
Creating Temporal Categories for an Ontology of

Time

Joachim De Beule

VUB, ARTI-lab,
joachim@arti.vub.ac.be

Abstract

A mechanism is described that enables a robotic agent to create temporal
categories for conceptualizing the world. The creation of a new category is
triggered when the agent is unable to temporally distinguish an event from
the other events in the context using already adopted categories. This is dif-
ferent from most other approaches where ontological categories are defined
by humans and the ontologies are fixed in advance.

1 Introduction

In this paper the problem of how a robotic agent can create and maintain an
ontology in the domain of time is addressed. By an ontology we mean a set of cat-
egories or distinctions with which he can conceptualize the world. Our agents need
such a set of temporal distinctions because they have to communicate temporal
information.

There is a still growing interest in ontology research. For example agents in
a multi-agent setting need a shared ontology to cooperate [11]. Natural language
processing systems need an ontology to successfully determine the contents of a
phrase or request.

But in contrast with what is proposed in this paper, most ontologies consist
of a fixed set of definitions and relations reflecting the domain knowledge of its
designers. In the CYC project [5] common sense knowledge is obtained from
humans and collected in a knowledge base. For the semantic web (see e.g. [10])
numerous ontologies are being designed and standardized. In the domain of time,
Allen, Comrie and Reichenbach [1, 3, 6] used logic and analyzed natural languages
to determine the semantics of grammatical tense categories. All these examples
have in common that an ontology is constructed by hand and that it is fixed once
and for all.

Such an approach has several disadvantages [9]. For example, the way in which
a domain is structured and conceptualized by humans is not fixed but differs from
culture to culture. This is especially true for the semantics of linguistic construc-
tions since language is a conventional system, and the meaning of a grammati-
cal tense category is conventionally determined [4]. Different languages not only
express temporal information differently, the information is also conceptualized



differently. Some tense systems require a differentiation between the recent and
the distant past while others do not have an obligatory tense system at all. In
addition, the conceptualization and verbalization schemes of natural language are
subject to constant evolution. Not only because the world changes (e.g. as tech-
nology advances more precise temporal distinctions are needed) but also because
there is no universal way to conceptualize the temporal properties of the world.
As new language users enter the community, new distinctions get introduced or
existing temporal constructions are reinterpreted etc. If the robotic agents have
to communicate with humans they should be adequately equipped to cope with
this.

Thus, we claim that a conceptualization scheme or ontology can not exist
independently from the environment in which it is used. And for an agent of a
language community, the environment includes the set of conventions defining the
communication system of the community. If two agents want to communicate
about something they have to agree upon both what to express about it (how to
conceptualize it) and how to express it (how to verbalize the conceptualization.)
As such, the emergence of a set of categories shared between the agents requires
an ongoing negotiation and a co-evolutionary coupling between the categories that
make up an agent’s ontology and the forms to express them [9]. In other words,
the agents themselves should decide whether their ontology of time is adequate or
not and, if needed, adjust it to conform to the consensus in the population. The
measure for adequacy is not only whether the agent is capable of conceptualizing
the temporal information it wants to express but also whether it is successful in
communicating these conceptualizations.

To summarize, the ultimate goal is to create a population of artificial au-
tonomous agents establishing a set of conventions to communicate temporal in-
formation. For this to be possible, the agents have to agree upon an ontology
in the domain of time. Thus, an agent should be capable of doing at least three
things. First, he should be capable of creating new categories. Second, he should
be capable of incorporating these categories into his language repertoire. Third,
he should be capable of adapting his language and ontology in order to conform
to the (emerging) consensus in the population. In this paper we will focus on
the first step, the creation of new temporal categories within one agent. Still, the
underlying assumptions is that every act of communication attempts to guide the
interpretation process of a hearer to arrive at the topic. Consequently a speaker
should provide a hearer with that particular information that discriminates the
topic from the other events in the context. Hence, the first task of a speaker who
wants to draw a hearer’s attention to some topic is to construct a discriminating
description for it. In order to accomplish this, new conceptual categories might be
needed. This allows us to postulate a constructivist learning scheme, the discrim-
ination game [8], by which an agent can invent and adopt new categories. This
is in contrast with statistical learning schemes (e.g. clustering algorithms) that
attempt to create ontologies independent of the goal of communication. It is also
in contrast with attempts to construct standardized and fixed ontologies, be it by
hand or otherwise.

