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INTRODUCTION

Prior to the emergence of writing systems, no direct evidence remains to inform theories

about the evolution of language. Only by amassing evidence from many different

disciplines can theorizing about the evolution of language be sufficiently constrained to

remove it from the realm of pure speculation and allow it to become an area of legitimate

scientific inquiry. In order to go beyond existing data, rigorously controlled thought

experiments can be used as crucial tests of competing theories. Computational modeling

has become a valuable resource for such tests because it enables researchers to test

hypotheses about specific aspects of language evolution under controlled circumstances

(Cangelosi and Parisi, 2002; Turner, 2002). With the help of computational simulations, it

is possible to study various processes that may have been involved in the evolution of

language as well as the biological and cultural constraints that may have shaped

language into its current form (see EVOLUTION AND LEARNING IN NEURAL

NETWORKS).

Connectionist models have played an important role in the computational modeling

of language evolution. In some cases, the networks are used as simulated agents to study

how social transmission via learning may give rise to the evolution of structured

communication systems. In other cases, the specific properties of neural network learning

are enlisted to help illuminate the constraints and processes that may have been involved

in the evolution of language. The remainder of this chapter surveys this connectionist

research, starting from the emergence of early syntax, to the role of social interaction and

constraints on network learning in subsequent evolution of language, and to linguistic

change within existing languages.

EMERGENCE OF SIMPLE SYNTAX

Models of language evolution focus on two primary questions: How language emerged,

and how languages continue to change over time.  An important feature of the first

question is the emergence of syntactic communication.  Cangelosi (1999) studied the

evolution of simple communication systems, but with an emphasis on the emergence of

associations not only between objects (meaning) and symbols (signal), but also between

the symbols themselves (syntax).  In particular, the aim was to demonstrate that simple



syntactic relations (a verb-object rule) could evolve through a combination of

communicative interactions and cross-generational learning in populations of neural

networks.

In Cangelosi's simulations, populations of networks evolved based on their ability to

forage in an environment consisting of a two-dimensional 100¥100 array of cells.  About

12% of the cells contained randomly placed mushrooms that served as food.  Three types

of mushrooms were edible, increasing a network's fitness if collected, whereas another

three types were poisonous, decreasing the network's fitness if collected.   The networks

had a standard feed-forward architecture with a single hidden unit layer and were trained

using backpropagation (see BACKPROPAGATION: GENERAL PRINCIPLES AND

ISSUES FOR BIOLOGY). Input was represented in terms of three sets of input units

encoding the location of a mushroom, the visual features of the mushroom, and words

naming objects or actions. The output contained sets of units representing actions

(approach, avoid, discriminate) and words with the latter units organized into two winner-

take-all clusters (object and verb).  Populations consisted of 80 networks, each with a life-

span of 1000 actions.  The 20 networks with the highest fitness level were selected for

asexual reproduction, each producing four offspring through random mutation of 10% of

its starting weights.  During the first 300 generations the populations evolved an ability to

discriminate between edible and poisonous mushrooms without the use of words.  In

subsequent populations, parents provided teaching input for the learning of words

denoting the different mushrooms (objects) and the proper action to take (verbs).  The

simulations were repeated with different random starting populations. Sixty-one percent of

the simulations resulted in optimal vocabulary acquisition with different "verb" symbols

used with edible (approach) and poisonous (avoid) mushrooms, and different "noun"

symbols used for the different types of mushrooms.

The simulations indicate how a simple noun-verb communication system can

evolve in a population of networks.  Because the features of a mushroom were only

perceived 10% of the time, paying attention to the parental language input provided a

selective advantage with respect to foraging, thus reinforcing successful linguistic

performance.



Another approach to the emergence of elementary syntax is offered by Batali

(1998). He suggested that a process of negotiation between agents in a social group may

have given rise to coordinated communication. Whereas Cangelosi's model involved the

emergence of rudimentary verb-object syntax in a foraging environment, Batali's networks

were assigned the task of mapping meaning onto a sequence of characters for the

purpose of communication in a social environment.  The networks in this simulation did

not start out with a predetermined syntactic system.  Instead, a process of negotiation

across generations engendered the evolution of a syntactic system to convey common

meanings.

Each agent in the simulation was a simple recurrent network (SRN; Elman, 1990),

capable of processing input sequences consisting of four characters and producing an

output vector representing a meaning involving a subject and a predicate.  In a negotiation

round, one network was chosen as a learner, and 10 randomly selected teachers

conveyed a meaning converted into a string of characters. The learner then processed the

string produced by the teacher, and was trained using the difference between the

teacher's and the learner's meaning vectors.  Batali described this interaction between

learners and teachers as a kind of negotiation, since each must adjust weights in

accordance with its own cognitive state, and that of others.  At the start of the simulations

the networks only generated very long strings that were unique to each meaning. After

several thousand rounds of negotiation, the agents developed a more efficient and

partially compositional communication system, with short sequences of letters used for

particular predicates and referents. To test whether novel meanings could be encoded by

the communication system, Batali omitted 10 meanings, and reran the simulations.  After

training, networks performed well at sending and processing the omitted meaning vectors,

demonstrating that the rudimentary grammar exhibits systematicity that accommodates a

structured semantics.

