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Abstract

The development of communication in a pop-
ulation of agents is viewed as the behavior of a
dynamical system. A deterministic communica-
tion system is shown experimentally to have point
attractors that correspond to perfect communica-
tion. However, the determinism required for the
presence of point attractors impedes the develop-
ment of communication. A corresponding attrac-
tor type for the stochastic system is defined, and
the existence of these attractors in a stochastic
version of the system is demonstrated.

Introduction

The development of communication in a population of
agents can be viewed as the behavior of a dynamical
system, see e.g. (Steels, 1997, Hashimoto, 1998). Here,
an analysis based on this viewpoint is performed. It is
demonstrated by perturbation experiments that a de-
terministic communication system has point attractors
that correspond to perfect communication. However, the
determinism that is required to satisfy the conditions
of attractorhood hinders the spontaneous development
of communication. The stochastic system is preferable
in this respect, and has points playing the same role
as the attractors in the deterministic system. However,
the concept of an attractor has no mathematically rigid
equivalent in stochastic systems!'. Therefore, a modifi-
cation of the definition of a point attractor is used to
analyze the behavior of the particular stochastic system
at hand. The stochastic version of the system is shown to
have attractors satisfying this definition, and to develop
communication more reliably than the deterministic sys-
tem.

Section 1. briefly describes the algorithm used by in-
dividual agents to adapt their communicative behavior.
By a process of self-organization, the local adaptations
defined by this algorithm lead to a globally coherent sys-
tem of communication. In section 2., a dynamical system
model of the deterministic system is developed. Section
3. experimentally investigates the presence of attractors

1 Measure theory does provide the concept of convergence of
measures though, which is close in spirit.

in this system. The investigation of attractors in the
stochastic version of the system is described in section
4. Finally, section 5. concludes.

1. The Development of Communication

In this section, an algorithm will be briefly described
that, when used by individual agents, leads from an ini-
tially random situation to a state where agents refer to
the situations in their environment with the same words.
The stochastic algorithm is a slightly adapted version of
that introduced in (De Jong, 1999), and is described in
my Ph.D. thesis (De Jong, 2000). Here, the behavior
of the stochastic system is analyzed by relating it to a
deterministic version.

1.1 Internal Structure of the Agents

Each agent has a set of meanings. These meanings rep-
resent situations in the environment that are important
to distinguish, and the current meaning can be deter-
mined directly from sensor data. They have been de-
veloped by an autonomous concept formation method,
see (De Jong, 1999), and may in principle differ from
agent to agent. Here however, the conditions of the
experiments have been chosen such that all agents de-
velop ideal conceptual systems, and because of this the
concepts of the different agents are identical. For each
meaning, an agent has a set of associations between some
word and the meaning. The set of words is open, and
determined by the words that the agent has received in
a situation represented by that meaning. An association
between a meaning p and a word o consists of a use
component a,(u,0) and a success component ag(u,o),
both real valued numbers. The total strength a(p,o) of
the association is a weighted sum of its use and success
components. Finally, for each word o associated with
a meaning p, an estimate of the conditional probability
P(ulo) is maintained.

1.2 Word Production

At each time step, after receiving sensor information, an
agent determines its meaning that corresponds to the
sensor data. It then selects a word from the set of words
associated with this meaning, based on the association



strengths. In the deterministic version of the system, the
agent selects the word with the highest association. In
the stochastic version, it uses the Boltzmann distribution
to choose a word:

ep,0:)/T
Pproa(oi) = S, el /T (1)
where ng is the number of words associated with the
current meaning p, and T is the temperature of the dis-
tribution. Low temperatures favor strongly associated
words. High temperatures encourage exploration up to
the point where, in the limit, the elements are equiprob-
able.

1.3 Word Interpretation

When the agents have produced a signal, they receive
the words produced by all of the agents. Given this new
information, they may decide that their sensor based sit-
uation determination was unlikely or stay with their ini-
tial determination. Based on the action value estimates
of the chosen situation, an action is selected. In the
first, signal based case, the reward following the action is
compared against this estimate. If the reward conforms
with the expectation, the signal based situation deter-
mination is deemed correct, and the success component
of the association with the most often received word is
increased and those of the associations with other words
are decreased; otherwise it is decreased. Thus, no feed-
back evaluating production behavior is given, and the
feedback evaluating word interpretation is determined by
the agent itself based on its own imperfect information.
Hence it does not reflect whether the agent interpreted
the word correctly (i.e. according to its use by the pop-
ulation), but only whether the association appears to
be correct. Furthermore, independent of the situation
determination, the use values of the associations with
words that were received are increased, and the use val-
ues of the other words associated with the situation are
decreased.

