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Letter to the editor
Network topology and self-consistency in language games

The evolutionary dynamics of language has attracted
considerable attention over the last years. Different
approaches have been taken, from embodied communicat-
ing robotic agents (Steels, 2003, 2000; Hashimoto, 1997) to
abstract models of signal-object associations (Komarova
and Niyogi, 2004). In the later case, strong assumptions are
typically made in order to reduce the potential complexity
of the game dynamics, in such a way that analytic results
can be extracted. A relevant example in this context is a
family of language games involving a well-defined pay-off
defined in terms of the structure of the lexical matrix where
all agents interact with each other (Nowak and Krakauer,
1999, Nowak et al., 1999; Komarova and Niyogi, 2004;
Komarova and Nowak, 2001). This type of games leads
eventually to a shared code among agents.

All these models consider a scenario of agent interac-
tions where all-to-all exchanges occur. More precisely, the
fitness function measuring the pay-off associated to proper
communication is computed by matching the performance
of each player with all the others. Real networks involving
social interactions do not need to follow such a rule.
Actually, it seems clear from available data that social
networks are typically sparse and have small world
structure (Watts and Strogatz, 1998). Small path lengths
between agents and large clustering are the two essential
characteristics of these graphs. Here clustering refers to the
presence of order at the local network level, defined in
terms of the probability of finding triangles (Dorogovtsev
and Mendes, 2002). Network topology largely influences
the way information or epidemics spreads through the
community, and both local and global properties can
constrain the way communication develops and evolves
(Solé et al., 2002). It might actually pervade the emergence
of complex language traits, such as syntax (Ferrer-Cancho
et al., 2005; Solé, 2005).

Here we consider the impact of local network properties
in the graph G of agent–agent interactions on language
games. As will be shown below, an important assumption
of these games, self-consistency, is automatically achieved
provided that non-zero clustering is present in a connected
network.

Specifically, let us consider a model described by a
population of communicating agents, each carrying asso-
ciation matrices linking a set of n signals to a set of m

referents (Fig. 1). For our set of agents fSig ði ¼ 1; . . . ;N)
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(natural or artificial) we have, for each agent Si, two
matrices Pi ¼ ðPi

klÞ and Qi ¼ ðQi
klÞ. The matrix elements

Pi
kl ;Q

i
kl indicate the probabilities that this agent associates

object k given the signal l, and to associate the signal l given
an object k (here k ¼ 1; . . . ; n and l ¼ 1; . . . ;m). The
normalizations
X

kpn

Pi
kl ¼ 1, (1)

X

kpm

Qi
lk ¼ 1, (2)

are to be expected. Each agent is thus defined as pair
Li � LiðP

i;QiÞ. Agents themselves belong to a network G

defined by the set of communicating agents (the nodes)
being two agents linked if they exchange information (Fig.
1). In previous studies, global communication is assumed:
all agents interact between them and thus the graph
describing their communicative exchanges is a complete
(fully connected) graph or clique (Fig. 2(a)).
A fitness function is defined in order to weight the

success of the communication among agents. The total
pay-off F ðLi;LjÞ associated to a given pair of communicat-
ing agents fSi;Sjg is defined as follows:

F ðLi;LjÞ ¼
1

2

X

kpn

X

lpm

ðPi
klQ

j
lk þ P

j
klQ

i
lkÞ, (3)

which is a symmetric function (i.e. F ðLi;LjÞ ¼ F ðLj ;LiÞ)
and is such that FmaxðLi;LjÞ ¼ minfm; ng.
A key assumption in previous models of emergence of

communication is self-consistency: agents understand
themselves. This is a sensible assumption, but we can show
that there exist configurations able to display the maximum
pay-off with non-self-consistent languages: to see this, let
us first start with a system composed by two agents. An
optimum is obtained provided that either

LiaLj ^ ðP
jÞ
T
¼ Qi ^ ðPiÞ

T
¼ Q j, (4)

or alternatively

Li ¼ Lj ¼ LA ^ ðP
AÞ

T
¼ QA (5)

and, for any optimum,

ð8lÞð9kÞjðPi
kl ¼ 1 ^Qi

lk ¼ 1Þ (6)

(the other matrix elements will be zero, consistently with
the normalization condition). The paradox comes here: for
the first situation there is no relation between ðPiÞ and Qi
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Fig. 2. Some examples of agent graphs G describing the topology of

interactions among communicating agents. Here each ball represents a

given agent (with the underlying Pi and Qi matrices defining its language)

and links connecting two nodes indicate that the game takes place between

those two agents: (a) a clique (full-connected) graph with four agents; (b) a

square: the smallest loop of a pair number of agents; (c) a triangle: the

smallest clique and the smallest loop of an odd number of agents; and (d) a

chain of agents with a loop of an odd number of agents.
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Fig. 1. Agent interaction networks. An example of the agent-agent

interaction network defining the topological pattern of possible commu-

nication exchanges (left). Each agent has an internal state defined by its P

and Q matrices. Communication interactions (right) are defined as

interactions between matrices (see text).
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and thus

F ðLi;LjÞ ¼ FmaxRF ðLi;LiÞ ¼ Fmax. (7)

This implies that Si and Sj can understand each other but
might not understand themselves: there is no self-consis-
tency.

