Investigating the Emergence of Speech Sounds

Content Areas: artificial life, natural language processing, philosophical foundations
Tracking Number: A504

Abstract

This paper presents a system that simulates the emergence of realistic vowel systems in a population of agents that try to imitate each other as well as possible. Although none of the agents has a global view of the language, and none of the agents does an explicit optimiz tion, a coherent system of vowels emerges that happens to be optimized for acoustic distinc iveness. The results presented here fit in and confirm the theory of Luc Steels [Steels 1995, 1997, 1998] that views languages as a complex d ynamic system and the origins of language as the result of self-organization and cultural evol ution.

1 Introduction

Language is considered to be important for the unde standing of intelligence. Although animals are often quite capable of behavior that can be described as ada tive or intelligent, they are not capable, with the poss ble exception of the higher primates, of the more a stract intelligence (abstract reasoning, working with hierarchical structures, learning of arbitrary mappings) that is characteristic of humans. This more abstract kind of intelligence is of a symbolic nature, and therefore associated with language. Understanding the nature and the origin of language is therefore of crucial importance to the understanding of the nature and origin of human intell igence [Steels 1995, 1997, 1998].

1.1 The origins of language

Some scholars have assumed that the human faculty for language is innate and genetically determined in a very specific way [Chomsky 1980 ; Pinker \& Bloom 1990]. It is obviously true that humans have a unique capability for learning and using language. If a bonobo chimpa nzee (our evolutionary closest relative) is raised in the same (linguistic) environment as a human child, it will only learn a very rudimentary set of words, and no grammatical structure, whereas the human child will learn the full language. There are also a number of fe tures of human anatomy (lowered larynx, very accurate control of breathing, accurate control of the tongue) that
can only be explained as adaptations to language. Ho wever, it is questionable whether the human brain is really so specifically adapted to language that it co n tains a language organ and a set of "principles and p arameters" [Chomsky 1980]. Although a couple of areas in the brain (most notably Broca's and Wernicke's area in the left hemisphere) do seem to be used for language processing in most humans, it is quite possible for other areas of the brain to take over their function. For exa mple, children that are born with damage to these areas, or that receive the damage at a very early age, are able to learn language very well [Johnson 1997]. Also, the neural pathways in the brain do not seem to be dete mined in sufficient detail genetically to explain som thing as specific as the proposed language organ.

It seems more likely that humans have a number of general learning- and abstract capacities that enable them to learn language. How then did language emerge? Steels [1995, 1997, 1998] considers language the pro duct of cultural evolution . Language, from his point of view is a distributed, complex and adaptive system. I mportant properties of language are that it is spoken in a population, where none of the speakers has perfect knowledge or central control. The language is not d pendent on the individual speakers; they can enter and leave the population without changing the language. Also, new words and constructions can be adopted and spread in the language. From his point of view, la guage is not so much determined by an abstract indivi ual grammar, but is rather an emergent phenomenon of a population of speakers. Whenever a group of humans is brought together, they will spontaneously develop a language. This has actually been observed in the eme rgence of Creole languages and the emergence of sign languages in communities of deaf people [

Senghas 1994].

In Steels' theory, humans developed a need to coope rate and communicate under pressure of environmental circumstances. The first communication systems were developed on the basis of the general intelligence of the speakers. Complexity in the language was increased through innovation under the (conflicting) selection pressures of ease of production and ease of understan ding. The first pressure tends to reduce the utterances, while the second one tends to increase them. Variation will be introduced either through speech errors and r eductions or through conscious innovation by the spea k -
ers themselves. Reproduction of the language will be ensured through learning and imitation. All elements for an evolutionary system are present: reproduction, variation and selection. Therefore the process is called cultural evolution. According to Steels, coherence of the language is maintained through self-organization in the population of language users. In this framework it is not the biological evolution that drives the development of language, but rather the development of language that drives the biological evolution through the Baldwin e fect [Baldwin 1896].

1.2 The origin of speech sounds

Steels tries to test all of his theories using computer simulations. A number of aspects of language, such as lexicon formation and formation of meanings have a ready been modeled, both in computer simulations and on robots [Steels 1995 ; Steels \& Vogt 1997, Steels \& Kaplan 1998]. The work presented in this paper applies the theory of language as a complex adaptive system to the emergence of speech sounds and more specifically to the emergence of vo wels.

