speaker taken from the adult popula-
tion and a hearer taken from the learner population. In each generation, a fixed
number of language games are played and after each generation, the adults are
removed, the learners become adults and new agents enter the population.

Each time a language game is played, both agents a individually observe a
context Ca that contains a number of objects oi. The objects are geometrical
coloured shapes, such as red triangles and blue squares. The contexts of the
agents share a number of objects, while the rest are distinct. If the contexts
contain n objects, the agents share 1 ≤ k ≤ n objects, where k is assigned
randomly in each game. If k = n, then the contexts are equal.

In order to provide each agent a with some naive form of Theory of Mind, we
simulate the use of attention cues strA(oi) assigned to each object oi ∈ Ca. In
future models [19], we intend to base these attention cues on a more sophisticated
ToM, which the speaker uses to select the topic of the language game and which
the hearer uses to estimate the speaker’s intention (see Section 2.2). For the
moment we assume that these attention cues are assigned with random values,
where shared objects have a high attention cue, while objects that are not shared
possess a low attention cue. In short:

strA(oi) = Xi =

{

βs ≤ Xi ≤ 1 if oi is shared,

0 ≤ Xi ≤ βu if oi is not shared.
(1)

where βs and βu are user supplied parameters, with default values of βs = 0.5
and βu = 0.1. These values were experimentally determined to yield good results;
in general it was found that the results were good when βs > βu. Shared objects
are assigned the same attention cue value.

2.1 Categorising Objects

Categorisation of objects is based on the discrimination game model [11] and
implemented using a form of 1-nearest neighbourhood classification [4]. The aim
of the discrimination game is to categorise an object (called the topic ot) in an

3 THSim is available from http://www.ling.ed.ac.uk/˜paulv/thsim.html.



agent’s context such that it is distinctive from the other objects in the context.
Note that this does not require that the category is a perfect exemplar of the
object. By playing a number of discrimination games, each agent a constructs
its own ontology Oa, which consists of a set of categories: Oa = {c0, . . . , cp}. The
categories ci are represented as prototypes ci which are points in a n-dimensional
conceptual space. Each agent starts its life with an empty ontology.

Each object is perceived by six perceptual features fq: colour (expressed by
Red, Green and Blue components of the RGB space), shape (S) and location
(expressed by X and Y coordinates). Each agent a extracts for each object oi ∈
Ca a feature vector fi = (f1. . . . , fn), where n is equal to the number of perceptual
features.

Each object oi ∈ Ca is categorised by searching a category cj ∈ Oa, such that
the Euclidean distance ||fi − cj || is smallest. It is then verified that the category
found for the topic ot is distinctive from the categories of the other objects
ok ∈ Ca\{ot}. If no such category exists, the discrimination game fails, and the
ontology of the agent is expanded with a new category for which the feature
vector ft of the topic is used as an exemplar. Otherwise the discrimination game
succeeds and the found category is forwarded as the topic’s meaning m to the
production or the interpretation phase.

2.2 The Language Game

Table 1. The outline of a language game, see the text for details.

speaker hearer
-perceive context
-categorisation/DG
-produce utterance
-update memory1

-send message
-receive message
-perceive context
-categorisation/DG
-interpret utterance
-update memory1

-corrective feedback -corrective feedback
-update memory2 -update memory2

The language game we propose, outlined in Table 1, combines the guessing
game, e.g., [13] with a cross-situational statistical learner [10, 16, 20]. In both
models, the hearer h guesses the topic based on the utterance produced by the
speaker, where the topic ot ∈ Ch. In the guessing game, the agents evaluate
whether or not the hearer guessed the right topic (i.e. the object referred to by
the speaker). In cross-situational statistical learning (CSSL) such feedback is not
evaluated, instead the agent keeps track of co-occurring word-meaning pairs. In
order to provide a naive ToM, the model is adapted to include the attentional
cues strA(oi).

In a nutshell, the agents start by perceiving the context of the game and
categorise the objects they see using the discrimination game (DG) as explained
above. Then the speaker s selects an object from its context as the topic ot ∈



Cs of the language game. In order to so, a roulette wheel mechanism is used,
where the sectors of the roulette wheel are proportional to the attention cues
strA(oi) assigned to the objects. Thus, typically, objects that are shared with
the context of the hearer have more probability of being selected, since generally
their attention cues are higher. As the hearer uses these attentional cues as
a bias in guessing the speaker’s topic, it is virtually simulating the speaker’s
selection process. This, we believe, is a naive form of ToM, which in future work
we intend to work out more realistically, based on agents’ more sophisticated
selection criteria.