The so-called lexical matrix has been proposed, among
other reasons, as an assumption to avoid such undesirable
result (Komarova and Niyogi, 2004). Under such frame-
work, every agent has a lexical matrix mk ¼ mkðsi;mjÞ,
where fs1 . . . sng is the set of all possible signals and
fm1 . . .mmg the set of all possible meanings (Komarova and
Niyogi, 2004; Komarova and Nowak, 2001). From the
lexical matrix we can derive the Pij and Qji matrices as
follows:

Pk
ij � mkðsijmjÞ,

Qk
ji � mkðmjjsiÞ: ð8Þ

Under these assumptions, self-consistency is guaranteed if
the agents reach the maximum pay-off.
The topology of communication exchanges has not being

taken into account in previous studies. There is a large
number of possible interaction patterns described by the
graph G. Some examples (for N ¼ 4; 5) are shown in Fig. 2.
Here we show that such an assumption might not be
required in order to obtain self-consistency, provided that
the structure of the agent–agent communication graph has
non-zero clustering and is not a bipartite graph (see below).
Under these conditions, the maximum pay-off is reached
only by self-consistent languages.
Beyond the two-agent system, we can consider a more

general situation described by a linear chain of agents using
two given languages LA and LB. In this case, two
neighbouring agents Si;Siþ1 on the chain will have a
maximum pay-off F ðLi;Liþ1Þ ¼ F max if

ðPiþ1Þ
T
¼ Qi ^ ðPiÞ

T
¼ Qiþ1. (9)

This system leads to two possible sets of solutions: either a
chain of alternating agents with two languages, i.e.

LA � LB � LA � LB � LA � � �

as shown in Fig. 3(a), that are not self-consistent, with

ðPBÞ
T
¼ QA ^ ðPAÞ

T
¼ QB (10)

or a completely homogeneous string sharing the same self-
consistent language LA (Fig. 3(b)) with ðPAÞ

T
¼ QA. If

both solutions hold Eq. (6), they are equally good, with
F ¼ minfm; ng.
The previous example reveals that the problem of self-

consistency (present in the first solution) is expected to
occur. Let us consider the simplest example: a triangle
formed by three interacting agents (in other words, the
smallest clique that can be defined, see Fig. 3(c). For this
system, it can be easily shown that the only possible
solution is

L1 ¼ L2 ¼ L3 ¼ L (11)

and thus L has to be self-consistent. Now, consider a string
of agents following Eq. (9). If LA and LB satisfy both
Eqs. (4) and (6), the pay-off of all agents is maximal. Here
languages are not self-consistent but every agent and the
whole system have reached the maximum pay-off
(Fig. 3(a)). If we add an agent linking it to a single
randomly chosen agent in the chain, the situation does not
change. But if we add a new agent interacting with two
neighbouring agents on the string (forming a triangle, see
Fig. 3(c)) there will be an evaluation of the pay-off like

F ðLi;LjÞ ¼ F ðLA;LAÞ (12)
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Fig. 3. Different distributions of agent’s language in an interaction graph:

(a) Non-homogeneous string with two non-self-consistent languages is

able to achieve the maximum pay-off; (b) An homogeneous string with

one self-consistent language. In terms of pay-off evaluation, this

configuration is identical to (a). (c) A chain with an odd loop. The

homogeneous distribution of a self-consistent language will be the only set

of solutions able to reach the maximum pay-off. (d) If we add a loop of a

pair number of agents the two sets of solutions are able to reach the

maximum pay-off.
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and maximal pay-off will be reached only if LA is self-
consistent. i.e.:

F ðLA;LAÞ ¼ Fmax()ðP
AÞ

T
¼ QA. (13)

Note that, if we need LA to be self-consistent in order to
reach the maximum pay-off, the only solution for LB is
LB ¼ LA. Thus, by adding a triangle to a linear chain of
communicating agents, we restrict the set of code config-
urations that can achieve the maximum and we force the
system to exhibit homogeneity and self-consistency.

