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1 Introduction

A purpose of this paper is to understand the evolution of the languages used by the
agents of a society. We focus on language features in which convexity plays a central
role.

In our model a language is a function from a set X of objects or meanings to a
set Y of signals belonging to a prespecified class F in which a distance d is defined.
In a linguistic society P of k agents, a state consists of the set of k languages used
by the individual agents. Such a state evolves with time as agents are exposed to
meaning-signal pairs produced by other agents in the society and modify their own

∗This work has been substantially funded by a grant from the Research Grants Council of the
Hong Kong SAR (project number CityU 1002/99P). Also, the second named author expresses his
appreciation to City University of Hong Kong for its support.

†A preliminary version of this paper appears in [Minett and Wang 2003].
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languages appropriately. We may say that such an agent learns from the present
state of the society and that these learning processes form a learning dynamic. This
dynamic depends on the object-signal pairs to which individual agents are exposed.
In our model we will eventually assume that these pairs are randomly drawn from
X × Y according to a probability measure in this product space reflecting both
the frequency with which different meanings occur in the linguistic setting and the
current state as well as noise.

A key role in this dynamic is played by the strength with which each agent
affects other agent’s language evolution through linguistic encounters. This set of
influences is modelled by a k×k matrix Γ, the communication matrix of the society,
whose entry γij , a non-negative real number, measures the influence of agent j in the
development of the language of agent i. Thus, convergence to a common language is
related to an irreducibility property of Γ, which we call weak irreducibility, and the
speed of this convergence to a number associated to Γ. Weak irreducibility ensures
the existence of sufficiently many linguistic connections (i.e., non-zero γij ’s) thus
ruling out the possibility of partition the society into two disjoint subgroups which
are isolated from one another.

Let ∆F ⊂ Fk be the diagonal of Fk, i.e., ∆F = {(f, f, . . . , f) | f ∈ F}. This
is the set of states in which agents of the society share a common language. Also,
let N(∆F , τ) = {f ∈ Fk | d(f, ∆F ) ≤ τ} be the τ -neighborhood of ∆F . Our
main result can be stated as follows (for a detailed and quantitative statement see
Corollary 2 of Theorem 1 below).

Main Result. Let P be a society whose communication matrix is weakly irre-
ducible and τ > 0. Assume that at each iteration the agents of P are exposed to m
meaning-signal pairs for a sufficiently large m. Then the learning dynamic converges
in a finite number t of steps, with high probability to a state in N(∆F , τ).

The Main Result above has obvious interpretations as “evolution to a common
language.” However, we are using the words “language”, “linguistic”, etc, in a broad
sense and we warn the reader not to read too much into applications to human
language. The abstraction is on a level that could express even certain aspects of
the internet, biological networks, or networks of economic agents.

We do consider a linguistic model of the emergence of a primitive language
using a convex space of utterances, all vowel sounds. Some detail can be given
to an interpretation of the Main Result to a theory of convergence of the agents’
languages. Here the models and computer simulations of a number of researchers
have been an important inspiration to us.

In recent years the subject “Evolution of Language” has seen much activity.
We make no attempt to summarize this except to highlight the following five ref-
erences [De Boer 2001; Ke, Minett, Au, and Wang 2002; Kirby and Hurford 2001;
Niyogi 2003a; Nowak, Komarova, and Niyogi 2001]

Conversations with Partha Niyogi have been very useful and the references he has
given us have been important for us. Also appreciation to Bill Wang is acknowledged.
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2 Language-like functions

In studying the way languages develop to become the shared communication system
they are today, a simplified model starts with the representation of a language as a
continuous function from a set X of objects (or “meanings”) into a set Y of signals
(or words).

The choice of the spaces X and Y and the class of functions will depend on the
particular language evolution we are attempting to model.

Definition 1 A linguistic setting L is a triple ((X, ρX), Y,F) where

(1) X is a closed and bounded domain in IRn and ρX is a Borel probability measure
on X. The pair (X, ρX) is called space of objects (or meanings).

(2) Y ⊂ IEl for some l ≥ 1 is the space of signals, IEl is Euclidean space of dimension
l.

(3) F is a set of continuous functions from X to Y .

Continuous functions f : X → Y are called language-like functions. We will often
refer to a language-like function simply as a language.

The measure ρX will be interpreted as the relative frequency with which different
objects occur in the context at hand.

Example 1 Consider the set of greys, i.e. different intensities of grey varying be-
tween white and black. We can model this set of meanings by taking X = [0, 1].
Here 0 corresponds to absolute white and 1 to absolute black. In normal speech,
we associate absolute black with the word black and absolute white with the word
white. Also, most of the grey tones are associated to the word grey. But some
dark tones of grey are sometimes described as grey and sometimes as black, even
by the same speaker. The frequency of, say, the former decreases with the darkness
of the tone. A similar phenomenon happens with the light grey tones.

To model such a 3-word language we may take Y to be the interval [0, 2] and
associate “pure words” white, grey, and black to the points 0, 1 and 2, respectively.
A language in this case is a non-decreasing continuous function f : [0, 1] → [0, 2]
which maps [0, u1] to 0, [u2, u3] to 1, and [u4, 1] to 2, for some 0 < u1 < u2 <
u3 < u4 < 1. Meanings in the intervals [u1, u2] and [u3, u4] are mapped to points
in the intervals [0, 1] and [1, 2], respectively. For x ∈ [u1, u2], one may interpret
the value f(x) as the proportion of times the language uses white for x (the value
1− f(x) being the proportion of times it uses grey). A similar construction works
for x ∈ [u3, u4]. In this interpretation one has the phenomenon in which different
words may be used for a given meaning.

One can consider a version of the above dealing with colors. Let now X be an
equilateral triangle whose vertices are associated with the primary colors blue, red,
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and yellow. Any point in this triangle is a convex combination of these three colors
and, as such, a definite color. The space Y is also a triangle. The words blue, red,
and yellow are associated with the vertices of this triangle and other words are
associated to other points in the triangle (e.g. green is associated to the midpoint
of the side with vertices blue and yellow, brown is in the center of the triangle,
etc.).

A language f : X → Y , following the lines of the white-grey-black language
above, induces a division of the spaces X and Y into regions such that some regions
of X are mapped to a word (a single point in Y ) and some others to a convex subset
of Y corresponding to the phenomenon described above.

Additionally one can combine the grey and the color linguistic settings in 3
dimensional space to obtain such variations as shades of pink.

Example 2 An idealization (e.g. of William Wang et al. [Ke, Minett, Au, and Wang
2002]) in the study of language emergence assumes a situation in which members of
a finite society associate utterances to objects. The number of both the objects and
the utterances is finite, say r and l respectively. To model this situation one may
take X = {x1, . . . , xr} and Y ⊂ IRl to be the set of l coordinate vectors in IRl. Here
l is a number of utterances and the ith utterance is ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Y ,
the 1 in the ith place. Note that in this case the space Y is finite and therefore
non-convex. A primitive language (simple vocabulary) is any f : X → Y , which is
of course continuous.

Example 3 We now modify Example 2 to incorporate a convex space of signals Y ,
to be interpreted as a space of vowel sounds following [De Boer 2001; Fant 1970;
Stevens 1998].

