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It is argued that compositionality, hierarchy and recursion, generally acknowledged to be univer-
sal features of human languages, can be explained as being emergent properties of the complex
dynamics governing the establishment and evolution of a language in a population of language
users, mainly on an intra-generational time scale, rather than being the result of a genetic selec-
tion process leading to a specialized language faculty thatimposes those features upon language
or than being mainly a cross-generational cultural phenomenon. This claim is supported with
results from a computational language game experiment in whicha number of autonomous
software agents bootstrap a common compositional and recursive language.

1. Introduction

Compositionality, hierarchy and recursion are universal features of language. By
allowing the combination of words into hierarchical phrases which can then recur-
sively be combined into larger phrases, these features allow to make infinite use
of finite means in language. Therefore, and because they introduce regularities in
a language, they also make a language easier to learn. In short, they may increase
a language’s fitness as well as that of individual language users. The question
remains then how they are selected for.

The mechanism explored in this paper focusses on the increased usability as-
pect. Language is compositional, hierarchical and recursive because it serves a
purpose, and if a feature of language is productive and allows for more effective
communication, then individual language users will preferit over less effective
means of communication (Croft, 2007).

The effectiveness of an element of language can of course notbe isolated from
its learnability and the fact that the entire language community should agree upon
it. Hence, like in nativism (Hauser, Chomsky, & Fitch, 2002), the capacity for
e.g. recursion is assumed, but it need not be language specific, thereby render-
ing the problematic question of how it could have evolved forlanguage obsolete.
Moreover, this capacity need not be part of a universal grammar imposing itself
upon language. Instead, it simply needs to be available for language to recruit



(Steels, 2007). Similarly, we do acknowledge that multi-generational mechanisms
like iterated learning (Smith, Kirby, & Brighton, 2003) canbe shaping forces of
language. However, these only act as second order effects ontop of the first order
dynamics governed by usability considerations.

To support these claims, a number of computational languagegame experi-
ments were carried out (Steels, 2002) using the framework ofFluid Construction
Grammar (De Beule & Steels, 2005). Such an experiment consists of repeat-
edly picking a random speaker and hearer from a population ofagents (simulated
language users) and letting them communicate about scenes.After each interac-
tion both agents update their language inventories to improve their communicative
skills. Most of the details of the simulations and the results will be discussed in
the rest of the paper, for more information the reader is referred to (De Beule,
2007).

2. Experimental Setup

2.1. Scenes and Topics

The scenes about which the agents need to communicate would in English be
described by sentences like “Tall blond John kicks beautiful Mary”: they always
involve two participants each fulfilling either the agent orpatient role in an event.
Both participants may also be further specified by features (like ‘tall’, ‘blond’ and
‘beautiful’ in the example.)

Scenes are presented to the agents in the form of logical conjunctions of pre-
dicates, e.g. the example scene would be presented as:

tall(x) ∧ blond(x) ∧ John(x) ∧ kick(x, y) ∧ beautiful(y) ∧ Mary(y)

The number of different event-, participant- and feature-type predicates was set
to (three times) five. However, an arbitrary number of feature predicates may be
present in a scene descriptiona according to a binomial distribution with average
and standard deviation set to one feature predicate per participant.

The speaker agent does not necessarily describe the entire scene to the hearer:
possible topics also include both event participants together with zero or more of
the features assigned to them in the scene. On average a topicdescription contains
2.75 predicates. For example, the above scene specifies 14 topic descriptions, in-
cluding ‘John(x)’, ‘ tall(x)∧John(x)’ etc. Note that the latter description
specifies that the arguments to thetall(.) andJohn(.) predicates are equal.
Such co-reference relations also need to be expressed. Thiscan be done using a
holistic word (i.e. one word covering both predicates at once, including the equal-
ity of their arguments) or else with several words plus a number of grammatical
constructions specifying an ordering between them, see e.g. Steels (2005).

aSome of them may be the same as in ‘tall tall John’.



Every interaction, a random scene and associated topic are generated and pre-
sented to the speaker. The hearer is only presented with the scene, not the topic.
Evidently, he does get to see the utterance generated by the speaker for describing
the topic, but only after an efficient communication system has been established
will the hearer be able to successfully parse it and hence know what the topic was.