The remainder of the paper is organized as follows: first some definitions are



given, including definitions for discriminating expressions and for the discrimina-
tion game (section 2). Next an algorithm is presented for constructing discrimi-
nating expressions by stating this problem as a general search problem [7] (section
3). Next it is shown how this algorithm can also be used to create new temporal
categories (section 4). Finally a discussion and some conclusions follow.

2 The Generalized Discrimination Game, defini-
tions

Context, topic, variables, expressions, bindings and interpretations
In a discrimination game, an agent receives a context C, which is a set of

events, and a topic, which is an event in the context. The context is the result of
observing the world using some further unspecified observation scheme or event
detection algorithm. Every event in the context is described by a predicate. For
example a fall event fall1 is described by the fall(X) predicate because fall(fall1) is
true. Predicates and variables are written in italics, variables also with a capital
first letter. Events and other values are written in plain. A binding of a variable
X to a value x is written as (X/x). Every conjunction of predicates is called an
expression. The substitution of a set of bindings B = {(X1/x1), ..., (Xk/xk)} in
an expression e(Xm, ..., Xn) is written as [e]B = e(xm, ..., xn). Finding a set of
bindings B for the variables in an expression e to the events in a context C such
that [e]B =true is called interpreting e in C and B is then called an interpretation
of e in C.
Discriminating expressions

It could be that several events in the context are described by the same predi-
cate. Assume that the context contains two fall events: fall1, which happened in
the past, and fall2, which started after the fall1 event and is still going on (present.)
In this case there are two interpretations for the expression fall(X), but only one
for the expression fall(X)∧past(X). This last expression is called a discriminating
expression for event fall1 with respect to (wrt) the context C = {fall1, fall2} and
the variable X.

The expression fall(X) ∧ before(X, Y ) ∧ fall(Y ) has two interpretations: B1 =
{(X/fall1), (Y/fall1)} and B2 = {(X/fall1), (Y/fall2)}. Still, it is also a discrimi-
nating expression for event fall1 wrt the context C and the variable X because in
all interpretations X is bound to fall1. It is not a discriminating expression for any
event in C wrt Y because Y is bound to different events in both interpretations.
Ontology

An ontology is a set of expressions called categories. fall(X), past(X) and
before(X,Y) could be categories. As mentioned, the events in the context are
observed by some event detection system. Whether an event is a fall event or
another type of event depends on how these types are defined in the event detection
system. In this paper, we will assume that the event detection system defines a
basic set of predicates like fall. As such, it provides an agent with a basic ontology.

It also provides the agent with an event’s begin and end times. Categories like



past and before call these functions, but are not part of the basic ontology. They
have to be created by the agent and are part of the ontology for time.
The discrimination game

A specific attempt to perform a discrimination and the possible subsequent
extension of the ontology is called a discrimination game. More formally, given a
topic (an event), a context C, with topic ∈ C, and an ontology O, the discrimina-
tion game is defined as follows:

“find an expression e(X1, ..., Xn), with n ≥ 1, that is a conjunction
of expressions in O, and a variable Xi, with 1 ≤ i ≤ n, such that e
is a discriminating expression for the topic wrt C and Xi. If this is
not possible then O may be extended with a new expression to make
it possible.”

3 Searching for discriminating expressions

Constructing a discriminating expression can be formulated as a search problem.
As explained in [7] (chapter 3), a search problem is specified by an initial state, a
successor function, a goal test and cost functions or, equivalently, score functions1.