2. Language as Dynamics

In this paper, the dynamical systems perspective on
language is brought to bear; the tools of the domain
will be used to analyze a system of agents that adapt
their communication behavior. The approach of us-
ing concepts from dynamical systems theory has proven
fruitful before in other language learning and develop-
ment work. In (Pollack, 1991) for example, language
induction was found to correspond to a phase transi-
tion in the weights of a learning network. The dy-
namical systems perspective has also been found use-
ful in other areas of adaptive behavior research, see
(Beer, 1997, Port and Van Gelder, 1995).

The communicative behavior of the agents is governed
by their internal state, in particular by the associations
between words and meanings of each agent. The whole
of the associations of all agents therefore determines the
language spoken by the agents. This language is not
static, but continuously varies as a result of interaction
between the agents. These dynamics will be studied by
viewing the whole of associations as a dynamical system.
The variables of this system are association strengths
between a meaning and a word for some agent. The in-
terpretation behavior, governed by estimates of the con-
ditional probabilities P(u|o), will not be regarded here.
Since the production behavior already determines the
optimal interpretation behavior, the extra information
these variables would yield is not expected to weigh up
to the large increase of the state space this would involve.

There are four situations that need to be distinguished
by the agents in the environment, and the environment
contains five agents. In the ideal case, each of these four
concepts has a single word strongly associated to it, in
which case there are at least four words. In the beginning
of the experiment most, but not necessarily all words will
be used at least a few times in each situation due to ex-
ploration and the random initialization. Not all possible
associations necessarily exist; in practice however, they
do. Therefore, the analysis will consider all combina-
tions of meanings and words for all agents as variables,
resulting in a dynamical system with at least 5 agents *
4 meanings * 4 words = 80 dimensions. Depending on
the production behavior of the agents, extra words may
be introduced, in which case the dimensionality of the
system increases.

3. Attractors in the Deterministic Case

It will be investigated whether the deterministic system
of communication has attractors that correspond to per-
fect communication.

3.1 Definition of Point Attractors

A point attractor is a point where all neighboring tra-
jectories are directed towards the fixed point. Such a
point ’attracts’ the system to itself from some neighbor-
hood. This neighborhood is called the attractor basin.
Although the informal definition of attractors may seem
quite clear, there is no consensus about a formal defi-
nition for attractor. In (Strogatz, 1994), an attractor is
defined as a closed set A for which the following condi-
tions hold:

1. A is an invariant set: any trajectory that starts in A
stays in it for all time.

2. A attracts an open set of imitial conditions. This
means that A attracts all trajectories that start suf-
ficiently close to it. The largest neighborhood for



which this is true is called the basin of attraction of
A.

3. A is minimal: there is no proper subset of A that
satisfies conditions 1 and 2.

A mathematical proof of the existence of attractors
corresponding to perfect communication can be found
in my Ph.D. thesis (De Jong, 2000). In the following, an
experimental investigation will be presented.

3.2 Location of Hypothesized Attractors

The objective of this investigation is to test the hypoth-
esis that the communication system has attractors that
correspond to perfect communication. The above defi-
nition provides a way to perform this test; if conditions
1 and 2 hold in points where communication is perfect,
then the hypothesis can be confirmed. The third condi-
tion is trivial for point attractors since a single point has
no proper subsets.

The first step is to identify the points in phase space
where communication is perfect. Since all variables take
values in the interval [0..1], the phase space has the shape
of an n-dimensional hyper-cube, see fig. 1. If communica-
tion is perfect, the word that is most strongly associated
must be different for each meaning. Also, these associa-
tions must be the same for every agent. The most stable
configurations satisfying these conditions are corners of
the phase space hyper-cube, where the strong associa-
tions are maximal (1) and the weak associations mini-
mal (0). These corners are hypothesized to be attractors.
Note that these conditions select a very small fraction of
the corners; in the vast majority of the corners, the con-
ditions are violated, e.g. because for some agent several
words are strongly associated with one meaning or vice
versa, or because corresponding meanings of different
agents are associated with different words. Concretely,
while the number of corners in the 80-dimensional space
is astronomical (280 ~ 1.2 - 10%%), only 4! = 24 of these
combine each of the four meanings with the same unique
word for all five agents.