The sound spectrum of a vowel sound is represented by a function from fre-
quencies in Hertz (i.e., vibrations per second) to amplitudes. The frequencies cor-
responding to the peaks (i.e., local maxima of this real function of a real variable)
in this graph, are called resonance frequencies or formant frequencies in acoustic
phonetics.

Thus, to a vowel sound is associated an increasing sequence of real numbers, the
formant frequencies F1, F2, . . .. Following the above references, we limit ourselves
to the first four, i.e., 0 < F1 < F2 < F3 < F4. These four numbers provide a good
idealization of a vowel sound. In other words, we take

Y ⊆ {(F1, F2, F3, F4) ∈ IR4 | 0 < F1 < F2 < F3 < F4}
a bounded convex closed set, defined by appropriate parameters as in the exposition
in [Fant 1970; Stevens 1998]. The space Y is defined by putting bounds on the
coordinates coming from physical limits of vocal chords and similar constraints.
Thus, we may suppose that every vowel sound is represented by a point in Y and,
conversely, each point in Y is realized by a vowel sound (i.e., there exist a vowel
sound having these formant frequencies).
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Of course this model for vowel sounds makes approximations and idealizations;
yet four formant frequencies, even two or three, yield a good model. The following
table (whose data is taken from [Stevens 1998, Chapter 6]) shows the first three
formant frequencies, in Hertz, for the six basic vowels of American English produced
by an average male speaker.

Vowel i e æ a o u

F1 270 460 660 730 450 300
F2 2290 1890 1720 1090 1050 870
F3 3010 2670 2410 2440 2610 2240

In the literature, one sees often diagrams with just the first two formant fre-
quencies F1, F2. The following is an example (corresponding to the data in the table
above).
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Now we model a situation where speakers with a primitive vocabulary associate
to each object xi, i = 1, . . . , r, a sound represented by a point in Y characterized by
the four real numbers F1, F2, F3, F4. The space of languages, all functions f : X =
{x1, . . . , xr} → Y has some justification from the above acoustic theory of speech,
where now Y is convex, and the situation is ripe for the development of the Main
Result.

Remark 1 Examples 1, 2, and 3 exhibit a difference between their spaces of signals.
In Example 2 the space Y is non-convex while in Examples 1 and 3 it is convex.
The space Y in Example 1 is convex but not all points are realizable as words. On
the contrary, just a finite number of points are realized as words and the remaining
ones are interpreted as probabilities. In Example 3, each point in Y is realizable as
a “word” (i.e., a vowel sound). The convexity of the space of signals will be a main
hypothesis in our development.

Consider two languages f, g : X → Y . The distance between them is given by

d(f, g) =
(∫

X
‖f(x)− g(x)‖2

Y dρX

)1/2
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where ‖y‖Y denotes the norm of y induced by the inner product in IEl. Thus,
‖f(x) − g(x)‖Y is the distance in Y between the signals at x ∈ X for f and g,
and d(f, g) is the average (with respect to ρX , which weights objects in terms of
occurrences in the environment) of these distances. The distance d(f, g) could be
interpreted in terms of the communication ability between two agents using f and
g respectively. The smaller the distance, the larger the communication ability. So
for an agent using language f , communication with an agent using language g is
maximal at g = f or d(f, g) = 0. But communication depends also on the “richness”
of languages f and g.

Language-like functions belong to the space L 2
ρ (X) = L 2

ρ (X; IEl) of functions
f : X → IEl whose norm squared is integrable with respect to the measure ρ = ρX .
This Hilbert space is a convenient conceptual framework. For instance, the distance
defined above is just the distance in L 2

ρ (X).
Let C (X; Y ) be the set of continuous functions from X to Y . This is a Banach

space with the norm
‖f‖∞ = sup

x∈X
‖f(x)‖Y .

Recall that F is a subset of C (X; Y ). Note that when Y is convex so is C (X; Y ).
In this case, we will require F to be convex as well.

We close this section by remarking that, in a given linguistic setting, information
is transmitted in the form of object-signal pairs (x, y) ∈ X×Y . Such pairs (or data)
form the basis for learning a language.

3 Societies

Definition 2 By a society (or a linguistic population) P we understand a triple
({1, . . . , k},L, Γ) where L is a linguistic setting and Γ is a k × k matrix with non-
negative entries called the communication matrix of the society. The k elements in
{1, . . . , k} are the agents of the society.

The communication matrix helps to model how languages adjust by agents learn-
ing from one another. To do so one proceeds by taking into account how the different
agents affect each other’s language evolution. For each pair (i, j) ∈ {1, . . . , k}2, the
(i, j) entry γij ≥ 0 of Γ measures the number of linguistic encounters between agents
i and j. By “encounters” we mean non-symmetric, effective, encounters, so that γij

measures the influence of agent j in the development of the language of agent i.
The special case of the diagonal elements γii may be interpreted as an inertia

which could be expected to be small in the case of linguistic immaturity and large
for an agent with full language development.

Note that the set of numbers {γij | i, j ≤ k} defines a weighted oriented graph
whose nodes are the agents {1, . . . , k} and having γij as weight for the edge from
j to i. Edges with weight 0 may be omitted. Thus, an edge can be seen as a data
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transmission channel from j to i weighted by the influence that the transmitter has
over i.

Example 4 Consider a society consisting of a mother M and a baby B. This is an
instance of the problem of language acquisition. The assumption that the mother’s
language is not affected by the baby’s is described by the equality γMB = 0 which
yields a matrix Γ with the form

M B
M
B

[
1 0

1− θ θ

]

where θ > 0 is small.

Example 5 Consider now a society consisting of two groups of agents, say the
inhabitants of two islands, having no direct or indirect contact with each other. If
I = {1, . . . , ni} and J = {ni + 1, . . . , ni + nj} denote these two groups the matrix of
linguistic encounters has the form

[
ΓI 0
0 ΓJ

]

where ΓI and ΓJ are square matrices of dimension ni and nj respectively. Note that
in this situation, one can not expect that all the agents will eventually use the same
language. The matrix Γ is said to be “reducible” [Seneta 1973].

Remark 2 Throughout this paper we assume that
∑k

j=1 γij > 0 for i = 1, . . . , k.
This excludes the possibility of a complete immature agent (one with inertia zero)
which is not influenced by the rest of the agents.

A state of a linguistic society is a k-tuple (f1, . . . , fk), where fi : X → Y is the
language of the ith agent. The set Fk of all k-tuples formed by languages from F
will be called state space. Recall that ∆F = {(f, . . . , f) ∈ Fk} is the set of the
states in which all agents share a common language precisely.

4 A learning dynamic

Consider a society P = ({1, . . . , k},L, Γ). During a given period beginning at time
t with a state f (t) = (f (t)

1 , . . . , f
(t)
k ), agents of this society communicate with each

other and modify their language so that at the end of the period the state of the
society has changed from f (t) to f (t+1). To do so, agent i modifies his language by
a learning algorithm

S(t)
i 7→ f

(t+1)
i
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which computes language f
(t+1)
i from a collection of data (or sample)

S(t)
i = {(x(it)

1 , y
(it)
1 ), . . . , (x(it)

m , y(it)
m )}

consisting of m object-signal pairs transmitted to i by the different agents in the
society. This yields a map

Fk → Fk

f (t) 7→ f (t+1) (A)

whose iteration defines a learning dynamic.
To complete the construction of the learning dynamic, one needs to specify a

learning algorithm and the way the data S(t)
i is sampled by agent i for i = 1, . . . , k.

