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Abstract

This paper investigates whether a group of agents may develop a com-
mon lexicon relating words to situations by a process of self-organization.
Each agent independently decides which situations are useful to distin-
guish, based on its experience with the environment. It then starts to
associate signals with each situation. The agents adapt their own associ-
ations based on the signals they received from other agents. The system
is monitored using measures which reflect the development of the lexi-
cons over time. The result of the distributed activities of the agents is
that a coherent shared lexicon emerges linking signals to situations.

Introduction

A central aspect of human intelligence is our use of language. The aim of the currently
expanding research field of language evolution is to gain insight into principles that may
explain the development of language and communication. In this paper we pose the fol-
lowing question: Can a common lexicon be established by a process of self-organization?
That is, can a group of agents converge to using the same set of associations between
concepts and words? This question has already been addressed for the case where the
signals refer to objects and the interactions are organized by appointing a speaker and
a hearer in [Steels, 1996a). In this work however, we study the formation of concepts
denoting situations encountered during interaction with the environment. An agent de-
termines which situations to distinguish according to the effects of its actions. Successful
communication provides potential benefit to the receiver since it complements the basic
sensory data. Both the conceptualization of sensory data and the adaptation of a lexicon
which associates signals with situations are investigated in this paper.

Agents build up their own lexicon by associating their individually determined situa-
tions with the signals they hear. On each turn, an agent produces a signal, depending on
its situation. This signal is audible to all agents. An agent may use these signals to decide
that its actual situation is probably different from the one indicated by its sensors. This
will affect the action it selects. If however the effect of this action is different from what
it expected, then the relation between the signals received and the hypothesized situation



is deceptive and needs to be adapted. We investigate the global effects of these locally
adapted lexicons.

In the general model of communication used here, agents develop a set of meanings
(which in these experiments denote situations) and for each of these meanings a set of
signals that are associated with it. The bare result that agents develop a lexicon would
not be anything new. The value of such results can only be appreciated in view of the
commitments that are adhered to. In this work, these are:

e We do not assume that agents use the same meanings. Each agents develops its
own set of concepts based on its interaction with the environment.

e Meanings are not passed directly from one agent to another. This would be implau-
sible as a general model of communication, and is implied by the first point.

e The agents are not appointed different roles; there is no separation between teach-
ing and learning agents, and thus all agents may influence the development of the
communication.

e Agents adapt their communication during their lifetime. In this sense the work
differs from most approaches based on genetic algorithms.

e There is no direct feedback to agents about the success of their communication; only
feedback about their behavior excluding communication is available, as is advocated
in [Werner and Dyer, 1991]. Thus, a coherent system of communication can only
come about if agents use the signals they perceived to choose their actions and at
the same time use the feedback on their behavior to adapt their lexicon.

Several authors describe the development of communication where agents are either
teacher or learner, possibly alternating. Some examples are [Yanco and Stein, 1993],
[Billard and Hayes, 1997] and [Steels and Vogt, 1997], all of which are interesting in that
real robots are used to investigate the development of communication. An example of
work where agents are not appointed different roles is [MacLennan, 1991].An investiga-
tion of the issue of altruism, i.e. how can language evolve if only receiving, and not
producing truthful signals has a clear benefit, is presented in [Ackley and Littman, 1994].

The structure of the paper is as follows. In the following section, the environment of
the agents is described. Section 2 describes the categorization method. The mechanisms
used by the agents to adapt their lexicon are described in section 3. In section 4, we
describe methods which allow one to measure the development of a lexicon. The results
of the experiments are reported in section 5, which is followed by a discussion.

1 The problem: how to hide for predators

In order to investigate the categorization of sensory information, it is necessary that
the effect of the actions available to an agent bears some relation to the sensor values.
Conceptualization then is the process of determining which sensor readings should be
treated differently, and which can be treated equally. In the environment used in the
experiments, the effects of the different actions depend on the presence of a predator and
its type. This information, combined with the horizontal and vertical position of the agent
itself, determines the sensory data. The available actions amount to horizontal (staying
or moving one step left or right) and vertical movement (choosing a new position). There



are three vertical positions. These can be viewed as abstractions for hiding places, since
each row is a safe hideaway for one type of predator. Predators appear and disappear
at random intervals. Each type of predator has the same probability of appearing, and
roughly half of the time no predator is present.