Each agent maintains an internal lexicon, represented by two associative
memories, as illustrated in Figure 1. One of the associative memories (referred
to as memory1 in Figure 1) keeps an a posteriori probability Pij , which is based
on the occurrence frequencies of associations. The other matrix (memory2) main-
tains an association score σij , which indicates the effectiveness of an association
based on past experiences. The reason for this twofold maintenance is that stud-
ies have revealed that when strong attentional cues (such as the corrective feed-
back used in the guessing game) guide learning, lexicon acquisition is much faster
with the association score σij than with the a posteriori probabilities [18]. The
reverse is true when such strong attentional cues are absent as in CSSL. This
is mainly because the update mechanism reinforces the score σij more strongly
than the update of usage based probabilities Pij . This works well when the cues
are precise, but the fluctuations of σij would be too strong to allow statistical
learning in CSSL.

m1 . . . mN

w1 P11 . . . P1N

...
...

...
...

wM PM1 . . . PMN

m1 . . . mN

w1 σ11 . . . σ1N

...
...

...
...

wM σM1 . . . σMN

memory1 memory2

Fig. 1. Two associative memories constructed and maintained as part of an agent’s
lexicon. The left memory (memory1) associates meaning mj with word wi using condi-
tional a posteriori probabilities Pij . The right memory (memory2) associates meanings
mj with words wi using an association score σij .

The probabilities are conditional probabilities, i.e.,

Pij = P (mj |wi) =
uij

∑

j uij

(2)

where uij is the co-occurrence frequency of meaning mj and word wi. This usage
frequency is incremented each time word wi co-occurs with meaning mj that is
either the topic’s meaning (in case of the speaker) or the meaning of an object
in the context (in case of the hearer). The update is referred to in Table 1
as ‘update memory1’. If this principle is the only mechanism, the learning is
achieved according to the CSSL principle, i.e., across different situations based
on the covariance in word-meaning pairs [20].



When corrective feedback is evaluated, the association score σij is updated
according to the following formula:

σij = ησij + (1 − η)X (3)

where η is a learning parameter (typically η = 0.9), X = 1 if the association
is used successfully in the language game, and X = 0 if the association is used
wrongly, or – in case of a successful language game – if the association is com-
peting with the used association (i.e., same word, different meaning; or same
meaning, different word). The latter implements lateral inhibition. If Eq. (3) is
the only update, the game reduces to the guessing game. The update of associ-
ation scores is referred to in Table 1 as ‘update memory2’ and is only carried
out if corrective feedback is evaluated. The rate with which corrective feedback
is evaluated is subject of the second experiment.

Given these two matrices, the speaker, when trying to produce an utterance,
calculates an association strength strL(αit) for each association αit of a word
wi with the topic’s meaning mt. This is done using Eq. (4):

strL(αit) = σit + (1 − σit)Pit (4)

This formula neatly couples the two variables. When σit is high, the influence of
Pit is low, and when σit is low, Pit will have more influence. This implements a
bias toward basing a choice on known effectiveness vs. estimated probabilities. In
Eq. (4), σit and Pit might be weighted, in order to rely more on the association
scores or on the a posteriori probabilities. The speaker will select the association
that has the highest strength strL(αit) and utters its word. If no association can
be found, e.g., because the lexicon is still empty, the speaker invents a new word
and adds the association to its lexicon with an initial association score αit = 0.01
and uit = 0.

When the hearer h receives an utterance, it looks in its memories for asso-
ciations with the current signal and whose meanings match the meanings for
each object oj ∈ Ch in its context. Using the association strengths strL(αij)
and attentional cues strA(oj ), the hearer then interprets the utterance using
the following equation based on [5]:

ρij = ωL · strL(αij) + ωA · strA(oj) (5)

where ωL and ωA are weights between 0 and 1. Throughout both experiments
ωL = 1 is kept constant, the value of ωA is subject of variation in the first ex-
periment. If the heard word is not in its lexicon, then the hearer will add it to
the lexicon in association with all meanings of the objects in the context and
uij = 1. If the agents evaluate the feedback, the word is additionally associ-
ated with the meaning mt of the now-known topic ot with an initial association
score σit = 0.01. Feedback is provided to the agents with a given probability
Pfbk, which is subject to variation in the second experiment. When feedback is
provided, the agents update memory2using Eq. (3). The hearer will not update
memory2 in the case where the topic is not in its context, since in this case it
cannot perceive the category of the topic.