Speech sounds are an ideal test case for the role of self-organization and cultural evolution in the eme gence of language. Speech sounds are the most physical aspect of language. It is therefore easy to measure their properties and the properties of human speech produ tion and perception. The constraints on a system that works with speech sounds are therefore much more e plicit and less controversial than the constraints on a system that works with e.g. grammar. Earlier work [Liljencrants \& Lindblom 1972] has shown that in the case of vowel systems, the constraints are mostly acou tic. At the same time, the kinds of sound systems that can appear in human languages are well researched (see e.g. [Lindblom \& Maddieson 1988 ; Schwartz et al. 1997a] and references therein). It is therefore easy to verify whether the sound systems that are predicted by the simulation are realistic or not.

Humans can distinguish a large number of different vowels: phoneticians have found at least 44 different vowels in the world's languages and the number of di ferent vowel qualities that humans can distinguish in one single language is at least 15 (in Norwegian). Ho ever, vowel systems of the worlds' languages do not use a random subset from these vowels. Almost all la guages contain [i], [a] and [u] (they appear in $87 \%, 87 \%$ and 82% of the languages in the UPSID $451{ }^{1}$ database [Maddieson 1984]) many languages also contain [e] (65%) and $[\mathrm{o}](69 \%)$. Other sounds are much rarer. Also, if a language contains a back, rounded vowel of a certain height, for example and [o], it will usually also contain the front, unrounded vowel of the same height. In other words, vowel systems tend to be symmetric. Furthermore, the world's languages have a strong te dency towards systems with five vowels, which is ne

[^0]ther the minimum, nor the maximum number of poss ble vowels. Of course, these are just tendencies, not un versal rules. There are always languages that are exce ptions.

It has already been known for some time [Liljencrants \& Lindblom, 1972] that the symmetry of vowel systems, the abundance of certain vowels and the rarity of others can be explained as the result of optimizing acoustic distinctiveness. This has also been shown in computer simulations. However these simulations do not explain who is doing the optimization. No human language learner actively optimizes the sound system he or she learns. Instead, they try to imitate that sound system as closely as possible. Until now, simulations of vowel systems were forced to explicitly implement the optim ization, even in simulations that were based on popul ations of agents [Glotin 1995, Berrah 1998]. This paper will show that the optimization is an emergent result of self-organizing intera ctions in the population.

2 The System

The simulations are based on a population of agents that are each able to produce, perceive and learn realistic vowel sounds. For this purpose, they are equipped with a realistic vowel synthesizer, an associative memory for storing vowel prototypes and a model of vowel perce tion for calculating the distance between the vowel pr ototypes and the acoustic signals that the agents receive.

2.1 Production and Perception

The production module is an articulatory synthesizer that takes as input the three major vowel parameters and that produces as outputs the first four formant freque n cies of the corresponding vowel. The major vowel p arameters [Ladefoged \& Maddieson 1996, ch. 9] are tongue height, tongue position and lip rounding. In the model the parameters are real numbers in the range $[0,1]$. For tongue position 0 means most to the front, for tongue height 0 means lowest and for lip rounding 0 means least rounded. Thus the parameter setting $(0,0,0)$ (in the sequence position, height, rounding) generates [a], $(0,1,0)$ generates [$\quad i]$ and $(1,1,1)$ generates $[u]$. The formant frequencies are defined as the peaks in the frequency spectrum of the vowel. The precise position of the peaks for different vowels depends on the speaker. The articulatory synthesizer that is used here is based on data from [Vallée 1994 pp. 162-164]. For [a] the fo rmant values are $(708,1517,2427,3678)$, for [i] (252, $2202,3242,3938)$ and for $[u](276,740,2177,3506)$. The mapping from articulatory to acoustic space is highly non-linear. In order to make the simulations more realistic and more interesting, noise is added to all four formant frequencies as follows:

1) $\quad F_{i}=F_{i}\left(1+v_{i}\right)$
where F_{i} is the formant frequency without noise, $\quad F_{i}$ is the formant frequency with noise and $\quad v_{i}$ is a random value taken from the uniform distribution in the range
$\left\lfloor\frac{- \text { noise }}{2}, \frac{\text { noise }}{2}\right\rfloor$, where noise is the noise level of the simulation.