2.2. Language Model

An agent’s lexicon consists of a number of bi-directional word/meaning mappings.
The meaning of a word may be any combination of predicates. All agents start-off
with empty lexicons.

Whenever a speaker agent needs to verbalize a topic description, he introduces
at most one new word covering all predicates at once for whichno word is known
yet. Different speaker agents may propose different words for the same mean-
ing. Therefore, every word has an associated synonymy scorewhich is updated
according to the well-known lateral-inhibition scheme (Steels, 2002).

An utterance is presented to the hearer as a single string, i.e. without word
boundaries. He decomposes it into words again according to the entries in his
lexicon. He only proceeds when (presumably) at most one wordis unknown,
otherwise the interaction fails and the speaker decreases the scores of the words
used.

Hearer agents do not know the topic so they can not infer the intended meaning
of a word from one interaction only. Therefore, every word/meaning mapping also
has an associated probability score representing its estimated correctness. These
are updated according to the cross-situational learning algorithm as described in
(De Beule, De Vylder, & Belpaeme, 2006). In short, this algorithm allows to
combine the information about the meaning of words gained indifferent situa-
tions, while at the same time allowing to cope with inconsistencies caused by
changes in word meanings.

Agents prefer those word/meaning mappings with maximum associated syn-
onymy times probability scores. The score of a multiple wordanalysis is deter-
mined as the product of the scores of all words involved. Hence, if one holistic
word with high score covers the entire topic description then it might be preferred.
If however several more atomic words that only together cover the entire topic
description have a higher combined score then these will be preferred. Hybrid
combinations are also possible.

After lexicon lookup, all predicates in the topic description are covered by a
word (speaker side) or all words in the utterance contributea number of predicates
(hearer side.) The orderings among the words in an utteranceexpres co-reference
relations. The way in which a particular word ordering corresponds to argument
equalities in the meaning is determined by the grammar and issomething the
agents need to agree upon. As was the case for words, speaker agents may in-
troduce new rules of grammar as they need them, and hearers will try to adopt



them if possible. And just as agents may use and propose both holistic and atomic
words, they may also use and propose different types of grammar rules.

Below are schematically shown a number of example rules for combining
words covering predicates of the type specified on the right hand side of the rules
(P stands forParticipant, F for Feature, E for Event andS for Scene):

P(X) <- F(X) P(X) (1)
P(X) <- F(X) P(X) F(X) (2)
S(X,Y) <- P(X) E(X,Y) P(Y) (3)
S(X,Y) <- E(X,Y) P(X) F(Y) P(Y) (4)
Type-142(X,Y) <- F(X) E(X,Y) (5)
Type-36(X) <- F(X) F(X) (6)
Type-726(X) <- Type-36(X) P(X) (7)
Type-76(X,Y) <- F(X) P(Y) (8)

For example, the first rule specifies that if a word or phrase covering a meaning
of type feature is directly followed by another word or phrase covering a meaning
of type participant, then their arguments should be made equal and the result is
a phrase of type participant. Hence, each rule introduces hierarchical structure
allowing the subsequent application of rules until all co-reference relations (argu-
ment equalities) are expressed and all words are fully ordered. The combination of
a number of feature type phrases with a phrase of type participant again results in
a participant type phrase if they all have identical arguments (rules 1 and 2 but not
rule 8.) Only a limited number of type combinations result insimple result types
like this (see rules 1-4.) Most combinations result in the creation of new types
(e.g. rules 5-7) which can themselves also be used in other rules (rule 7.) Every
agent maintains a private grammar and type system. Both the rules (1) and (2) are
recursive, but only the first one allows to express an arbitrary number of feature
predicates in combination with a participant predicate. Note that agents not only
need to agree upon what constituents to take together (what elements should be
on the right hand side of the rules), but also upon their order. For example, some
agents may propose the SVO-like rule (2), while others may initially prefer the
VSO-like rule (4)b. Probability (correctness) and preference (synonymy) scores
are used both for reaching a consensus and for determining what analysis to prefer,
similar to what happens while learning the meaning of words and during lexicon
lookup.