If, during the presence of a predator, an agent is not in the safe row, it will receive a
zero success value. Moving to the safe row yields a success of 1.0. When no predator is
present, staying in the same place is rewarded as 1.0, and the other choices for vertical
movement yield only 0.5. Apart from this sensor information and these actions, the agents
may choose to produce a signal. All signals produced at time ¢ are perceived by the agents
at time ¢ + 1. Thus, the information contained in these signals reflects the situations as
viewed by the agents on the previous turn.

The problem was inspired by the fascinating system of alarm calls used by vervet
monkeys [Seyfarth et al., 1980], which allows the animals to respond appropriately to
calls indicating the class of a predator: bird of prey, large mammal or snake. However,
we want to state clearly that the simulations are not intended to model or describe vervet
monkey alarm calls; in fact, the relation between signal and class or predator is thought to
be innate, whereas in the experiments reported here, both the categories and the lexicon
are learned.

2 Categorization of situations

The concepts formed in these experiments represent situations which an agent has learned
to distinguish. Initially, all experiences are treated equally. As the agent interacts with
the environment and thus gains knowledge about the effects of its actions, it starts to
distinguish between different regions of the sensor-action space. The rationale behind
this is that a distinction between two parts of a region in the sensor-action space should
only be introduced if this enables a more accurate prediction of the results of the different
actions in the area. This decision is based on a comparison of the probability distributions
of the results in these two parts.

The idea of introducing increasingly precise distinctions based on utility has previously
resulted in a method for discrimination games [Steels, 1996b] where utility was determined
by the ability to tell apart the different objects sensed by a robot [De Jong and Vogt, 1998].
This method yields a tree which stores information with adaptive resolution. Here, the
upper nodes determine intervals for sensors, allowing the agent to discriminate between
different situations, and lower nodes specify intervals determining sets of actions. Adap-
tive resolution methods have been used in [Moore and Atkeson, 1995], and the idea of
splitting based on utility is also used in [McCallum, 1996].

Figure 2 shows a typical tree learned by one of the agents during an experiment. The
first choice at the root is whether S3, the value of sensor 3 is smaller than 2 or not. If so,
then it can be either smaller or larger than 1. The decisions in the left part of the tree
concern sensors. After the dashed line, only action distinctions occur. This organization
of the tree presents the agent with a set of relevant situations that should be distinguished
in this environment. These are represented by rightmost nodes on the left side of the line.
Note that all sensor distinctions concern sensor 3; the agent has correctly learned that
only this sensor, indicating the type of predator that is present, determines the success of
each action. The different options for choosing an action are limited in the lower nodes
of the tree. Here, only the second action dimension, which specifies vertical movement,
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Figure 1: Left: a typical tree with situations and actions as learned by an agent in one
of the experiments. Right: an equivalent representation of the tree in figure 2. All dis-
tinctions concern sensor S3 and action A2. In other dimensions (only S1 is shown), extra
distinctions are unnecessary, as the agent has successfully learned using the statistical
tests.

appears in the comparisons. Hence, the interval for horizontal movement is unrestricted.

The agent chooses its actions randomly from the intervals determined by the nodes of
the tree. When the sensors are used to determine the agent’s situation and action, the
selection of the node is straightforward; the first decisions are determined by the sensor
values observed, and subsequent choices maximize the predicted success, which is kept in
the leaves. Alternatively, the agent may use the signals it perceives to hypothesize that
its actual state is different from the one indicated by its sensors. This is described in
section 3. In this case, action selection is analogous to the sensor-based case.

3 Lexicon formation

The tree built by an agent using the mechanisms that have been described provides a
collection of situations that should be distinguished, since the predicted success values
of the actions differ. These situations are represented by the rightmost internal nodes
that still concern sensor dimensions. The subtrees under the situation nodes contain
predictions of the success after selection of the corresponding actions. Each situation is
associated with a set of signals, which are represented as two letter 'words’ consisting of
a consonant and a vowel (e.g. PA, LU, MO, etc.).

Since all agents inhabit the same environment, the situations, or concepts, developed
by the agents should be very similar, and inspection of the data shows that these are
mostly, but not always, equivalent. During each turn, every agent produces a signal



which it selects from the list of signals associated with that situation with probabilities
according to the association strengths. Thus, the number of signals an agent perceives is
equal to the number of agents. When a signal is perceived in a situation, the strength
of its association with that situation is increased. Likewise, it is decreased when the
situation is encountered without hearing the signal. The probabilities of hearing a signal
given the current situation are thus estimated by successive approximation. Furthermore,
successive estimations of the overall signal probabilities are made.