In the experiments, the first two conditions can be
tested by examining the distance to the nearest attrac-
tor. Given the above analysis of the location of at-
tractors, a straightforward way to obtain this value is
to calculate the distance to the nearest corner of the
hyper-cube. Since not all corners are hypothesized at-
tractors, combining this distance with an indicator that
says whether the corner is a hypothesized attractor al-
lows us to monitor the convergence to hypothesized at-
tractors experimentally.

3.8 Neighborhood of Attractors

The condition that the systems should tend towards at-
tractors has to hold within a neighborhood around these

attractors. Thus, it is necessary to define neighborhoods
around the attractors within which the movement of
the system is to be monitored. Here, these neighbor-
hoods will be determined as a region centered around
each attractor where the distance to the attractor is be-
low a threshold, see figure 1. This definition yields an
n-dimensional hyper-sphere with a radius equal to this
threshold. The figure illustrates this for the three di-
mensional case.
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Figure 1: Schematic representation of attractor neighbor-
hoods. Each axis represents the association strength for some
word, meaning, and agent. In reality the number of dimen-
sions is much larger (80 or more), and the radius of the hyper-
spheres much smaller (0.001).

3.4  FExperimental Investigation of Attractors

In this section, experiments are reported that investigate
the two conditions of the attractor definition: existence
of an open set of initial conditions and invariance.

3.4.1 Open Set of Initial Conditions

The second condition for attractorhood states that an
attractor must have a neighborhood such that whenever
the initial condition of the system falls within this neigh-
borhood, the distance to the attractor must tend to zero
(see figure 2). This subsection starts with a description
of the experimental procedure to investigate this, which
is based on perturbations, and presents the results of the
experiments.

The Perturbation Procedure A perturbation here
signifies that the system is taken out of its current state
and moved to a random point within a distance r of the
nearest corner of the hyper-cube that contains the phase
space (see fig. 1). That is, its new state is a random
point within the hyper-sphere with radius r and the cor-
ner as its center. Most of the corners do not represent
successful systems of communication. However, if the
corner corresponds to good communication and is a hy-
pothesized attractor, the distance of the system’s state to



this hypothesized attractor is monitored over time. The
question that is then investigated is whether this dis-
tance tends to zero. As remarked above, interpretation
information is not represented in the phase space. All
interpretation information stored by the agents is reset
during a perturbation, thus rendering the state related
to interpretation neutral.

Neighborhood of the Attractor

Figure 2: Schematic rendering of an attractor in the deter-
ministic system. The arrows show only one possible configu-
ration of vectors; many vector fields, e.g. fields with spiraling
trajectories, satisfy this condition.

Locating Hypothesized Attractors In the exper-
iments, a perturbation is performed every 10,000 time
steps, starting at time step 50,000. The first question
to be asked is whether the deterministic system moves
towards a state of good communication. If this is the
case, the second condition of the attractor definition can
be tested.
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Figure 3: Evolution of the distance to the attractor over time.
The system spontaneously converges to an attractor.

Figure 3 at each point in time shows the distance of
the state of the communication system to the nearest
corner of the aforementioned hyper-cube. The top left
graph shows the complete time series. Apart from the
distance, two other lines are plotted: fidelity and indica-
tor. Fidelity measures the quality of communication, and
is calculated as the average probability that a concept
encoded into a word by one agent will yield that same
concept when the word is decoded by another agent. In-
dicator is an indicator function that tells whether the

system is in the neighborhood of a hypothesized attrac-
tor. It is binary, and takes the value of one when the
system is within a hyper-sphere with radius 0.001 of a
corner of the hyper-cube that represents an ideal system
of communication.

In figure 3, it is seen that during an initial period, un-
til around time step 5,000, there are only small changes
in the distance. Note that the corner to which the dis-
tance is calculated may change during this period, since
the location of the system in phase space keeps chang-
ing. Then the system starts moving towards a particular
corner.