One does not know much about the actual human mechanisms (i.e., algorithms)
of learning. But one can exhibit a simple algorithm with which machines can be
efficiently trained and which will be used in our mathematical development.

In the sequel we will assume

The space Y is convex and the set F is convex and compact (B)

together with a learning algorithm computing

f
(t+1)
i = arg min

f∈F

∑

(x,y)∈S(t)
i

(f(x)− y)2. (C)

The existence of f
(t+1)
i is ensured by the compactness of F . We remark, though,

that f
(t+1)
i may not be unique. This ambiguity is suppressed in the following and

does not affect the results.
We will assume that the data S(t)

i is sampled from a probability measure ρ(it)

on Z = X × IRl supported on X × Y .
Pairs in S(t)

i are transmitted to agent i from agents j such that γij 6= 0. These
pairs are produced by the transmitters; a pair (x, y) is produced by j by randomly
selecting an object x from the space of objects X with the probability measure
ρX and then associating to it y = f

(t)
j (x). We will assume that ρ(it) satisfies the

conditions (C), (D), and (E) below.

The marginal measure of ρ(it) on X is ρX . (D)

This is a natural condition which follows, for instance, from the assumption that all
transmitters randomly select points from X according to ρX .

Define F
(t)
i : X → Y by

F
(t)
i =

k∑

j=1

λijf
(t)
j where λij =

γij∑k
j=1 γij

.
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Now recall, the regression function of ρ(it) is the function defined by

x 7→
∫

IRl

y dρ(it)(y|x)

where ρ(it)(y|x) is the conditional (with respect to x) probability measure induced
by ρ(it) on Y . The second assumption on ρ(it) is the following.

The regression function of ρ(it) equals F
(t)
i . (E)

This is again a natural condition which follows from the assumption that the trans-
mitter is randomly selected and that the probability of the event “a pair is transmit-
ted by agent j” is λij . Indeed, fix x ∈ X and take a random pair from X × Y with
first coordinate x. Since the probability that this pair was transmitted by agent j
is λij , the expected value of the second coordinate is

k∑

j=1

λijf
(t)
j (x).

The third condition on ρ(it) is the following.

There exists M ∈ IR such that max
(x,y)∈X×Y

f∈F

‖f(x)− y‖Y ≤ M . (F)

It is sufficient to assume that ρ(it) has compact support (uniform in t) since
sup
f∈F
x∈X

‖f(x)‖Y < ∞ by the compactness of X and F .

Remark 3 (i) The way F
(t)
i is defined makes use of both scalar multiplication and

addition of languages. These are only formal constructs; they do not have any
linguistic interpretation. The linear combination defining F

(t)
i , however, has a

further structure: F
(t)
i is a convex combination of the languages f

(t)
1 , . . . , f

(t)
k .

Therefore, if F is convex, F
(t)
i ∈ F for i = 1, . . . , k. This is not true for arbi-

trary linear combinations of elements in F . These sums are only guaranteed
to be in L 2

ρ (X) showing the contrast between the linguistic nature of F in
our model and the purely formal one of L 2

ρ (X).

(ii) While conditions (D) and (E) follow from the assumptions that all transmitters
randomly select points from x according to ρX and that the probability that a
pair is transmitted by agent j is λij , respectively, one may model with (D–E)
more general situations than those satisfying these assumptions. In particular,
one may model situations in which noise occurs. This noise may be introduced
by the transmitter, the receiver, or present on the communication channel. An
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example would be a situation in which the receiver gets pairs (x, f
(t)
j (x) + εj)

from j with εj a random variable centered at 0, instead of noise-free pairs
(x, f

(t)
j (x)). In this case, condition (i) follows as above and condition (ii)

follows from the fact that

∫

Y
y dρ(it)(y|x) =

k∑

j=1

λij

∫

Y
(fj(x)+εj(y)) =

k∑

j=1

λijf
(t)
j (x)+

∫

Y
εj(y) = F

(t)
i (x)

since the εj are centered at 0. But we note that other, more general forms of
noise, can lead to condition (E) as well.

(ii) Note that the learning dynamic in (A) is not a simple discrete dynam-
ical system since the map it iterates depends on the random samples
{(x(it)

1 , y
(it)
1 ), . . . , (x(it)

m , y
(it)
m )}, which vary with t. One may say that it is a

stochastic dynamic.

(iii) We remark here that the matrix Γ remains unchanged during the dynamic.

Our definition of language-like function is sufficiently abstract that one may
model situations which are not necessarily in the realm of human languages. Our
last example, inspired by economic equilibrium theory, exhibits one such case.

Example 6 Consider ` commodities 1, . . . , ` and let X = [0,K]` (here K > 0
is a large enough constant) be the space of commodity bundles. We assume all
commodities are divisible so that a point x ∈ X represents a bundle of quantities
xr, 0 ≤ xr ≤ K, of commodity r for each r = 1, . . . , `. A price system is a map
p : X → IR+ where p(x) is the price of the bundle of goods (x1, . . . , x`). The simplest
example of price system is given by associating price p[r] ≥ 0 to r for r = 1, . . . , `,
interpreted as price p[r] for one unit of r, and p(x) =

∑`
r=1 xrp[r].

A state (p1, . . . , pk) ∈ Fk will have this interpretation. Agent i has the belief
or perception that the economy is operating under price system pi. At a time t,
an agent j with his belief in prices pj will make offers of the type ‘buy’ or ‘sell’ a
bundle of goods x at price pj(x). These offers form the sample transmitted to agent
i, regulated by λij . After receiving this sample, agent i will form a new belief in a
price system. The set of these new beliefs for i = 1, . . . , k will give the state at time
t + 1 of the learning dynamic.

The Main Result in this paper has an interpretation which gives conditions for
the sequence of states to converge to a common belief in a price system. However,
there are great limitations to this picture because it takes into account neither the
resources nor the preferences of the agents which could play a role in their offers
to buy and sell. One might see [Smale 1981] for some background —economic
equilibrium theory.
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5 Statement of the Main Result

For fi ∈ F , i = 1, . . . , k, write

Fi =
k∑

j=1

λijfj .

Denoting by Λ the matrix
Λ :=

(
λij

)k

i,j=1

and writing F = (F1, . . . , Fk) and f = (f1, . . . , fk) we have that F = Λf . We will
call Λ the normalized communication matrix of the society. It is an example of
stochastic matrix.

A k × k matrix Λ =
(
λij

)k

i,j=1
is said to be a stochastic matrix (or a Markov

matrix) if λij ≥ 0 for all i, j and

k∑

j=1

λij = 1, ∀i = 1, . . . , k.

A main result in the theory of stochastic matrices (cf. [Seneta 1973]) is the
following.