Apart from the probability of each signal in general and given a situation, agents
estimate the probability of each situation, which is computed as its relative frequency
multiplied by the fraction of the sensors that correspond to that situation’s intervals.
Therefore, they are able to compute the probability of being in a certain situation given
the signals perceived using Bayes’ rule:

P(uAo)

P(MU)ZW (1)

P(p A o) can be computed using

P(pno)=P(p)-Po| p)

o is a signal that was perceived, and y is a possible situation or, more general, a meaning.
This probability is computed for every situation, given the current signals. Depending
upon the maximum of these probabilities, the agent either assumes to be in the situation
indicated by its sensor values, or in the situation indicated by the signals. In the latter
case, a way is needed to determine whether the signal-based determination of the situation
was correct. Although agents are endowed with complete perception in these experiments,
we do not want to use this as an assumption. Therefore, this test cannot be based on
sensor values, even though these do provide this information. Instead, the success of
taking an action is compared to the predicted value. If there is a discrepancy between
these, then probably the information of the signals was misleading. This criterion has
been operationalized by testing whether the prediction error is smaller or larger than the
average prediction error. In the early phases of an experiment, this happens frequently,
since all agents initially produce random signals. Whenever this is the case, the association
between the signal that determined the choice of the situation is decreased. If on the other
hand the action success was near the prediction, then the association between signal and
situation is reinforced. In both cases, the association of the signal with other situations
is adapted in the opposite direction.

4 Measuring the Development of the Lexicon

To investigate whether the signals used by the agents provide useful information, we
monitor the experiment using two measures: coherence and specificity. This methodology
for investigating communication is motivated in [De Jong, 1998]. The coherence indicates
to what extent agents use the same signal for a certain concept. Since an agent may hear
different words on different instances of what it considers to be the same situation, it
will generally associate each situation with several words. For a particular situation, the
word with the strongest association is called the preferred word. Both measures that are
described here are based on preferred words. For each concept, the coherence is measured
by computing the fraction of agents that has a word as preferred word for that concept,



Hml ‘m2‘m3 ‘m4‘

al PI | PA| PO | PU
a2 PI | PA|PA | PA
a3 LU | PA | PO | PU
a4 PI | PA | PO | PA

Max. freq. || 3 4 3 2
Coherence || 0.75 | 1.0 | 0.75 | 0.5

Table 1: An example calculation of coherence for four agents (al...a4) and four meanings
(ml...m4). For each meaning, the highest frequency of a word is determined, shown in
the bottom row. The average of these figures is the coherence.

and then taking the maximum of these fractions. If no word is associated with a concept,
the frequency of that concept’s word is zero. An example of the calculation is shown in
table 1.

In the extreme situation that all agents would use a single signal for every situation,
coherence would be perfect. Clearly, another factor plays a role in determining the utility
of the communication system. In order to be of use, a signal should limit the number
of possible situations. Ideally, a signal brings down the number of possible situations
to 1. This factor is expressed by another measure called specificity, which we will now
introduce.

e

A concept graph: each node represents a concept The corresponding fully connected graph:
A vertex indicates two concepts have the same word All concepts are associated with the same word

Specificity can be computed by constructing a graph which has as its nodes the mean-
ings, or situations in this case, of a certain agent. In this graph, two meanings are
connected if a single word is primarily associated with these meanings. The optimal
graph then is a graph without any edges at all. The worst case, in which a single word is
used for every situation, results in the fully connected graph. An exception occurs when
no word is associated with a certain meaning. Then, that meaning is connected with all
other meanings, since the agent has no word to distinguish it from these. This exception
appropriately decreases the specificity when one or more meanings lack words.

The specificity o is inversely proportional to the connectivity of the graph, i.e. the
fraction of edges that are present in the graph:

de v
R p— 2)

2
where v is the number of edges and n is the number of nodes in the graph. Interestingly,
the same figure can be obtained in a more easily implementable fashion by adding the




| [ ml|m2|m3]|md]| Y f] Specificity |

al | 1 1 1 1 4 1.0
a2 | 1 3 3 3 10 0.5
aj | 1 1 1 1 4 1.0
ad | 1 2 1 2 6 0.83

Table 2: An example calculation of specificity. The words are those shown in table 1. For
each agent, frequencies of the words are summed. The specificity of an agent’s signals can
then be calculated using equation 3.