3. Results

Figure 1 shows the evolution of the communicative success for different popula-
tion sizes measured as a running average. From this graph it can be concluded that

bHowever, note that rule (4) requires that a feature-type phrase precedes the object participant-type
phrase.



Figure 1. Evolution of the communicative success for different population sizes. (all graphs averaged
over 10 independent runs with error bars 1 standard deviation wide.) Time was rescaled such that at
time t an agent has had on averagenat interactions withna the population size. The inset shows a
detailed portion of the larger graph.

the agents in any case do succeed in evolving a successful communication system.
Figure 2 shows the evolution of the number of predicates in a topic description

divided by the number of words in the utterance, measured as arunning average.
After about 100 interactions per agent, only words are used that have exactly one
predicate in their meaning. Put differently: the agents prefer to use compositional
language. In contrast to what is the case for communicative success, population
size has no influence. This shows that the decision as to go compositional can
be made independently from the one about what specific words to use and hence
already after a fixed number of interactions per agent ratherthan after a number
proportional to the population size.

Recall that compositional language requires grammar. As itturns out, after
about 800 interactions per agent, only rules with result type Participant or
Scene are used (like example rules (1) to (4) but not the others.)c Moreover, and
again after about 800 interactions per agent, the survivingrules only contain 2
and 3 constituents respectively (i.e. like example rules (1) and (3) but not (2) and
(4).) This means that the agents not simply prefer to use compositional and hence
grammatical language, but, more specifically, they preferrecursivegrammar rules

cBecause of space limitations we could not include the relevant graphs here, the interested reader
is referred to (De Beule, 2007).



Figure 2. The number of predicates in the topic description divided by the number of words in the
utterance. For a completely holistic language this would be 2.75 (the average number of predicates
in a topic description.) A fully compositional language would give 1, which is the value to which all
graphs converge.

that introduce themaximum amount of hierarchy.

4. Discussion and Conclusion

The simulation results confirm that a language can become compositional, hierar-
chical and recursive simply because language users want to be understood. There
is no need to resort to a language faculty dictating these features upon language
or to a multi-generational mechanism like iterated learning.

One thing that might appear to be in contradiction with thesefindings is that
natural languages remain partially holistic. Natural meanings are clearly corre-
lated and hierarchically organized. In contrast, the worldmodel considered in the
experiments is not. Hence, one cannot expect holistic wordsto survive because
such words simply are of not much use.

If however certain combinations of predicates would appearmore frequently
in scene descriptions than others, then itwouldbe useful to have specific, holistic
words for them. This was indeed confirmed in another series ofexperiments in
which the same setup was used as described in this paper except that certain cor-
relations between meaning predicates were introduced. As aresult, the emerging
languages remained partially holistic (see Figure 3.)

In a third series of experiments the effect of a population turnover was in-
vestigated. It should be clear that such a turnover is not required to explain the



Figure 3. Evolution of the number of predicates covered per used word for different values of a corre-
lation parameter ‘p5’. If p5 equals zero then the experimentalsetup is identical to the one described in
this paper. Increasing values of ‘p5’ correspond to increasing amounts of correlations between other-
wise uncorrelated predicates across scene descriptions. For example, if p5>0, then certain participant
type predicates willalwaysbe accompanied by specific feature type predicates (and possibly others.)
In topic descriptions they can still occur separately. One can clearly see that larger values of p5 result
in on average more predicates per used word, meaning that the agents prefer to use holistic words for
frequently occurring combinations of predicates.

emergence of compositionality, hierarchy or recursion. However, since language
evolution is a stochastic process, and since iterated learning was shown by others
to be a shaping force of language, there are indeed measurable effects. But these
are only of second order compared to the first order effects described in this paper,
meaning that they are much smaller and only act on a much larger time scale (see
Figure 4).

To conclude then, we have shown that the (near) universalityof productive
features of language like compositionality, hierarchy andrecursion can be ex-
plained as being an emergent property of the complex dynamics governing the
establishment and evolution of a language in a population ofgenerally intelligent
interlocutors trying to increase their communicative skills. This happens mainly
on an intra-generational time scale. These findings nullifyexplanations that see
natural or cross-generational selection as the main shaping forces of language.
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