Proposition 1 (Perron-Frobenius) A stochastic matrix Λ has the eigenvalue 1
with the eigenvector (1, . . . , 1). All its other eigenvalues are not more than 1 in
modulus. ¤

A stochastic matrix is said to be weakly irreducible if 1 is a simple eigenvalue
and all its other eigenvalues are less than 1 in modulus. A non-negative square
matrix is weakly irreducible when its normalization (so that the sum of the elements
in each row is 1) is weakly irreducible. For instance, the matrix Λ resulting from
normalizing the matrix Γ in Example 4 is weakly irreducible (but not irreducible in
the sense of [Seneta 1973]) while that in Example 5 is not weakly irreducible.

If X is a metric space and ε > 0, the covering number N (X, ε) is defined as the
smallest ` ∈ IN such that there exist ` disks of radius ε covering X.

Also, note that L 2
ρ (X) induces a metric in Fk by taking the k-fold product of

the distances introduced in Section 2

d(f, g) = ‖f − g‖(L 2
ρ (X))k =

(
k∑

r=1

‖fr − gr‖2
L 2

ρ (X)

)1/2

.

Using this metric the distance from a state f to the diagonal ∆F is defined

d(f, ∆F ) = inf
g∈∆F

d(f, g).
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Theorem 1 Let P = ({1, . . . , k},L, Γ) be a society with a weakly irreducible com-
munication matrix. Let f (t) denote the states obtained by the learning dynamic
given by (A), under assumption (B), learning algorithm (C), with initial state f (0)

and such that each agent receives, at each iteration, m object-signal pairs sampled
from a distribution satisfying conditions (D–F) above. There exist constants α∗ < 1
and C > 0 (depending on Λ) such that for each 0 < δ < 1, and t ∈ IN, if m ≥ mt

then
d(f (t), ∆F ) ≤ Cαt

∗d(f (0), ∆F )

with confidence at least 1− δ.
One may take

mt =
288kM2

(1− α∗)2α2t∗ d(f (0), ∆F )2
ln

(
tkN

(
F ,

(1− α∗)2α2t
∗ d(f (0),∆F )2

24kM

)
+ ln

(
1
δ

))
.

Remark 4 (i) A common feature in the main classes F considered in learning
theory (cf. §7.1 below) is the inequality, for some constants CF , a > 0 and all
ε > 0,

lnN (F , ε) ≤ CF

(
1
ε

)a

. (1)

In this case the expression for mt takes the form

mt =
288kM2

(1− α∗)2α2t∗ d(f (0),∆F )2

(
ln tk + CF

(
24kM

(1− α∗)2α2t∗ d(f (0),∆F )2

)a

+ ln
(

1
δ

))
.

The constant CF is independent of ε.

In the rest of the paper we assume that (1) holds.

(ii) Note that, as t → ∞, mt → ∞. Also, one may replace the condition on m by
solving for δ and obtain that

δ ≤ tk e
−m(1−α∗)2α2t∗ d(f(0),∆F )2

288kM2 +CF
(

24kM

(1−α∗)2α2t∗ d(f(0),∆F )2

)a

.

In this form one sees that to have δ < 1 one needs m sufficiently large.

(iii) From the compactness of X and F it follows that diam(F) = supf,g∈F d(f, g)
is finite. Without loss of generality we may assume that diam(F) ≤ M .
Therefore, diam(Fk) ≤

√
kM and d(f,∆F ) ≤

√
kM
2 . In particular, we may

(crudely) replace d(f (0), ∆F ) by
√

kM
2 in the expressions for mt and d.

(iv) Note that constants in Theorem 1 depend on Λ as specified and will be exhib-
ited in the proof.

12



By appropriately choosing δ as a function of t we can show that, when t → ∞,
f (t) tends to ∆F almost surely. Let f

(t)
[m] denote the state after t steps when the

number of examples at step t in the dynamic is m.
In the following corollaries, of course, the setting and conditions are as in The-

orem 1 (with the addition of Remark 4(i)).

Corollary 1 Let

m(t) =
288kM2

(1− α∗)2α2t∗ d(f (0), ∆F )2

(
ln t2k + CF

(
24kM

(1− α∗)2α2t∗ d(f (0), ∆F )2

)a)
.

Then
sup
ε>0

lim
t→∞Prob

{
d

(
f

(t)
[m(t)], ∆F

)
≤ ε

}
= 1.

Proof. Consider ε > 0. For all t sufficiently large, Cαt∗d(f (0), ∆F ) < ε. There-
fore, taking δ = 1

t , for all such t,

Prob
{

d
(
f

(t)
[m(t)], ∆F

)
≤ ε

}
≥ 1− 1

t
.

¤

Corollary 2 Let 0 < δ < 1 and τ > 0. If m ≥ mT and T is the first integer greater
than or equal to

ln(Cd(f (0),∆F ))− ln τ

| ln α∗|
then f (T ) ∈ N(∆F , τ) with confidence 1− δ. One may take

mT =
288kM2C2

(1− α∗)2τ2

(
ln Tk + CF

(
24kMC2

(1− α∗)2τ2

)a

+ ln
(

1
δ

))
.

The condition for m can be replaced by one on δ to obtain

δ ≤ Tk e
−m(1−α∗)2τ2

288kM2C2 +CF
(

24kMC2

(1−α∗)2τ2

)a

.

¤

Remark 5 (i) The use of the word “language” in the expressions “the English
language” and “John’s language” is not the same. Saussure [1983] used the
words langue and parole to distinguish between them. In English, one may
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use the term language-system to denote the former.1 We have already used
the term “language” to denote the latter and made its definition a key piece
in our model. We now give a definition for the Saussurean ‘langue.’

We say that a society P = ({1, . . . , k},L,Γ) shares a language-system when
d((f1, . . . , fk), ∆F ) ≤ τ . Here τ is a constant, which may depend on the
modelled situation. Agents of a linguistic society sharing a language-system
are said to speak an idiolect of it.2

One might interpret Corollary 2 as giving the time for the emergence of a
language-system as quantified by τ in terms especially of the sample size m.
We emphasize again that, to have substance, in Corollary 2, m needs to be
large enough to ensure δ < 1.

(ii) Note that in Corollary 2 we have supposed that mt →∞ as t →∞. Suppose on
the contrary that m ≤ M, with M independent of t (as might follow from the
reasonable assumption that in one unit of time the sample size can not become
arbitrarily large). In this case, as t increases, the confidence 1−δ decreases and
reaches negative values as can be seen from Remark 4(ii). As a consequence the
dynamic as t tends to ∞ has the property that any state will eventually move
outside a τ -neighborhood of ∆F . This is a mathematical statement which has
an interpretation: a language-system eventually disintegrates. Thus, with the
bounded m hypothesis, only a finite t will maintain a shared language-system.
That t may be read off from Corollary 2.

One may modify the linguistic model to incorporate the ages of the agents into
the states, birth and death. In this setting, with the introduction of immortal
agents (e.g. Shakespeare), one may circumvent this property.

6 Proof of Theorem 1

The proof of Theorem 1 relies on tools from two different subjects: stochastic ma-
trices and learning theory.