agent-specific frequencies of the symbols and computing the difference with the maximum
sum relative to the maximum value of this difference:

o= n® — 2221 flc (3)
n?—n

The equivalence of the two calculation methods can be seen as follows. The frequency
fr of a concept’s word decreased by 1 equals the number of other concepts associated
with this word, and hence the number of outgoing edges from this concept’s node. Ac-
cumulating these numbers and dividing by 2 yields the total number of edges v in the

graph:

k=) 3 e 4
N 2 B 2 (4)
Substituting (4) for v in (2) shows the equivalence of (2) and (3):

IS I S v 5
n?—n 2 B (5)

n2—n
n2—n+n—ka=n2—ka (6)
k=1 k=1

These measures assume the simplification that meanings are shared between agents.
In reality, it is my conviction that our concepts are built from elements that are, somewhat
like in these experiments, based on experiences. It is the simple structure of the environ-
ment and agents that allows us to map meanings developed by agents onto eachother;
this would not be possible with human subjects.

v

1 —

5 Results

The experiments start with a conceptualization phase. During this period, the agents
investigate the effects of their actions and use this experience to develop a set of useful
distinctions between sensor values and action values, using the mechanisms described in
section 2.

After game no. 2,000, the agents start to produce signals, and base the determination
of the situation, and hence their action selection, on the signals instead of the sensors
depending on the Bayesian estimation given by (1). Initially, this decreases success con-
siderably. However, in the course of time, the relation between signals and situations
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Figure 2: Success averaged over 200 turns as a function time

becomes more solid, and situation prediction according to signals becomes more accurate.
The fraction of turns on which the agent determined its situation based on the signals
it received is shown as well. This occurs roughly half of the time. The fact that the
success decreases only slightly combined with the information that signals were used in
determining the state on half of the occasions makes clear that the signal-based choice is
quite accurate. If the actual situation is different from the one determined by the agent,
the success of its action is only 0.5 in the cases where no predator is present, and 0.0 in the
cases where some predator is present; this would have affected the success considerably.

Figure 5 shows the value of the coherence and the specificity over time during the
same run. The coherence increases considerably before the specificity does so. Analysis of
the data explains this. When the agents first learn to associate a word with a situation,
that word is produced far more often than any other word, also by the other agents.
When the situation changes, this signal is almost certainly perceived, since the signals
always reflects the situation of the agents on the previous turn. Thus, this signal will
immediately be associated with the new situation. Now, a single word is associated with
two situations. This explains why the coherence can increase rapidly. It also shows why
specificity initially remains low; the word is now associated with two situations, resulting
in a low specificity score. This undesirable effect is repaired by the tendency of each agent
to reduce the strength of the association between a word and a situation when the success
differs considerably from the prediction. This induces variation, temporarily decreasing
the coherence, but convergence to a new word for the new situation has the desired effect
of increasing both coherence and specificity.

After a while, a shared lexicon emerges. Both specificity and coherence are 1.0 for all
agents during a substantial period of time. This combination of measures can only occur
when all agents have converged to using the same word for each situation, and simultane-
ously using a distinct word for every situation that needs to be distinguished. Inspection
of the data showed that this is indeed the case; every agent used ki for situations without
a predator, and ta, bu and ga for the three different types of predator.
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Figure 3: Coherence and specificity averaged over 200 turns as a function of time

One might expect that this ideal configuration of associations would be stable, since
both occurence of signals and the accurate success predictions result in positive feedback.
This is however not the case. The instability is the result of two factors. First, as noted
above, signals are always delayed one turn. The other cause of change is the stochasticity
in the signal selection process. An agent chooses to produce a signal using the strength of
the association between the signals and the current situation as the relative probability
of selecting that signal. Since several signals are associated to each situation, this effect
causes continuous variation. Nonetheless, after the decrease corresponding to this effect,
the coherence rises again and continues to vary between 0.8 and 1.0.

6 Discussion

In this paper, we investigated the question of whether a process of self organization may
result in the development of a shared lexicon. The experiments have shown that this
question can be answered positively. Local decisions of agents to adapt the relation
between their perceived situation and the signals associated with it yielded a lexicon
containing a different word for each situation that is relevant given the properties of
the environment. Moreover, this lexicon was identical for all agents. The stochasticity
involved in the choice of signals results in gradual but continuous changes of the lexicon
over time.

The use of signals complements the information provided by the sensors. In future
work, it would be interesting to see whether this principle can be observed in experiments.
A possible setup for testing this involves partial perception, since this brings about a
potential benefit for using signals to compensate for the missing information. In the
example presented here, this could be investigated by limiting the visual field of the agents.
In that case, not all agents will see the predator, and successfully guessing the presence of
a predator based on the signals would allow these agents to take the appropriate action.
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