The perception of vowels is based on a comparison with a list of prototypes. Research into perception of linguistic signals has shown that humans perceive them in terms of prototypes. Therefore each agent maintains a list of vowel prototypes. Whenever it perceives a signal, it compares it with all its vowel prototypes and consi ers the closest prototype as the one that is recognized. The realism of the simulation depends on the distance function. It is based on work by [Mantakas et al. 1986, Schwartz et al. 1997b]. It calculates the distance b tween the acoustic signals of two vowels. This distance is a weighted Euclidean distance between two twodimensional vectors that consist of the first formant fr quency F_{1} of the vowels and their effective second fo rmant frequency F_{2}. The effective formant frequency is a non-linear weighted sum of the second to the fourth formant. The idea of the effective second formant stems from the way humans perceive formant patterns. B cause of the higher bandwidth of human receptors of higher frequencies, peaks at higher frequencies tend to merge into each other and are perceived as one single peak. It is calculated as fo llows:
2)

$$
F_{2} \text {, if } F_{3}-F_{2}>c
$$

$$
F_{2}^{\prime}=\left\{\begin{array}{c}
\frac{\left(2-w_{1}\right) F_{2}+w_{1} F_{3}}{2}, \text { if } F_{3}-F_{2} \leq c \wedge F_{4}-F_{2}>c \\
\frac{w_{2} F_{2}+\left(2-w_{2}\right) F_{3}}{2}-1, \text { if } F_{4}-F_{2} \leq c \wedge F_{3}-F_{2}<F_{4}-F_{3} \\
\frac{\left(2+w_{2}\right) F_{3}-w_{2} F_{4}}{2}-1, \text { if } F_{4}-F_{2} \leq c \wedge F_{3}-F_{2} \geq F_{4}-F_{3}
\end{array}\right.
$$

where F_{2}, F_{3} and F_{4} are the formant frequencies e xpressed in Bark ${ }^{2}, c$ is a threshold distance, equal to 3.5 Bark, and w_{1} and w_{2} are weights, which in the original formulation are based on the strengths of the formants. As these are not generated by the articulatory model, they are considered to be proportional to the distance between the formants, as follows:
3)

$$
\begin{aligned}
& w_{1}=\frac{c-\left(F_{3}-F_{2}\right)}{c} \\
& w_{2}=\frac{\left(F_{4}-F_{3}\right)-\left(F_{3}-F_{2}\right)}{F_{4}-F_{2}} .
\end{aligned}
$$

Finally, the distance D between signal a and signal b is calculated as fo llows:
5) $D=\sqrt{\left(F_{1}^{a}-F_{1}^{b}\right)^{2}+\lambda\left(F_{2}^{a^{\prime}}-F_{2}^{b^{\prime}}\right)^{2}}$
where λ is a parameter of the system that determines how the effective second formant frequency should be weighted with respect to the first formant frequency. Investigation of the behavior of this function in predi

[^1]tion of vowel systems [Vallée 1994, Schwartz et al . 1997b] as well as observations of human perception suggest a value of 0.3 for this parameter.

2.2 The imitation game

The interactions between the agents are called imitation games. The intention of the interactions is to develop a coherent and realistic vowel system from scratch, with which the agents can imitate each other as well as po sible. For each imitation game, two agents are picked from the population at random. One of the agents is the initiator of the game, the other the imitator. The initi ator picks a random vowel from its repertoire. If its re pertoire is empty (as is the case at the beginning of the simulation) it adds a random vowel. It then produces the acoustic signal of that vowel. The other agent listens to this signal and finds its closest prototype. If its prot type list is empty, it finds a good imitation by talking and listening to itself, while improving the signal using a hill-climbing heuristic. It then produces the acoustic signal of the vowel it found. The initiator in turn listens to this signal and finds its closest prototype. If this is the same prototype as the one it used to initiate the game, the game is successful. If it is not the same, it is a failure. It communicates the success or the failure of the game using non-verbal feedback. Explicit non-verbal feedback is usually not given to children that learn la guage. However, they do get feedback on the quality of their communication through gesture, facial expression or the achievement (or lack thereof) of the communic tive goal.

The imitator and the initiator react to the language game in a number of ways. Both update the use count of the vowels they produced. If the game was successful, they also update the success count. On average every ten imitation games, the agents throw away vowels that have been used at least 5 times and have a success/use ratio that is lower than 0.7 . They also merge prototypes that are so close together in articulatory space that they will always be confused by the noise that is added.