3 Experiments

In order to assess the validity of the proposed model we performed several ex-
periments. In the following we present results using two measures: production

coherence and interpretation accuracy. Production coherence is defined as the
fraction of agents that produced the same utterance to name objects. Interpre-
tation accuracy is the fraction of agents that could successfully interpret the
produced utterances, averaged over the number of games played. These mea-
sures were calculated during a testing phase, consisting of 200 games in which
the language did not evolved. The test phase took place at the end of each gen-
eration. The results presented are averages over ten runs using different random
seeds. In the experiments we used a population of 10 agents in 15 generations of
10,000 language games each. During all experiments the context size n = 4 was
kept constant, while 1 ≤ k ≤ n was chosen randomly each language game.
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Fig. 2. Results obtained with different values of ωA. The left figure shows interpretation
accuracy, the right one production coherence.

A first set of experiments was aimed at evaluating the effect of considering
strA(oi) in Eq. (5) by varying the weight ωA between 0 and 1 with intermediate
steps of 0.1. In this experiment, corrective feedback was always evaluated, i.e.,
Pfbk = 1.0. The results for interpretation accuracy are shown in Fig. 2 (left).
In this figure the x-axis represents the number of generations processed. It is
interesting to notice that the model also yields good results when the attention
cues are not considered, i.e. when ωA = 0 accuracy increases to one of the
highest levels. (Note that this setting reduces the model to the guessing game.)
In general, when ωA increases, the results get poorer – especially after about
5 generations So, it seems that agents get confused when higher values of ωA

are used, i.e., the attentional cues suggest a different interpretation than the
lexicon. However when ωA = 1, accuracy is good again, which suggests that the
attentional cues can have a positive impact on the learning process, provided
they are sufficiently strong. Coherence (Fig. 2 right) reveals a similar evolution,
though the values show less variation. At the end of the simulations, coherence
is between 0.70 and 0.75. We have further investigated this aspect with equal
contexts, i.e., where in all cases k = n. For reasons of space, we cannot report



the results here, however we can say that the results reflect the results presented
here. Another set of experiments was performed in order to assess the behaviour
of the model when ωL was varied. The model obtained similar results for all
values of this parameter, except when ωL = 0 the results were considerably
worse.

Another aspect we wanted to investigate was the robustness of the proposed
model with respect to the amount of feedback received by the agents. We there-
fore performed experiments with different values of Pfbk, while keeping ωA = 1.0
fixed. Before presenting the results, it is good to recall that when Pfbk= 0 only
memory1 is updated at every language game. In effect this is a CSSL, where
the agents do not receive any feedback but have to infer this information by the
observation of their contexts. In contrast to earlier CSSL models [10, 16, 20], the
learners additionally receive attentional cues from strA(oi), which makes the
model more similar to the one presented by Gong et al. [5]; and the contexts of
speaker and hearer are dissimilar, thus the hearer may not have observed the
topic.
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Fig. 3. Results obtained with different values of Pfbk. The graphs show interpretation
accuracy (left) and production coherence (right).

The results are reported in Figure 3. It can be noticed that even when there
was no feedback (Pfbk= 0), language developed, though it took more generations
to reach an acceptable level of interpretation accuracy than for higher values of
Pfbk (Fig. 3 left). Interpretation accuracy, although acceptable, was still among
the lowest. Production coherence, on the other hand, rose towards a value that
is among the highest (Fig. 3 right). This is interesting, since the CSSL generally
leads to low levels of coherence [20]. Apparently, the attentional cues provide
enough information to allow robust word learning, which is in line with the re-
sults of experiment 1 when ωA = 1. With higher values of Pfbk agents receive
more feedback and can, therefore, develop a lexicon more easily. Recall that when
they receive feedback, they update memory2 as well. Clearly this has a positive
effect on speed of learning and on interpretation accuracy. It only has a positive
effect on production coherence when Pfbk≥ 0.5 – i.e. when agents received feed-
back with a high probability. So, although with a low amount of Pfbk accuracy
was doing reasonably, coherence remained well behind. This suggests that low



amounts of feedback antagonises the attentional cues, since the feedback may
provide different information than the attentional cues, but it has a relatively
strong effect on the lexicon development through Eq. 3. When Pfbk becomes
sufficiently high, the feedback is sufficiently strong to drive a coherent lexicon
development. Nevertheless, we can conclude that the model is quite robust to
various levels of feedback.

4 Conclusions and Future Work

In this paper a new multi-agent model for the evolution of perceptually grounded
lexicons is presented. This model combines the guessing game model [13] with
the cross-situational statistical learning model [20] and the introduction of envi-
ronmental attentional cues similar to the models proposed in [5].

Simulations based on the Talking Heads show that the model is quite robust
for different levels of attentional cues set on the objects. However, the simula-
tions show that – in general – the more the attentional cues are used in the
interpretation by the hearer, the more the hearer tends to get confused. This
is primarily due to the unreliability of the attentional cues, which confuses the
hearer. Interestingly, the results improve when the weight for the attentional
cues becomes one. In this case, the attentional cues are strong enough to form a
beneficial account for the language development.