1What Saussure called a ‘langue’ is any particular language that is the common possession of
all the members of a given language community (i.e. of all those who are acknowledged to speak
the same language). [. . . ] We will introduce the term language-system in place of it. [. . . ] A
language-system is a social phenomenon, or institution, which of itself is purely abstract, in that it
has no physical existence, but which is actualized on particular occasions in the language-behaviour
of individual members of the language community. [Lyons 1981, page 10].

2“In the last resort, we should have to admit that everyone has his own individual dialect: that
he has his own idiolect, as linguists put it. Every idiolect will differ from every other, certainly in
vocabulary and pronunciation and perhaps also, to a smaller degree, in grammar.” [Lyons 1981,
pages 26–27].

14



6.1 Convergence of iterated stochastic matrices

Though the dynamic induced by a weakly irreducible Λ need not be contracting to
the diagonal under the Euclidean norm, it is under a modified norm.

Assume Λ is a weakly irreducible stochastic matrix. Let e = (1, . . . , 1). Then,
Λe = e i.e., e is an eigenvector of Λ with eigenvalue 1. The eigenspace of 1 is
thus the diagonal ∆k in IRk. Let W ⊆ IRk be the eigenspace corresponding to the
remaining eigenvalues of Λ. Also, let V ′ be an eigenvector of ΛT associated with the
eigenvalue 1. Finally, for a point v ∈ IRk, let Diag(v) = (v, . . . , v) ∈ ∆k.

Lemma 1 Let Λ be a stochastic weakly irreducible k × k matrix. Then

(i) The space IRk decomposes into the direct sum IRk = ∆k ⊕W .

(ii) (a) W = {w ∈ IRk | (V ′)Tw = 0}.
(b)

∑k
i=1 V ′

i 6= 0.

(c) Let V = V ′∑
V ′i . Then for every v ∈ IRk, v = Diag(V Tv)+(v−Diag(V Tv))

with (v −Diag(V Tv)) ∈ W .

(iii) There is a norm ‖ · ‖Λ on IRk and a number 0 < α∗ < 1 such that, for all
v ∈ ∆k and w ∈ W ,

dΛ(w,∆k) = ‖Λw‖Λ ≤ α∗‖w‖Λ,

and
dΛ(v + w,∆k) = dΛ(v, ∆k).

Proof. Part (i) is well-known. To prove part (ii) we note that the proof of [Smale
1963, Theorem 3.1], for instance, yields a constant α∗ < 1 and an inner product 〈 , 〉Λ
in W satisfying ‖Λw‖Λ ≤ α∗‖w‖Λ for all w ∈ W . For w ∈ W ,

(V ′)TΛw = (ΛTV ′)Tw = (V ′)Tw.

Since V ′ 6= 0 and Λ is contractive on W this implies that (V ′)Tw = 0. This proves
that W ⊆ {w ∈ IRk | (V ′)Tw = 0}. But since both spaces have dimension k − 1
they must coincide. This proves (ii.a).

Since e 6∈ W we have that (V ′)Te 6= 0. This proves (ii.b). Part (ii.c) is now
immediate.

For part (iii) take the extension to IRk of the inner product in part (ii.a) which
makes e orthogonal to W and satisfies ‖e‖Λ = 1. Let ‖ ‖Λ be the norm induced by
this inner product. We noted in the proof of (ii.a) that ‖ ‖Λ is contractive on W thus
the first statement in (iii). The second statement follows from the orthogonality of
e and W . ¤
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Remark 6 Let α1 = 1, α2, . . . , αk be the eigenvalues of Λ with algebraic multi-
plicity. It follows from the mentioned proof of [Smale 1963, Theorem 3.1] that any
α > maxi=2,...,k |αi| can be taken as α∗ and that, if all the eigenvalues are non-
degenerate, then one may take α∗ = maxi=2,...,k |αi|.

We remarked in Section 5 that F = Λf . This defines an action of Λ on Fk which
should not be confused with the action of Λ on IRk that was the object of Lemma 1.
Yet, we would like to extend this lemma to the action of Λ on Fk. To do so, we first
consider the extension of this action to (IRl)k. This extension is given by defining,
for ~v = (~v1, . . . , ~vk) ∈ (IRl)k and i = 1, . . . , k,

(Λ~v)i =
k∑

j=1

λij~vj .

Now extend the definitions of ∆k and W by letting

∆lk =
{

(~v, . . . , ~v) ∈ (IRl)k | ~v ∈ IRl
}

and

Wlk =

{
~w ∈ (IRl)k |

k∑

i=1

Vi ~wi = 0

}

and it is easy to check that the following extension of Lemma 1 holds. In what
follows, if L is a vector space over IR and v ∈ Lk we denote by V Tv the element of
L given by

∑k
i=1 Vivi. Note that, since ΛTV = V ,

V T(Λv) = V Tv for all v ∈ Lk.

Lemma 2 Let Λ be a stochastic weakly irreducible k × k matrix. Then

(i) The space (IRl)k decomposes in the direct sum IRk = ∆kl ⊕Wkl.

(ii) The space Wkl is invariant under the action of Λ. For every ~v ∈ (IRl)k, ~v =
Diag(V T~v) + (~v −Diag(V T~v)) with (~v −Diag(V T~v)) ∈ Wkl.

(iii) There is a norm ‖ · ‖Λ on (IRl)k and a number 0 < α∗ < 1 such that, for all
~v ∈ ∆kl and ~w ∈ Wkl,

dΛ(~w, ∆kl) = ‖Λ~w‖Λ ≤ α∗‖~w‖Λ,

and
dΛ(~v + ~w, ∆kl) = dΛ(~v,∆kl).
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Proof. Parts (i) and (ii) are proved as in Lemma 1. Part (iii) follows by letting,
for ~w = (~w1, . . . , ~wk) ∈ (IRl)k,

‖~w‖2
Λ =

l∑

i=1

‖(~w1)i, . . . , (~wk)i‖2
Λ

where (~wj)i denotes the ith component of ~wj ∈ IRl. ¤
To further extend the above to F we consider the linear closure F of F and the

extended action of Λ on Fk. Also, we let

∆F =
{

(f, . . . , f) ∈ (F)k | f ∈ F
}

and

WF =

{
g ∈ Fk |

k∑

i=1

Vigi = 0

}

and, Lemma 2 now extends as follows.

Lemma 3 Let Λ be a stochastic weakly irreducible k × k matrix. Then

(i) The space Fk
decomposes in the direct sum Fk = ∆F ⊕WF .

(ii) The space WF is invariant under the action of Λ. For every f ∈ Fk
, f =

Diag(V Tf) + (f −Diag(V Tf)) with (f −Diag(V Tf)) ∈ WF .

(iii) There is a norm ‖ · ‖Λ on Fk
and a number 0 < α∗ < 1 such that, for all

f ∈ ∆F and g ∈ WF ,

dΛ(g,∆F ) = ‖Λg‖Λ ≤ α∗‖g‖Λ,

and
dΛ(f + g, ∆F ) = dΛ(g,∆F ).