A generalization of this result can be introduced by using
graph colouring (Wilson, 1996, Chapter 6). In general, a
given graph is k-colourable if we can assign one of k colours
to each node such that adjacent nodes have different
colours. If G is k-colourable but not ðk � 1Þ-colourable, we
say that G has a chromatic number wðGÞ ¼ k. For k ¼ 2, a
graph G such that can be split into two disjoint sets A and
B so that each edge of G links an element of A and another
of B is named bipartite. If loops of odd number are present
in G, the graph cannot be bipartite. Using the property that
any bipartite network G has colouring number wðGÞ ¼ 2
(Bollobás, 1998, p. 146) we can think LA and LB as the
colours used to paint the nodes.
Let us assume that the network is not bipartite (i.e. it is
connex and it has odd loops), and thus it is such that
wðGÞ42. In such case, two colours are not enough to
colour the whole network. This implies that there would be
somewhere a pair of connected nodes with the same colour,
i.e. a pair Li–Li. In a general framework, we can state that,
if LA and LB are not self-consistent and the network
displays wðGÞ42, there will not exist any configuration of
LA and LB able to reach Fmax. Note that, Fig. 3(a, b) and
(d) are 2-colourable networks, whereas Fig. 3(c) is a
3-colourable network. As a natural consequence, we find
that if the clustering coefficient is higher than zero, then
only configurations with uniform distribution of a self-
consistent language will be able to reach Fmax, provided
that for such a network, wðGÞX3.
Following this reasoning, we can see that the topology of

interactions plays a crucial role in order to reach the
maximum pay-off with self-consistency and homogeneity.
Specifically, it is easy to prove that, if our G graph is tree-
like or has no loops with an odd number of nodes
(Fig. 3(d)), then the maximum pay-off does not imply self-
consistency. On the other hand, if we have at least one
triangle (Fig. 3(c)) or one loop with an odd number of
agents, then optimality leads to self-consistency and
homogeneity.
Our results have implications for both artificial and

natural systems. For artificial systems (see for example
Steels, 2003) this is a relevant feature: embodied commu-
nicating agents should include self-consistency within their
embodiment. But self-consistency can be achieved with
simple assumptions about connectivity, simplifying the
endowment and learning algorithms of agents. For natural
systems (including human language) the interpretation of
this result has to be done carefully. Here the definition of
the lexical matrix m is justified also as a part of the
(underlying) cognitive structure of agents (Komarova and
Nowak, 2001; Komarova and Niyogi, 2004). However,
small-worldness (and thus non-zero, high clustering) is
already present in social networks of both humans and
animals (Lusseau, 2003; Newman, 2003) and a priori,
specific properties assigned to the lexical matrix are not so
relevant. This matrix might be better conceived as a
byproduct of evolution, somewhat imposed by the
architecture of social networks and not as a primary tool
in the endowment of cognitive apparatus of such agents. In
mapping this type of games to natural communication
phenomena, what is in fact necessary to assume is that
there are some computational abilities not changing in time
and allowing agents to converge into a common code of
signal–meaning association. The evolution and nature of
this computational endowment is an open question in both
linguistics and biology (Hauser et al., 2002).
A final note concerns the possible set of solutions able to

reach the optimum. First, the derivations have been done
assuming ideal communication, without environmental
noise. It is the simplest assumption to begin with. More
realistic approximations should consider noise, signal
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hierarchies or effort consensus between agents (Ferrer-
Cancho and Solé, 2003). A second consideration has to do
with the generality of our result, since we have shown that
the architecture of agent interactions impose strict condi-
tions on existence the set of possible solutions. But it has to
be seen if, for any arbitrary G graph (including or not
including loops made by an odd number of agents), the set
of non-self-consistent solutions described by Eq. (10)
(Fig. 3(a, d)) is evolutionary stable. Despite such solution
is mathematically possible, it might be highly unstable. If
this intuition is proved, it would reinforce the idea that the
lexical matrix has to be understood as a result of evolution,
not as a primary feature of the internal endowment of
agents.

The authors thank the members of the Complex Systems
Lab and an anonymous referee for useful comments. This
work has been supported by grants FIS2004-0542, IST-
FET ECAGENTS project of the European Community
founded under EU R&D contract 011940 and by the Santa
Fe Institute.

References

Bollobás, B., 1998. Modern Graph Theory. Springer, New York.

Dorogovtsev, S., Mendes, J.F.F., 2002. Evolution of Networks. Oxford

University Press, Oxford.
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Solé, R.V., 2005. Syntax for free?. Nature 434, 289.
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