The initiator also modifies it s vowel inventory d epending on the outcome of the imitation games. If the imitation game was successful, the agent shifts the vowel prototype it used closer to the signal it perceived in order to increase coherence. If the imitation game was a failure, this can have two reasons: the initiator has more prototypes, so confusion arose, or the imitator simply used a bad phoneme. If the success/use ratio of the vowel that was used is low, then it is considered to be a bad phoneme, and it is shifted closer to the pe ceived signal in the hope that it will be improved. If its ratio is high, this means it was used successfully in pr vious games, so the reason of the failure was probably confusion. Therefore, a new prototype is added that is a close imitation of the signal that was perceived, using the same hill-climbing procedure that was used to add first prototypes.

A last possible change of the agents' vowel invent ries is random addition of a new vowel (with probability
typically 0.01). This is done in order to put a pressure on the agents to increase their number of vowels. In humans this pressure could for example come from a need to express new meanings. Iterating the imitation game in a large enough population of agents results in the eme rgence of realistic vowel systems.
prototypes of the other agents. Because of the noise with which vowels are produced, however, the clusters maintain a certain size and will not reduce to points. Between 1000 and 5000 imitation games, the number of clusters will increase, until the available acoustic space is filled evenly with vowel clusters. The resulting vowel

Figure 1: Emergence of a vowel system in a population of 20 agents with 10% noise.

3 The Results

The first result that is shown in figure 1 , is the eme gence of a vowel system in a population of twenty agents and a noise level of 10%. In this figure, all vowel prototypes of all agents in the population are plotted in the acoustic space formed by the first and effective se ond formant of the vowels. The first formant is plotted on the vertical axis and the effective second formant is plotted on the horizontal axis. The scales of the axes are in Barks. Note that the direction of the axes is reversed with respect to the usual direction of axes in graphs. This has been done in order to get the vowels in pos tions that correspond to the positions that they are us ally given by linguists, with front vowels in the left- and high vowels in the upper part of the graphs. Note also that due to articulatory limitations, vowels can only be produced in a roughly triangular region, with the apex at the bottom of the graph.

The leftmost frame of the figure shows the system after 25 imitation games. As can be seen, the distrib ution of the agents' vowel prototypes is still quite random, although vowel prototypes tend to occur in pairs. This is because the main factor at work is the random addition of vowel prototypes and the direct imitation of these. After 500 imitation games, shown in the second frame of figure 1 , the main factor at work is a clustering of the agents' vowel prototypes. All agents in the pop lation already have a vowel prototype near one of these clusters. Most imitation games will therefore be su cessful. In response to this the agents will shift their vowel prototypes closer to the corresponding vowel

Figure 2: Vowel system of French, [Rober-Ribes 1995]
\qquad
system consists of [i], [ε], [a], [$\mathbf{0}],[\mathbf{u}],[\mathbf{i}]$ and [$\boldsymbol{2}]$ a sy stem that is natural and that occurs for example in the Sa'ban language of Borneo. The artificial vowel system can be compared with measurements of a real vowel system in figure 2 (but note that the scales in this figure are linear!) It must be remarked that the system keeps on changing from this stage on, even though the change is much less rapid. Vowel clusters might change pos ition new vowel clusters sometimes appear, get merged or split. But the appearance of the system remains the same.

Not all simulations with the same parameter settings result in the same vowel system. Sometimes the number of clusters is smaller, and their position might be diffe rent. This is illustrated in figure 3. This figure was ge erated by running 1000 times a run of 5000 imitation games with the same parameter settings as were used for figure 1. It shows the frequency of the average size of the vowel systems of all the agents in a population, r sulting from a single run of 5000 games. Peaks are seen to occur at different integer values. This indicates that systems of different sizes occur, and that the average size of the population's vowel systems tends towards an integer number. This is because agents tend to have the same number of vowels in the same population, ind icating that the emerging vowel systems are cohe rent.

Vowel systems that emerge for the same parameter settings do not only have different sizes, but within the same system size, different distributions of the vowel prototypes are found. This is shown for systems with five vowel prototypes in figure 4. The systems were o b-

Figure 3: Size distribution of 10% noise systems.