Proof. Again, parts (i) and (ii) are proved as in Lemma 1. Part (iii) follows by
letting, for f = (f1, . . . , fk) ∈ Fk,

‖f‖2
Λ =

∫

X
‖(f1(x), . . . , fk(x))‖2

Λ dρX

where the norm in the right-hand side is that of Lemma 2. ¤
Consider the dynamic obtained by iterating the map T : Fk → Fk defined by

T (f) = Λf , f = (f1, . . . , fk) ∈ Fk. This may be seen as an “ideal” version of the
learning dynamic. Our next result asserts this ideal dynamic is contractive with
respect to the diagonal ∆F for the distance dΛ.

In what follows we denote f∆ = Diag(V Tf).
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Theorem 2 Let f ∈ Fk
, f = f∆ + fW ∈ ∆F ⊕WF . Then,

dΛ(T f, f∆) ≤ α∗dΛ(f, f∆).

Proof.

dΛ(T f, f∆) = dΛ(f∆ + ΛfW , f∆) = ‖ΛfW ‖Λ ≤ α∗‖fW ‖Λ = α∗dΛ(f, f∆).

¤

Corollary 3 For all f ∈ Fk,

dΛ(T f, ∆F ) ≤ α∗dΛ(f, ∆F )

and lim
t→∞ T

tf = f∆ = Diag

(
k∑

i=1

Vifi

)
. ¤

6.2 Learning theory

The sampling and subsequent learning algorithm described in Section 4 are an in-
stance of the general situation in learning theory. We next briefly describe this
general situation (following [Cucker and Smale 2002]).

Let X and Y be as in Section 2 and Z = X×IRl. Consider a probability measure
ρ in Z. For a function f : X → IRl we define its error (with respect to ρ) by

E(f) :=
∫

Z
‖f(x)− y‖2

Y dρ. (2)

It is known (see e.g. Proposition 1, Chapter I of [Cucker and Smale 2002]) that, for
any function f ,

E(f) = E(fρ) +
∫

X
‖f(x)− fρ(x)‖2

Y dρX . (3)

The first term in the right-hand side, in the sequel denoted by σ2
ρ, is non-negative

and independent of f . Therefore, the regression function fρ minimizes the error E .
Recall that C (X; Y ) is the Banach space of all continuous functions from X to Y

with the norm ‖f‖ = supx∈X{‖f(x)‖Y } and F ⊂ C (X;Y ) is a convex and compact
subset (which in learning theory is called hypothesis space). We may search, among
the functions f ∈ F the function fF , called the target function, that minimizes the
error E ,

fF := arg min
f∈F

E(f).

A key remark concerning the measure ρ is that this measure is not assumed to
be known. Therefore, the minimization problem defining fF is not fully explicit
and fF is not computable. What can be done instead, is to consider a sample
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z = ((x1, yy), . . . , (xm, ym)) of m examples independently drawn from Z according
to ρ and to minimize the empirical error

Ez(f) :=
1
m

m∑

r=1

‖f(xr)− yr‖2
Y .

The function fz that minimizes the empirical error in F is called the empirical target
function

fz := arg min
f∈F

Ez(f). (4)

The empirical target function is computable. It approximates the target function
well when the number m of samples is large enough (see e.g. [Cucker and Smale
2002; Haussler 1992; Niyogi 1998; Vapnik 1998]). For our purposes we next state
Theorem C* of [Cucker and Smale 2002].

Proposition 2 ([Cucker and Smale 2002]) Let F be a compact and convex
subset of C (X; Y ) and ρ a probability measure on Z = X × IRl with support on
X × Y . Assume that for all f ∈ F , ‖f(x)− y‖Y ≤ M almost everywhere. Then, for
all η > 0,

Prob
z∈Zm

{∫

X
‖fz(x)− fF (x)‖2

Y dρX ≤ η

}
≥ 1−N

(
F ,

η

24M

)
e−

mη

288M2 .

¤

The individual steps in the learning dynamic described in Section 4 can be seen
within the general framework of learning theory. At time t, agent i is exposed to
a sample z = ((x1, yy), . . . , (xm, ym)) drawn from Z according to ρ(it). Assumption
(E) in Section 4 asserts that the regression function fρ(it) is precisely F

(t)
i . We note,

however, that f
(t)
i ∈ F , for i = 1, . . . , k and that F is convex. Thus, F

(t)
i ∈ F and

therefore fF = fρ(it) . In other words, regression and target functions coincide.

6.3 Proof of Theorem 1

Recall that F (t) = T f (t). By the triangle inequality,

dΛ(f (t),∆F ) ≤ dΛ(f (t), F (t)) + dΛ(F (t), ∆F ).

Corollary 3 yields the contractivity of the second term, i.e.,

dΛ(F (t),∆F ) = dΛ(T f (t),∆F ) ≤ α∗dΛ(f (t−1),∆F ).

So we only need to estimate the first term.
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We now use Proposition 2 to deduce that, for each η > 0 and each i = 1, . . . , k,

Prob
z
(t)
i ∈Zm

{∫

X

∥∥∥f
(t)
i (x)− F

(t)
i (x)

∥∥∥
2

Y
dρX ≤ η

}
≥ 1−N

(
F ,

η

24M

)
e−

mη

288M2 .

Then with confidence at least 1− kN (F , η
24M

)
e−

mη

288M2 , there holds
∥∥∥f (t) − F (t)

∥∥∥
2

(L 2
ρ (X))k

≤ kη.

We need to compare the metrics dΛ and d. Since the norm ‖ ‖Λ on IRk is
equivalent to the Euclidean norm ‖ ‖, there exist two positive constants CΛ and C ′

Λ

such that
C ′

Λ‖v‖ ≤ ‖v‖Λ ≤ CΛ‖v‖, ∀v ∈ IRk.

It follows that for any f, g ∈ Fk,

C ′
Λd(f, g) ≤ dΛ(f, g) ≤ CΛd(f, g). (5)

This, together with the estimate for ‖f (t) − F (t)‖(L 2
ρ (X))k , implies

dΛ(f (t), F (t)) ≤ CΛ‖f (t) − F (t)‖(L 2
ρ (X))k ≤ CΛ

√
kη.

Therefore, with confidence at least 1− kN (F , η
24M

)
e−

mη

288M2 , we have

dΛ(f (t), ∆F ) ≤ CΛ

√
kη + α∗dΛ(f (t−1), ∆F ). (6)

Combining the estimates for t, t− 1, . . . , 1, we deduce that, with confidence at least
1− tkN (F , η

24M

)
e−

mη

288M2 ,

dΛ(f (t),∆F ) ≤ CΛ

√
kη

(
1 + α∗ + . . . + αt−1

∗
)

+ αt
∗dΛ(f (0), ∆F )

≤ CΛ

1− α∗

√
kη + αt

∗dΛ(f (0), ∆F ).

Thus, for

m ≥ 288M2

η

(
ln

tkN (F , η
24M

)

δ

)
.

we have, with confidence at least 1− δ,

d(f (t), ∆F ) ≤ CΛ

C ′
Λ

{ √
k

1− α∗
√

η + αt
∗d(f (0),∆F )

}
.

Taking η = α2t∗ d(f (0),∆F )2(1−α∗)2
k and C = 2CΛ

C′Λ
finishes the proof of Theorem 1.