Another important result is that the model is robust to the enforced dissimi-
larity of the contexts of agents playing a language game. This is interesting, since
it shows that the agents do not require explicit meaning transfer (which is the
case whenever feedback is present) while the hearers may not have seen the ob-
jects speakers are referring to. Clearly, the results improve when more feedback
is present. However, when no feedback is present at all, the results exceed some
of the results achieved with infrequent use of corrective feedback, thus showing
the robustness of cross-situational statistical learning in combination with using
stochastic attentional cues.

Future work should investigate more precisely why the model behaves differ-
ently for the different parameter settings. For instance, why do the simulations
with higher values of ωA < 1 or lower values of Pfbk > 0 perform worse than
the cases where ωA = 1 or Pfbk = 0? It is also interesting to study the effect of
varying Pfbk with different values of ωA. In addition, we intend to incorporate
the current model in the recently started New Ties project4, which aims at de-
veloping a benchmark platform for studying the evolution and development of
cultural societies in very large multi-agent systems. In this project, we will ex-
tend the model such that instead of assigning attentional cues randomly, agents
will autonomously estimate (or calculate) these cues as part of a Theory of Mind
[19].

Acknowledgements
This paper is part of the New Ties project, which is supported by the European Com-

mission Framework 6 Future and Emerging Technologies programme under contract

4 http://www.new-ties.org.



003752. The authors thank Andrew Smith and three anonymous reviewers for providing

invaluable comments on earlier versions of this paper.

References

1. N. Akhtar and L. Montague. Early lexical acquisition: The role of cross-situational
learning. First Language, 19:347–358, 1999.

2. P. Bloom. How Children Learn the Meanings of Words. The MIT Press, Cambridge,
MA. and London, UK., 2000.

3. M. M. Chouinard and E. V. Clark. Adult reformulations of child errors as negative
evidence. Journal of Child Language, 30(3):637–669, 2003.

4. T.M. Cover and P.E. Hart. Nearest neighbor pattern classification. IEEE Trans-

actions on Information Theory, IT-13(1):21–7, January 1967.
5. T. Gong, J. Ke, J. W. Minett, and W. S-Y. Wang. A computational framework

to simulate the co-evolution of language and social structure. In ALife 9, Boston,
MA, U.S.A., 2004.

6. J. R. Hurford. Biological evolution of the saussurean sign as a component of the
language acquisition device. Lingua, 77,2:187–222, 1989.

7. S. Kirby. Spontaneous evolution of linguistic structure: an iterated learning model
of the emergence of regularity and irregularity. IEEE Transactions on Evolutionary

Computation, 5(2):102–110, 2001.
8. M. Oliphant. The learning barrier: Moving from innate to learned systems of

communication. Adaptive Behavior, 7 (3-4):371–384, 1999.
9. W. V. O. Quine. Word and object. Cambridge University Press, 1960.

10. A. D. M. Smith. Intelligent meaning creation in a clumpy world helps communi-
cation. Artificial Life, 9(2):559–574, 2003.

11. L. Steels. Emergent adaptive lexicons. In P. Maes, editor, SAB96, Cambridge,
MA, 1996. MIT Press.

12. L. Steels. The synthetic modeling of language origins. Evolution of Communication,
1(1):1–34, 1997.

13. L. Steels, F. Kaplan, A. McIntyre, and J. Van Looveren. Crucial factors in the
origins of word-meaning. In A. Wray, editor, The Transition to Language, pages
214–217. Oxford University Press, Walton Street, Oxford OX2 6DP, UK, 2002.

14. L. Steels and P. Vogt. Grounding adaptive language games in robotic agents. In
C. Husbands and I. Harvey, editors, Proceedings of the Fourth European Conference

on Artificial Life, Cambridge Ma. and London, 1997. MIT Press.
15. M. Tomasello. The cultural origins of human cognition. Harvard University Press,

1999.
16. P. Vogt. Bootstrapping grounded symbols by minimal autonomous robots. Evolu-

tion of Communication, 4(1):89–118, 2000.
17. P. Vogt. Thsim v3.2: The talking heads simulation tool. In ECAL03, pages 535 –

544. Springer-Verlag, 2003.
18. P. Vogt and H. Coumans. Investigating social interaction strategies for bootstrap-

ping lexicon development. Journal of Artificial Societies and Social Simulation,
6(1), 1 2003.

19. P. Vogt and F. Divina. Language evolution in large populations of autonomous
agents: issues in scaling. In Proceedings of AISB 2005: Socially inspired computing

joint symposium, pages 80–87, 2005.
20. P. Vogt and A. D. M. Smith. Learning colour words is slow: a cross-situational

learning account. Behavioral and Brain Sciences, page In press, 2005.