State definition
A state in the search space is defined as a pair (e,E) where e is an expression

and E is a set of expressions. The expression e represents the candidate discrimi-
nating expression and the set E contained the remaining categories that were not
yet used to build e. Thus, the initial state is (true,O′), true being an expression
with no variables that is always true and O′ being a subset of O containing the
relevant categories for the current context. For example, if the context does not
contain any fall event it makes no sense to include the fall predicate into O′. A
category is relevant for a context when an interpretation can be found for it in
that context.
Successor function definition

Defining a successor function is not as trivial as might seem. There are
two difficulties. First, variables might have to be renamed. Consider the state
(fall(X), {roll(X)}). The successor function should combine the roll expression
with the fall expression, but clearly the combination fall(X) ∧ roll(X) is different
from the combination fall(X) ∧ roll(Y ).

The Second difficulty concerns the set E of remaining expressions. Consider the
state (true, {fall(X), before(X,Y)}). The idea is to combine one of the expressions
before(X,Y) and fall(X) with true and remove it from the set of remaining expres-
sions in the resulting successor state. This results in the following two successor
states:

{(fall(X), {before(X,Y)}), (before(X,Y), {fall(X)})} (1)

1A score function can always be defined as the reciprocal of a cost function or vice versa.



But, continuing in this way, it is impossible to arrive at expression (2) in which
the fall predicate is used twice.

Both difficulties can be solved in the following way. Let s = (e,E) be a state
for which the successor states have to be constructed. Let the set of variables in
e be {X1, .., Xn}. Define P to be the set of all possible combinations of length 0
to n of the variables in e: P = {{∅}, {X1}, ..., {Xn}, {X1, X2}, ..., {X1, .., Xn}}.

For every expression e′(X ′
1, .., X

′
n′) ∈ E and i ∈ {1..n′} define

m(X ′
i, {∅}, e′) = e′,

m(X ′
i, {Xu}, e′) = [e′]{(X′

i
/Xu)},

m(X ′
i, {Xu, Xv}, e′) = [e′]{(X′

i
/Xu)} ∧ [e′]{(X′

i
/Xv)},

...

m(X ′
i, {X1..Xn}, e′) = [e′]{(X′

i
/X1)} ∧ ... ∧ [e′]{(X′

i
/Xn)}.

Hence, for a given e′ and X ′
i, m(X ′

i, ., e
′) defines a mapping M over P : M(X ′

i, P, e′) ≡
{m(X ′

i, V, e′)|V ∈ P}. The set Sn′(e′, P ) of successor expressions resulting from
combining e with e′ is defined recursively as (1 ≤ k ≤ n′):

1. S0(e′, P ) = {e′(X ′
1, .., X

′
n′)}

2. Sk(e′, P ) =
⋃

ek−1∈Sk−1(e′,P )

m(X ′
k, P, ek−1)

The set {(e∧en′ , E \{e′})|en′ ∈ Sn′} is a set of successor states of the state (e,E).
The set of all successor states is the union of all these sets for every e′ ∈ E.
Successor function examples

We will illustrate this with some examples. First, it is obvious that the suc-
cessor states of the state (true, {fall(X), before(X,Y)}) is given by equation (1).
Indeed, the set P = {{∅}} and for fall(X) we get: m(X, P, fall(X)) = fall(X).
Hence S1(fall(X), P ) = {fall(X)}, which gives the first element of equation (1).
The construction of the second is similar.