¤
A small variation in the proof of Theorem 1 allows one to prove that the learning

dynamic contracts to the diagonal for the distance dΛ.
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Proposition 3 In the hypothesis of Theorem 1 there exist constants α∗ < α < 1
and C′ > 0 such that for each 0 < δ < 1, and t ∈ IN, if m ≥ mt then

dΛ(f (t),∆F ) ≤ αtdΛ(f (0), ∆F )

with confidence at least 1− δ.
One may take

mt =
12M2k

C′α2tdΛ(f (0), ∆F )2
ln

tkN
(
F , C′α2tdΛ(f (0),∆F )2

Mk

)

δ
.

Proof. Let α be such that α∗ < α < 1. Choose

η =
(αt − αt∗)2dΛ(f (0),∆F )2(1− α∗)

C2
Λk

.

Then, by (6),

dΛ(f (t), ∆F ) ≤ (αt − αt
∗)dΛ(f (0),∆F ) + αt

∗dΛ(f (0), ∆F ) = αtdΛ(f (0), ∆F )

and the map f (t) 7→ f (t+1) is a strict contraction with the dΛ metric.
Now note that

αt − αt
∗ = αt

((
1− α∗

α

)t
)

= αt
(
1− α∗

α

)(
1 +

α∗
α

+
(α∗

α

)2
+ . . . +

(α∗
α

)t−1
)

≥ αt
(
1− α∗

α

)

and therefore

η ≥ α2tdΛ(f (0), ∆F )2C′

k

with C′ = (1−α∗
α )2

(1−α∗)
C2

Λ
. Therefore, for a given 0 < δ < 1, the contraction above

holds with confidence 1− δ as long as

m ≥ 288M2

η
ln

tkN (F , η
24M

)

δ

≥ 288M2k

C′α2tdΛ(f (0),∆F )2
ln

tkN
(
F , C′α2tdΛ(f (0),∆F )2

24Mk

)

δ
.

Replacing C′ by C′
24 finishes the proof. ¤
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Remark 7 (i) Note that the contraction factor α can be taken arbitrarily close to
α∗ but as α → α∗ one has C′ → 0.

(ii) One may strengthen Theorem 1. Given f = f (0) ∈ Fk and 0 < δ < 1 there
exists t such that, for appropriate mt, d(f (t), f∆) ≤ τ . Yet, one can not say
that for any m(t) such that m(t) → ∞ when t → ∞, one has f (t) → f∆. To
see this, follow the proof of Theorem 1.

(iii) The dynamic defined by T : Fk → Fk of Theorem 2 corresponds to the limit
as m →∞ for each time period, as can be seen from the proof above.

7 Additional considerations

7.1 On the class F
The space F , present at the origin of a learning dynamic, puts a boundary on the set
of learnable languages. In this sense, it plays a role akin to the universal grammar
of Chomsky. In our linguistic model, it is a associated to a given society and thus,
it is not a parameter we choose.

In contrast, in learning theory, the hypothesis space may be chosen and its choice
is an important issue. A general setting to do so is given by a compact embedding
of a Hilbert space IH,

i : IH ↪→ C (X; Y ).

For any R > 0, the closure i(B(IH, R)) of the image of the ball B(IH, R) of radius R
in IH is a compact, convex subset of C (X;Y ). Choices of IH are spaces of polyno-
mials of bounded degree, say d, Sobolev spaces Hs with s > n/2, and reproducing
kernel Hilbert spaces arising from a C∞ Mercer kernel (for details of these spaces
see [Cucker and Smale 2002]). In the last two cases we have the following bound for
the logarithm of covering numbers

lnN (F , ε) ≤
(

RCs

ε

)n/s

+ 1, and lnN (F , ε) ≤
(

RCh

ε

) 2n
h

.

where h is any number such that h > n, and Cs and Ch are constants independent
of ε and R. Note, both bounds can be written in the form lnN (F , ε) ≤ CF

(
1
ε

)a for
some CF > 0 and a > 0 independent of ε. In the first case, we have

lnN (F , ε) ≤ N ln
(

4R

ε

)
,

where N is the dimension of the space of polynomials, i.e.,
(
n+d

n

)
.
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7.2 On the limiting common language

Recall, V ∈ IRk is the eigenvector of ΛT associated with the eigenvalue 1 and such
that the sum of its components is 1. We proved in Corollary 3 that the limiting
language of the dynamic given by the iteration of T : Fk → Fk with initial state f
is given by Diag(V Tf). Our next result shows a simple closed form for V .

Proposition 4 If Λ is weakly irreducible then

V =

(
Λ̃i1∑k

j=1 Λ̃j1

)k

i=1

where
(
Λ̃i1

)k

i=1
are the determinants of the cofactor matrices of the first column of

Λ− Id. The statement holds true for any column other than the first.

Proof. Let Λ− Id =
(
λ̃ij

)k

i,j=1
. We claim that

[
Λ̃11, Λ̃21, . . . , Λ̃k1

]
(Λ− Id) = [0, . . . , 0].

Indeed,

[
Λ̃11, Λ̃21, . . . , Λ̃k1

]



λ̃1j

λ̃2j
...

λ̃kj


 =

k∑

i=1

λijΛ̃i1 =
{

0 if j 6= 1
det(Λ− Id) if j = 1.

But det(Λ − Id) = 0 since 1 is an eigenvalue of Λ. So the claim holds. Since Λ is

weakly irreducible, rank (Λ− Id) = k−1. Then, Λ̃i1 6= 0 for some i. Thus,
(
Λ̃i1

)k

i=1

is an eigenvector of ΛT with eigenvalue 1 and therefore

V =

(
Λ̃i1∑k

j=1 Λ̃j1

)k

i=1

.

¤

8 Some examples revisited

8.1 Two agent societies

In a two agent society the normalized communication matrix has the form

Λ =
[

1− a a
b 1− b

]
(7)
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for some 0 ≤ a, b ≤ 1. By Proposition 4 we have

V =
(

b

a + b
,

a

a + b

)

from which it follows, by Lemma 1, that W = {w ∈ IR2 | bw1 + aw2 = 0}. An
obvious element in this set is w0 = (a,−b) and from the equation Λw0 = αw0 it
follows that the eigenvalue for w0 is 1−a−b. By Remark 6 we can take α∗ = 1−a−b.
Normalizing the two eigenvectors of Λ we obtain a basis

BΛ =
{(

1√
2
,

1√
2

)
,

(
a√

a2 + b2
,

−b√
a2 + b2

)}

of IR2 which is orthonormal for 〈 , 〉Λ.
Let S1 be the unit circle (with respect to ‖ ‖Λ) in IR2 and let (x, y) denote the

coordinates (in the basis BΛ) of a point in S1. Then

C2
Λ = max

(x,y)∈S1

(
x√
2

+
ya√

a2 + b2

)2

+
(

x√
2
− yb√

a2 + b2

)2

= max
(x,y)∈S1

x2 + y2 + 2xy
a− b√

(a2 + b2)2

= max
(x,y)∈S1

1 + 2xy
a− b√

2(a2 + b2)

and (C ′
Λ)2 is obtained by minimizing the same expression. The extrema of this

expression are given by the solutions of the equation

µ(x, y) = (y, x)

where µ ∈ IR is a Lagrange multiplier. It follows that µ = ±1 and y = ±x and
therefore, that

C2
Λ = 1 +

|a− b|√
2(a2 + b2)

and
(C ′

Λ)2 = 1 +
−|a− b|√
2(a2 + b2)

.