The decrease of the distance to the corner is steep, and
corresponds to a rise in fidelity. After 11,000 time steps,
the fidelity measure equals one, which implies that the
system is moving towards a corner with ideal communi-
cation. The neighborhood of this corner is not entered
until just after time step 13,000 (see indicator), when the
distance to has dropped below 0.001.

An optical inspection of the graph appears to show
that the distance quickly drops to zero. However, since
updates move the association strengths towards zero or
one, these values can never be reached completely, and
hence the distance will never actually reach zero.
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Figure 4: Distance to the attractor over time. Here the de-
terministic does not approach the attractor spontaneously,
but after a perturbation it (time step 50,000) an attractor is
found.

Figure 4 shows a typical example of a run where accu-
rate communication did not develop spontaneously. The
distance to a corner also drops substantially in the be-
ginning, but not as far as in the previous case. Then, in-
stead of converging exponentially to the corner, it keeps
varying at an intermediate level. As the graph shows,
the fidelity of communication during this period is only
0.5. At time step 50,000, the first perturbation takes
place. The system is moved to a random location within
0.001 distance of the closest corner, visible as a quick
drop in the distance value. However, this closest corner
does not correspond to good communication. This can
be seen from the fact that the fidelity measure does not
immediately rise to one. Inspection revealed that words
did not always uniquely identify a meaning, but were



sometimes associated with several meanings. This is the
result of the deterministic selection mechanism that gov-
erns word production; if one word happens to be slightly
stronger associated to several meanings at one point by
many agents, the agents continue to use this word for
these meanings, resulting in a sort of deadlock that can
only be resolved by perturbing the system to other re-
gions of the state space.

Course of the Distance to Hypothesized Attrac-
tors The experiments above illustrated two ways for
the system to reach corners of the hyper-cube where
communication is ideal: spontaneously, or as the result
of a perturbation. In all of the ten runs, the system ar-
rived at such a corner after one or two perturbations or,
in four of the cases, without requiring any perturbation
at all. This situation enables us to investigate the second
condition of the attractor definition.

In the following experiment, the hypothesized attrac-
tors found using the procedure described above are used
as starting points near to which the perturbations will
place the system. The evolution of the distance to this
hypothesized attractor is then monitored over time. For
the hypothesized attractor to be a real attractor, this
distance must tend to zero. In this experimental inves-
tigation, this criterion is examined in two ways.
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Figure 5: Results of one of the perturbation experiments. Af-
ter every single perturbation, the system reacts with a steep
descent towards the hypothesized attractor.

First, the evolution of the distance to the hypothesized
attractor after the perturbations is inspected visually.
Figure 5 shows this evolution for the 15 perturbations of
the first run of the experiment. Every 10,000 time steps,
the system is perturbed. These events are seen as sudden
increases in the distance in the graph, with values that
can vary between zero and 0.001, the boundary of the
hyper-sphere that has been selected as a neighborhood
within which convergence is tested. After every single
perturbation, in all of the runs, the system reacted with
a steep descent towards the hypothesized attractor.

Second, it has been investigated whether the descents
towards the attractors are monotonic by calculating the
differences between every pair of subsequent distances.

A descent is monotonic if at every time step the distance
to the attractor either decreases or remains at the same
level. If all descents are monotonic, this is an indication
that the distance to the attractor tends to zero. This
examination showed that after every single perturbation,
in all of the runs, the distance to the attractor decreased
monotonically.

In summary, all of the hypothesized attractors that
were encountered had the property that the system,
when having its initial condition in a neighborhood of
this attractor, tends to move towards the attractor,
which concludes the experimental investigation of the
second condition of the attractor definition.

3.4.2 Invariance

The final part of the experimental evidence required to
investigate the presence of attractors is the condition
that attractors must be invariant sets; any trajectory
that starts in A stays in A for all time. This question has
been examined for all of the attractors that were found
in the perturbation experiment. The procedure was as
follows. At the end of each of the perturbation experi-
ments described in the previous subsection, at time step
200,000, the system is always at close distance to a hy-
pothesized attractor. Since the stochastic update rule
never really converges to equal the goal value, this dis-
tance will never be zero, save the extremely unlikely case
where the initial state of the system happens to be an at-
tractor. At time step 200,000 then, the system is moved
to the location of the hypothesized attractor. Subse-
quently, the experiment is continued as usual, without
any perturbations. If the location of the system in phase
space remains exactly equal for a substantial number of
steps, this is experimental evidence that the hypothe-
sized attractor is an invariant set. In all runs of the ex-
periment, the system maintained a zero distance to the
hypothesized attractor after time step 200,000. Thus,
the experimental evidence also satisfies the requirement
of invariance in the definition of an attractor.