For the state (fall(X), {before(X1, X2)}) the set P is equal to {{∅}, {X}}.
Hence:

S0(before(X1, X2), P ) = {before(X1, X2)},
S1(before(X1, X2), P ) = {before(X1, X2), before(X, X2)},
S2(before(X1, X2), P ) =

{before(X1, X2), before(X1, X), before(X, X2), before(X, X), },

giving four successor states. For the state (before(X, Y ), {fall(X1)}) the set P is
equal to {{∅}, {X}, {Y }, {X, Y }} and there are again four successor expressions re-
sulting from conjugating before(X, Y ) with one of the expressions in S1(fall(X1), P ) =
{fall(X1), fall(X), fall(Y ), fall(X) ∧ fall(Y )}.
Score



To guide and speed up the search process it is customary to associate a score
with every state in the search space. A particularly good heuristic here is the
minimum number of values left to discriminate from the topic. If this number is
d then the score of a state is defined as 1/(1 + d). Thus, if an expression e(X, Y )
has the interpretations {(X/v1), (Y/v2)}, {(X/v2), (Y/v1)} and {(X/v3), (Y/v1)},
and if v1 is the topic then d = 1 (the minimum of 1 (for Y ) and 2 (for X)) and
the score of the state S = (e,E) is 1/2. A way to efficiently calculate this score
during the search process will be given shortly.
Goal test

The initial state together with the successor function completely determine the
search space of possible states. The goal test on such a state (e,E) returns true
iff e is a discriminating expression for the topic wrt the context and one of the
variables in e, or, equivalently, iff the state has a score 1.
Optimization

Not every expression in the search space necessarily has an interpretation in
the context. Those that don’t do not need to be considered any further. As
mentioned, to construct the initial state, the interpretations of the expressions
in O′ are needed. These can be combined along the search path to keep track
of the possible interpretations of newly created expressions without having to
actually calculate the interpretations in the context. If a newly created candidate
expression does not have any interpretations left it is not considered any further.

In addition, the set of interpretations of an expression can be used to efficiently
calculate the score of a state without having to calculate the interpretations them-
selves.

4 Creating temporal categories

Let eT and bT, which stand for endTime and beginTime respectively, be functions
acting on events and returning some time value (a number.) As mentioned, they
are part of the interface to event detection system and are not further discussed.
Define Rt as the set of 8 possible temporal relations (predicates) that result from
combining these functions with the relations ≤ and ≥:

Rt = {r1(X1,X2) = bT(X1) ≤ bT(X2), .., r8(X1,X2) = eT(X1) ≥ eT(X2)}.

The relations in Rt can be used to construct temporal categories. To see this,
consider an agent with ontology O = {fall(X)} playing the discrimination game
in a context C = {fall1, fall2} with topic fall1. As before, fall1 is a past fall event
ending before the beginning of the present fall event fall2. Because O does not
contain any temporal categories yet the agent is unable to find a discriminating
expression for the topic. But as can be seen, the expression

fall(X) ∧ r1(X, Y ) ∧ fall(Y ), (2)

is a discriminating expression for fall1 wrt C and the variable X. Hence, if the
agent’s ontology is be extended with r1 he could succeed in the discrimination



game. The expression r1(X, Y ) would then become a temporal category in the
agent’s ontology.

The algorithm used to search for discriminating expressions can also be used
to search for new temporal categories by extending the initial state’s set of re-
maining expressions with the relations in Rt. Thus, when an agent is unable to
discriminate the topic using the relevant set of categories O′, he tries again, this
time also using the relations in Rt. This is done by setting the initial search state
to (true,O′ ⋃Rt). If a discriminating expression is found this way, the entire part
of the expression that is not yet contained in O becomes a single new temporal
category and is added to O.

5 Discussion and conclusion

In this paper the notions of a discriminating expression and of the generalized
discrimination game were defined. An algorithm for constructing discriminating
expressions was presented by defining the problem as a general search problem
that can be solved with standard search techniques [7]. A heuristic to speed up
the search process was also given.

By playing discrimination games, an artificial agent can detect opportunities
to extend his ontology. This happens when the agent fails to construct a discrimi-
nating expression for the topic of the game. This is one important difference with
other approaches: it is the grounded interaction with the world which triggers the
creation of new categories as they are needed. There is no human who decides
once and for all on the set of relevant categories.