We conclude that

C2 = 4

√
2(a2 + b2) + |a− b|√
2(a2 + b2)− |a− b| .

The following result thus follows applying Corollary 2 and Remark 4(iii).
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Proposition 5 Let P be a 2-agent society with normalized communication matrix

Λ =
(

1− a a
b 1− b

)
and let τ > 0. Write

C2 = 4

√
2(a2 + b2) + |a− b|√
2(a2 + b2)− |a− b|

and let T be the smallest integer greater than or equal to
ln(C

√
2M
2

)−ln τ

| ln α∗| . Then, for

all f (0) ∈ F2, f (T ) ∈ N(∆F , τ) with confidence at least

1− 2T e
−m(1−α∗)2τ2

576M2C2 +CF
(

48MC2

(1−α∗)2τ2

)a

where α∗ = 1− a− b. ¤

Remark 8 The limiting language for the “ideal” dynamic given by f 7→ T f with
initial state (f1, f2) is

(
bf1+af2

a+b , bf1+af2

a+b

)
.

8.2 A simple case of language acquisition

We close this section revisiting Example 4. The linguistic society is composed only
of a mother and a baby and its normalized communication matrix Λ is given by

(
1 0

1− θ θ

)

where θ > 0 is small. Our previous results readily apply to this case since this
matrix is the one in (7) with a = 0 and b = 1− θ. In this case, α∗ = θ, and

C = 2(
√

2 + 1) ≈ 4.82842.

Proposition 5 then yields the following result.

Proposition 6 The pair Mother-Baby in Example 4 reaches a language-system
(i.e. a state f ∈ N(∆F , τ)) in at most T (θ) iterations with probability at least 1− δ
where

T (θ) =
ln

(√
2(1 +

√
2)M

)− ln τ

| ln θ| ≈ 1.28 + lnM − ln τ

| ln θ|
and

δ ≤ 2T (θ) e
−m(1−θ)2τ2

13430M2 +CF
(

1120M
(1−θ)2τ2

)a

.

¤
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Remark 9 (i) The limiting language for the “ideal” dynamic given by f 7→ T f
with initial state (fM , fB) is, perhaps not surprisingly, (fM , fM ).

(ii) Note that the numerator in the bound 2+ln M−ln τ
| ln θ| is common to all Mother-

Baby pairs. The speed with which the baby learns the mother’s language
(an accomplishment which we recognize when d((f (t)

B , f
(t)
M ),∆F ) ≤ τ) depends

on the denominator | ln θ| as well as on conditions on M,CF ,m needed to
ensure δ < 1. Variations in θ (interpreted as differences in the innate ability
of the baby, frequency of linguistic encounters with the mother, etc.) are
an important factor in our model to account for the variations on children’s
learning speed.

8.3 A final remark on convexity

Consider the finite Y model of [Ke, Minett, Au, and Wang 2002] we described in
Example 2. The set Y can be a set of “words” or “sentences”. Theorem 1 (and its
corollaries) does not directly apply because Y is not convex. One may consider the
convex closure of Y in IRl consisting of the points

∑
wiei (where Y = {e1, . . . , el}

and
∑

wi = 1) and interpret wi as the probability of using ei. We have seen this
interpretation imbedded quite reasonably in Example 1. But we now remark that
languages in this example satisfy some conditions (e.g. mapping the white color
to the word white, the black color to the word black, and being non-decreasing)
which make the interpretation above reasonable. Thus, while this interpretation
may be appropriate in Example 1, it may give rise as well to languages without
communication power; languages in which any utterance in {e1, . . . , el} can be used
to describe any object in X.

There is another way, however, to deal with w as probabilities. This is akin
to Example 6. During a “learning phase” possibly consisting of several steps of
the learning dynamic, agents modify their languages to obtain tentative languages.
This learning phase ends when the tentative languages of the society converged to
a language system, at which time, for each object xs the signal ei with the highest
probability wi is adopted for this object. We will not pursue this model here. We just
note that what we have described is not too different from developments in [Niyogi
2003b; Yang 2003].
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Appendix: Fitness Maximization

In this section we present a way to characterize Fi. We assume F ⊆ C (X; Y ) is
convex.

Define the linguistic fitness of language f for agent i at the state (f1, . . . , fk) by

Φi(f) = −
∫

X

( k∑

j=1

γij‖f(x)− fj(x)‖2
Y

)
dρX(x). (8)

Fitness (abuse of language) can be thought to measure the ability of agent i to
communicate with members of the society he encounters when he uses the language
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f (note that the ith term in the sum above reflects an inertia acting on agent i). This
motivates the problem: at a given state, find the language f ∈ F that maximizes
the linguistic fitness, i.e. compute

F ∗
i = arg max

f∈F
Φi(f), i = 1, . . . , k. (9)

Proposition 7 For i = 1, . . . , k the function

Fi(x) =
k∑

j=1

λijfj(x)

is a solution of (9). Any other solution of (9) is L 2
ρ (X)-equivalent to Fi.

Proof. The problem can be solved for each fixed x ∈ X by minimizing the
quantity

k∑

j=1

γij‖f(x)− fj(x)‖2
Y

over the vectors f(x) in Y = IRl. In fact, if we write the vector f(x) as y =
(y1, . . . , yl) ∈ IRl, then the above quantity is the function ϕ(y) =

∑k
j=1 γij

∑l
s=1(ys−

(fj(x))s)2. The only stationary point y∗ = (y∗1, . . . , y
∗
l ) of this function satisfies, for

s = 1, . . . , l,

∂ϕ

∂ys
(y∗) = 2

k∑

j=1

γij(y∗s − (fj(x))s) = 2




k∑

j=1

γij


 y∗s − 2

k∑

j=1

γij(fj(x))s = 0.

That is, (
∑k

j=1 γij)y∗ =
∑k

j=1 γijfj(x). Thus, for each fixed x ∈ X, the function

Fi(x) =

∑k
j=1 γijfj(x)
∑k

j=1 γij

satisfies that, for all f ∈ F and all x ∈ X,

−
k∑

j=1

γij‖Fi(x)− fj(x)‖2
Y ≥ −

k∑

j=1

γij‖f(x)− fj(x)‖2
Y

and the equality holds only when f(x) = Fi(x). Therefore, for all f ∈ F ,

Φi(Fi) ≥ Φi(f)

and the equality holds only when f = Fi almost everywhere on (X, ρX). ¤
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Remark 10 We say that the measure ρX is non-degenerate when, for all open
subset U ⊂ X, ρX(U) > 0. Non-degeneracy is a mild assumption; if ρX is degenerate
one can replace (X, ρX) by (X, ρX) such that X ⊂ X, ρX is non-degenerate and
ρX(X) = ρX(X) = 1.

We note now that if ρX is non-degenerate then, in Proposition 7, Fi is unique
since it is continuous.
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