Figure 4: Vowel configurations for five vowel systems.
tained from running the simulation with 15% acoustic noise, for 25000 imitation ga mes. Of the 100 runs, 49 resulted in populations with on average five vowels per agent. From each of these populations, one agent with the average number of vowels was taken at random. The vowel systems of these agents are shown in the figure, sorted by type. It is found that the symmetric type occurs in 88% of the cases, the type with a central vowel and more front vowels occurs in 8% of the cases and the asymmetric type with more back vowels occurs in 4% of the cases. This agrees very well with what has been found in natural languages. Schwartz et al. [1997a] found that in a previous version of UPSID (with 317 languages) 89% of the languages had the symmetric system, while the two types with the central vowel occur in 5% of the cases. For different system sizes similarly good matches between predicted systems and human vowel systems are found, except for the smallest inve tories (of three and four vowels) where discrepancies occur for the less fr equent systems.

The outcome of the simulations does not dep end very much on the settings of the different parameters. A though the number of vowel clusters and their distrib tion are different for different parameter settings, their distribution is realistic in the sense that they could occur in human languages. Unfortunately space is too limited to show this in detail (and rules of anonymous review prevent me from referring to myself at this point).

A further observation of human languages is that they have a preference for vowel systems consisting of five vowels, and especially the symmetric system shown in figure 4. This is remarkable, because five is neither the minimum, nor the maximum number of vowels found in human languages. Apparently the frequency with which vowel system sizes occur is non-monotonic for the nu mber of vowels. This same phenomenon appears in the simulations. Simulations were run for values of the noise parameter ranging from 8% to 24% with incr ments proportional to the noise value (so that each p rameter change has equal influence). The frequencies of the different vowel system sizes are plotted. This is shown in figure 5 . The solid line shows the frequency of sizes of actual human vowel systems the dashed line shows the frequency of sizes of human vowel systems. Both lines show a peak, but unfortunately, the peak for human systems occurs at 5 vowels, while the peak for artificial systems occurs at 4 vowels. This can probably be explained by the fact that the perception model is not perfect, so that high front vowels tend to be centered too

Figure 6: Size distribution in real and artificial systems.
much. This is probably also the explanation for the fact that predictions for configurations with 3 and 4 vowels are not accurate.
It has now been shown that self-organization can predict the vowel systems that occur in human la guages to a large degree of accuracy. But would it really be as robust as Steels' [1997, 1998] theory claims? It has already been shown that it is robust against changes in the language itself. It is also robust against changes in the population. This is shown in figure 6. The gray squares in this figure show the starting vowel system of a population of 20 agents. The population was then run for 15000 imitation games with a probability of 1% per language game of taking an old agent from the popul tion or inserting a new (empty) one in the population. The black circles show the system after the run. By that time the whole population has been replaced. The vowel system has simplified a bit, but has remained mostly the same. It can therefore be concluded that the system is robust against changes in the population.

4 Conclusion

The simulations of populations that develop vowel sy tems clearly show that self-organization under co straints of perception and production in these popul tions is able to explain the structure of the vowel sy tems in human languages. The agents and their intera ctions form a dynamical system, in the sense described by Steels' [1995, 1997, 1998] theories. The most frequently occurring systems can be considered attractors of this dynamical system. Due to the random influences-noise on the articulations, random choice of agents-the populations never quite settle in exactly one of these attractors. They can settle in several different nearoptimal configurations, just as human languages do not always have the optimal systems as predicted by optim ization models [Liljencrants \& Lindblom 1972 ; Schwartz

Figure 6: Vowel system conservation under population replacement.
et al. 1997b]. The systems that emerge are also robust to changes in the language and to changes in the popul tion, just as required by any realistic model of language.

Many things still need to be investigated: more co plex utterances (so that not only acoustic constraints have to be taken into account, but also articulatory ones) and more realistic signals (so that the predictions match even better with real languages) are the ones that come to mind first. Nevertheless, these simulations therefore lend strong support to Steels' theory that language is a complex dynamic system and that self-organization and cultural evolution have played important roles in the emergence of la nguage.