Figure 6 shows the distance to the attractor over time,
in units of 10~. Apart from the evolution of this dis-
tance before time step 200000, the only event that is vis-
ible is the perturbation onto the attractor. From time
step 200000 on, the system has a zero distance to the
hypothesized attractor. Inspection of the data showed
that the distances do indeed equal zero, i.e. there are
no fluctuations at a scale that escapes visual detection.
This result was identical for all of the runs.

4. The Stochastic System

So far, it has been demonstrated experimentally that the
hypothesized attractors of the deterministic system are
indeed attractors. In itself, this result is of limited inter-
est; since the selection of words takes the word with the
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Figure 6: Distance to the attractor over time. Once the

system is placed inside an attractor (time step 200000), it

remains there.

highest association value, the communicative behavior
does not change once the system is within an attractor
neighborhood. The value of this analysis is in its po-
tential to shed light on the behavior of the stochastic
system. This system is almost identical to the deter-
ministic system, with the important difference that as-
sociation strengths are not used in absolute comparison
during word selection, but as weighted relative probabili-
ties (see eq. 1). In the stochastic system, communication
develops more consistently and for a wider range of pa-
rameters. Due to the stochastic nature of the system,
the definition of attractors cannot be used. However, it
will be shown here that the stochastic system does have
points that play a very similar role to that of the point
attractors in the deterministic system. In section 4.1, I
define a modified concept of attractors that can be used
in the stochastic system and, using the same experimen-
tal procedure as before, demonstrate that the stochastic
system contains such attractors.

The improved development of communication in the
stochastic system can be seen from fig. 7. The graph
shows that for the stochastic system (right), the devel-
opment of communication is consequently observed over
the whole range of parameter values that has been ex-
amined. Only for the very lowest value of 0.005 is the
average fidelity substantially lower than one. For this pa-
rameter setting, one of the ten runs reached a fidelity of
0.75, while the fidelity of the other nine runs all exceeded
0.99. For the deterministic system on the other hand
(left), the average fidelity exceeded 0.8 in only one of the
experiments. In summary, these experiments show that
in the system of communication under study, stochas-
ticity is a useful characteristic of the system that has a
positive influence on the development of communication.

4.1 Attractors in the Stochastic System

The variables of the deterministic system were associa-
tion strengths between meanings and words. Since com-
municative behavior does not change as long as the word

Fidelity
Fidelity

L 1 1 1 J

10000 20000 30000 40000 50000
Timesteps

0 0
0 10000 20000 30000 40000 50000 0
Timesteps

Figure 7: Fidelity averaged over ten runs for six different
values of the max-last-error-for-signals parameter for the
deterministic (left) and stochastic (right) system.

which has the highest association strength remains the
same for each situation, this yields more information
about the system than the production probabilities. In
the stochastic system however, changes in the magni-
tudes of the association strengths do influence commu-
nicative behavior when the system is in the neighbor-
hood of an attractor. Therefore, the production prob-
abilities will be used as the variables determining the
state of the stochastic system.

For the stochastic system, the distance to an attrac-
tor will always continue to fluctuate due to the stochas-
tic word selection mechanism, and does not necessarily
converge to zero from some neighborhood of initial con-
ditions. However, it may well be the case that such a
system is attracted by a point, quickly moves towards it,
and stays within a small neighborhood of the point. Here,
the condition that the system should move towards the
point will be replaced by the condition that the system
should move towards a hyper-sphere around the point.
Analogously, instead of requiring the system to remain
inside the point attractor when it is placed there, the sys-
tem is required to remain inside the hyper-sphere around
the point. The conditions are not strict; rather, the de-
gree to which they are satisfied determines to what ex-
tent such points can be compared to point attractors in a
deterministic system. Thus, the definition is introduced
to analyze the behavior of the system under investiga-
tion, but provides no formal rigidity.