Finding a new temporal category to extend the ontology can also be done by
searching for a discriminating expression but with the ontology extended with
basic temporal predicates (the set Rt.) The part of the resulting expression that
is not yet included in the agent’s ontology is then a new temporal category.

The set of possible temporal ontologies that can be created this way includes
the ontologies defined in [1, 3, 6]. There are however 2 important differences with
these previous approaches. First, the actual temporal ontology that an agent
will evolve is not fixed in advance. It might be equal to Allen’s basic temporal
categories, but it does not have to be. Again, it is the interaction with the world
and with the other agents when communicating temporal information that will
decide this. Second, the set Rt can be easily extended, opening the possibility
for temporal ontologies completely different from the ones defined in [1, 3, 6]. For
example, by only using the begin and end times of an event to construct the set
Rt, one excludes many aspectual categories used in natural language to encode
temporal information. But one can easily include additional temporal predicates
and relations in Rt providing other temporal information about an event than its
begin and end time.

One might argue that no temporal ontology is created at all but that it is also
fixed in advance by defining the set Rt. This is not the case because in our view
an ontology cannot be separated from the goal for which it is used or from the
environment in which it is used. Because the world continuously changes it is not



possible to define a fixed ontology. This is particularly true when the ontology is
used to conceptualize aspects of the world for communication. Since language is
a conventional system one cannot define an ontology or conceptualization scheme
that is appropriate for all existing languages. For example, not all languages re-
quire the same temporal information to be made explicit. In Chinese there is
no tense system and temporal information is specified lexically or with aspectual
categories. In contrast with this, in Bantu languages it is common to have sev-
eral tense categories for different degrees of remoteness in time, e.g. making a
distinction between ‘a few days ago’ and ‘more than a few days ago’ [3]. What
is fixed by defining the set Rt is the set of possible temporal ontologies. Which
particular ontology is chosen from this set depends both on the world and on the
emergent consensus in the language community. It should be noted that also the
search algorithm and in particular the heuristic function used introduce a bias or
preference for certain categories over others.

The formalism and algorithm presented in this paper were used by our agents
to create a shared temporal ontology. In [2] some first results are reported on this,
but it still remains to be investigated whether natural (human like) ontologies are
preferred over others and, if so, what the influencing factors are that could explain
this.

6 Acknowledgments
This research is partly funded by the European Science Foundation (OMML, CRP 01- JA02:
The cultural self-organisation of cognitive grammar.)

References
[1] James F. Allen. Maintaining knowledge about temporal intervals. Communications of the

ACM, 26(11):832–843, 1983.

[2] Joachim De Beule. Simulating the syntax and semantics of linguistic constructions about
time. Studies in Language – complementary series, 2004 (Forthcoming).

[3] B. Comrie. Tense. Cambridge University Press, 1985.

[4] Randy J. LaPolla. Language as culture: the conventionalization of constraints on inference.
http:////citeseer.ist.psu.edu//215204.html.

[5] Douglas B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems: Representa-
tion and Inference in the Cyc Project. Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1990.

[6] H. Reichenbach. Elements of Symbolic Logic. Macmillan, London, 1947.

[7] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approch. Prentice Hall, Inc.,
Upper Saddle River, New Jersey 07458, 1995.

[8] Luc Steels. Perceptually grounded meaning creation. In M. Tokoro, editor, Proceedings of
the International Conference on Multiagent Systems (ICMAS-96), pages 338–344, Menlo
Park, CA, 1996. AAAI Press.

[9] Luc Steels. The origins of ontologies and communication conventions in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 1:169–194, 1998.

[10] James Hendler Tim Berners-Lee and Ora Lassila. The semantic web. Scientific American,
May 2001.

[11] M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. Knowledge
Engineering Review, 2(10), 1995.