References

[Baldwin 1896] J. Mark Baldwin (1896) A new Factor in Evolution, The American Naturalist 30 (June 1896) pp. 441-451, 536-553.
[Berrah 1998] Ahmed Réda Berrah Évolution Artificielle d'une Société d'Agents de Parole: Un Modèle pour l'Émergence du Code Phonétique, Thèse de l'Institut National Polytechnique de Grenoble, Spécialité Sciences Cognitives, 1998
[Chomsky 1980] Noam Chomsky, Rules and represe ntations, in The behavioral and brain sciences 3, pp. 121, 1980
[Glotin 1995] Hervé Glotin La Vie Artificielle d'une société de robots parlants: émergence et changement du code phonétique. DEA sciences cognitives-Institut N ational Polytechnique de Grenoble 1995
[Johnson 1997] Mark H. Johnson Developmental Co gnitive Neuroscience, Oxford: Blac kwell, 1997
[Ladefoged \& Maddieson 1996] Peter Ladefoged and Ian Maddieson The Sounds of the World's Languages , Oxford: Blac kwell, 1996
[Liljencrants \& Lindblom 1972] L. Liljencrants and Björn Lindblom (1972) Numerical simulations of vowel quality systems: The role of perceptual contrast, Language 48: 839-862, 1972
[Lindblom \& Maddieson 1988] Björn Lindblom and Ian Maddieson, Phonetic Universals in Consonant Systems, in: Larry M. Hyman \& Charles N. Li (eds.) Language, Speech and Mind , pages 62-78, 1995
[Maddieson 1984] Ian Maddieson Patterns of sounds , Cambridge University Press, 1984 [Mantakas et al. 1986] Mantakas, M, J.L. Schwartz \& P. Escudier Modèle de prédiction du ' deuxiéme formant effectif' F_{2} '-application à l'étude de la labialité des voyelles avant du français. In: Proceesings of the $15^{\text {th }}$ journées d'étude sur la parole. Société Française d'Acoustique, pages 157-161.
[Pinker \& Bloom 1990] Steven Pinker and P. Bloom Natural Language and Natural Selection. The Behavioral and Brain Sc iences 13: 707-784, 1990
[Rober-Ribes 1995] Jordi Rober-Ribes Modèles d'intégration audiovisuelle de signaux linguistiques . Thèse de docteur de l'Institut National Polytechnique de Grenoble, 1995
[Schwartz et al. 1997a] Jean-Luc Schwartz , Louis-Jean Boë, Nathalie Vallée and Christian Abry (1997a), Major trends in vowel system inventories, Journal of Phonetics 25: 233-253, 1997
[Schwartz et al. 1997b] Jean-Luc Schwartz , Louis-Jean Boë, Nathalie Vallée and Christian Abry (1997b), The Dispersion-Focalization Theory of vowel systems, Journal of Ph onetics 25: 255-286, 1997
[Senghas 1994] Ann Senghas Nicaragua's Lessons for Language Acquisition, in: Signpost 7(1), pp. 3239,1994
[Steels 1995] Luc Steels A Self-Organizing Spatial V ocabulary, Artificial Life 2(3): 319-332, 1995
[Steels 1997] Luc Steels , The Synthetic Modelling of Language Origins, Evolution of Communication 1(1): 1-34, 1997
[Steels 1998] Luc Steels Synthesising the origins of la nguage and meaning using co-evolution, self-
organisation and level formation, in: James R. Hurford, Michael Studdert-Kennedy \& Chris Knight (eds.) Approaches to the Evolution of Language , pages 384-404 Cambridge: Cambridge Un iversity Press, 1998
[Steels \& Kaplan 1998] Luc Steels and Frédéric Kaplan (1998) Spontaneous Lexicon Change. In: Proceedings of COLING-ACL 1998, Montreal , pp. 1243-1249, 1998
[Steels \& Vogt 1997] Luc Steels and Paul Vogt (1997) Grounding adaptive language games in robotic agents. In: Husbands, Phil \& Harvey, Inman (eds.) Proceedings of the Fourth European Conference on Artificial Life Cambridge (MS): MIT Press, pp. 474-482, 1997
[Vallée 1994] Nathalie Vallée, Systèmes vocaliques: de la typologie aux prédictions, Thèse préparée au sein de l'Institut de la Communication Parlée (Grenoble-URA C.N.R.S. no 368) 1994

[^0]: ${ }^{1}$ UCLA Phonological Segment Inventory Database with 451
 languages.

[^1]: ${ }^{2} \mathrm{~A}$ (partly) logarithmic frequency scale based on the properties of human perception. An equal interval in Bark corresponds to an equal perceptual distance.