To test whether a point satisfies these new attractor
conditions, tests analogous to that of section 3. may be
carried out; the system should, when placed within a
larger neighborhood of the attractor, with high proba-
bility move into the smaller neighborhood determining
the attractor, and it should, once within this neighbor-
hood, with high probability remain within it; see figure
8. If these two conditions hold, the small neighborhood
may be viewed as an attractor, and will be called such
in the following.

For parameter values 0.1 and 0.2, the distances of
the individual runs stay well below 0.02 once converged.
Therefore, this value will be used as the radius defin-
ing the attractors of the stochastic system. In the fol-
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Figure 8: Schematic rendering of an ’attractor’ in the stochas-
tic system. When the initial state of the system is within a
neighborhood of the attractor (outer sphere) moves into the
attractor (inner sphere).

lowing experiments, a value of 0.1 will be selected for
the max-last-error-for-signals parameter, since the
system reaches low distances earliest for this parame-
ter value. A perturbation is performed by putting the
system outside the neighborhood determined by the at-
tractor, but within a larger neighborhood of the center of
the attractor. For the radius of this larger hyper-sphere,
a value of 0.1 will be used. Thus, the experiments should
test whether the system, when within a radius of 0.1 of
the center of the attractor, moves into the attractor (ra-
dius 0.02), and whether the system, once within this
radius of 0.02, remains there. These two conditions are
the counterparts for the stochastic system of conditions
one and two of the deterministic attractor definition.
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Figure 9: Distance of the stochastic system’s state to an at-
tractor over time for one of the runs. After every perturba-
tion, the system quickly recovers and re-enters the attractor.

Figure 9 shows a run of the first perturbation exper-
iment. At time step 5,900, the distance of the system
first drops below 0.02. Until time step 20,000, the dis-
tance to the center of the attractor continues to vary,
but does not exceed 0.02, i.e. system remains within the
attractor. Starting with time step 20,000, and repeated
at every multiple of 10,000 time steps, a perturbation is
performed. The system is moved to a location outside
the attractor, but within a neighborhood with radius
0.1. As the graph shows for one of the runs, the system

quickly recovers from each perturbation, and re-enters
the attractor within several hundreds of time steps. The
graph is typical for the ten runs.

As has been explained, the stochastic nature of the
system implies that sometimes the behavior will differ
from what is generally observed. This was indeed ob-
served on one occasion during the ten runs. In that
case, the system did not immediately re-enter the at-
tractor after a perturbation, but first moved outside the
neighborhood of the attractor. However, before the next
perturbation, the system had re-entered the neighbor-
hood of the attractor again.
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Figure 10: Distance of the stochastic system’s state to an
attractor over time for one of the runs. At each perturba-
tion, where the system is moved to a random position within
the attractor (indicated by the ticks), it remains within the
attractor.

Figure 10 shows a run of the second perturbation ex-
periment, where the system is moved to a random lo-
cation within the attractor. After every perturbation in
every run the system remained in the attractor, with
(again) one exception where the system temporarily es-
caped from the attractor, but after 1,000 time steps, long
before the next perturbation, it had re-entered the at-
tractor again.

Together, the two perturbation experiments that were
described are an experimental demonstration of the hy-
pothesis that the stochastic system has attractors that
correspond to perfect systems of communication.

5. Conclusions

The development of communication has been analyzed
from a dynamical systems perspective. It was demon-
strated that a deterministic communication system has
point attractors that correspond to perfect communica-
tion. The determinism of that system impedes the spon-
taneous development of communication however. A very
similar stochastic system is preferable in this respect, but
point attractors require determinism and could not be
present. However, the presence of points with a very sim-
ilar role was suspected. This hypothesis has been tested
experimentally by performing perturbation experiments



similar to those used for demonstrating the presence of
point attractors in the deterministic system. The out-
come of the experiments was that the stochastic system
has attractors, defined analogous to point attractors but
suited for the stochastic system, that correspond to per-
fect communication.

The significance of this work is twofold. First, it estab-
lishes that the association update algorithm for individ-
ual agents results in attractors for the population that
correspond to perfect communication. At the same time
however, the results have a much broader scope, even
if speculative; they suggest an explanation of how large
populations of animals and humans may come to use
the same words in similar situations, an astonishing feat
given the huge space of possibilities and lack of central
control. That explanation is that once certain regions of
this immense association space are entered, interactions
between individuals are such that the population as a
whole is drawn towards using words the same way.
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