Batali's model offers illuminating observations for the evolution of language.  An

assumption of this model was that social animals can use their own cognitive responses

(in this case, translating meaning vectors into communicable signals) to predict the

cognitive state of other members of their community. Batali compared this ability to one

that may have arisen early in hominids, and contributed to the emergence of systematic



communication. Once such an elementary communication system is in place, migration

patterns may have promoted dialectical variations. The next section explores how

linguistic diversity may arise due geographical separation between groups of

communicating agents.

LINGUISTIC DIVERSITY

The diversity of the world's many languages has offered puzzling questions for centuries.

Computational simulations allow for the investigation of factors influencing the distribution

and diversity of language types.  An intuitive approach, considered in this section, is that

languages assume an adaptive shape governed by various constraints in the organism

and environment.  Livingstone and Fyfe (1999) have proposed an alternative perspective

based on simulations in which linguistic diversity arises simply as a consequence of

spatial organization and imperfect language transmission in a social group.

The social group in simulation consisted of networks with two layers of three input

and output units, bi-directionally connected and randomly initialized.  As in Batali's

simulations, agents were given the task of mapping a meaning vector onto an external

“linguistic” signal.  For each generation, a learner and a teacher were randomly selected.

The output of the teacher was presented to the learner, and the error between meaning

vectors was used to change the learner's weights.  Each successive generation had

agents from the previous generation acting as teachers.  The agents were spatially

organized along a single dimension and communicated only with other agents within a

fixed distance. By comparing agents across this spatial organization, performance akin to

a dialect continuum was observed: small clusters of agents communicated readily, but as

distance among them increased, error increased in communication. When implemented

without spatial organization, i.e., each agent was equally likely to communicate with all

others, the entire population quickly negotiated a global language, and diversity was lost.

This model supports the position that diversity is a consequence of spatial organization

and imperfect cultural transmission.

The results of Livingstone and Fyfe’s as well as Batali’s simulations may not rely

directly on the properties of neural network learning, but rather on the processes of

learning-based social transmission. However, when it comes to explaining why certain

linguistic forms have come to be more frequent than others, the specific constraints on



learning in such networks come to the foreground. The next section discusses how

limitations on network learning can help explain the existence of certain so-called linguistic

universals.

LEARNING-BASED LINGUISTIC UNIVERSALS

Despite the considerable diversity that can be observed across the languages of the

world, it is also clear that languages share a number of relatively invariant features in the

way words are put together to form sentences.  Spatial organization and error in

transmission cannot account for these widespread commonalities.  Instead, the specific

constraints on neural network learning may offer explanations for these consistent

patterns in language types.  As an example consider heads of phrases; that is, the

particular word in a phrase that determines the properties and meaning of the phrase as a

whole (such as, the noun ‘boy’ in the noun-phrase ‘the boy with the bicycle’). Across the

world’s languages, there is a statistical tendency toward a basic format in which the head

of a phrase consistently is placed in the same position — either first or last — with respect

to the remaining clause material. English is considered to be a head-first language,

meaning that the head is most frequently placed first in a phrase, as when the verb is

placed before the object noun-phrase in a transitive verb-phrase such as ‘eat curry’.  In

contrast, speakers of Hindi would say the equivalent of ‘curry eat’, because Hindi is a

head-last language.

Christiansen and Devlin (1997) trained SRNs with 8 input and 8 output units

encoding basic lexical categories (i.e., nouns, verbs, prepositions and a possessive

genitive marker) on corpora generated by 32 different grammars with differing amount of

head-order consistency. The networks were trained to predict the next lexical category in

a sentence. Importantly, these networks did not have built-in linguistic biases; rather, they

are biased toward the learning of complex sequential structure. Nevertheless, the SRNs

were sensitive to the amount of head-order inconsistency found in the grammars, such

that there was a strong correlation between the degree of head-order consistency of a

given grammar and the degree to which the network had learned to master the

grammatical regularities underlying that grammar. The higher the inconsistency, the more

erroneous the final network performance was. The sequential biases of the networks

made the corpora generated by consistent grammars considerably easier to acquire than



the corpora generated from inconsistent grammars. Christiansen and Devlin further

collected frequency data concerning the specific syntactic constructions used in the

simulations. They found that languages incorporating fragments that the networks found

hard to learn tended to be less frequent than languages the network learned more easily.

This suggests that constraints on basic word order may derive from non-linguistic

constraints on the learning and processing of complex sequential structure. Grammatical

constructions incorporating a high degree of head-order inconsistency may simply be too

hard to learn and would therefore tend to disappear.

More recently, Van Everbroeck (1999) presented network simulations in a similar

vein in support of an explanation for language-type frequencies based on processing

constraints. He trained recurrent networks (a variation on the SRN) to produce the correct

grammatical role assignments for noun-verb-noun sentences, presented one word at a

time. The networks had 26 input units, providing distributed representations of nouns and

verbs as well as encodings of case markers, and 48 output units, encoding the distributed

noun/verb representation according to grammatical role. Forty-two different language

types were used to represent cross-linguistic variation in three dimensions: word order

(e.g., subject-verb-object), and noun and verb inflection. Results of the simulations

coincided with many observed trends in the distribution of the world's languages. Subject-

first languages, both of which make up the majority of language types (51% and 23%,

respectively), were easily processed by the networks. Object-first languages, on the other

hand, were not well processed, and have very low frequency in the world's languages

(object-verb-subject: 0.75% and object-subject-verb: 0.25%).  Van Everbroeck argued that

these results were a predictable product of network processing constraints.  Not all

results, however, were directly proportional to actual language-type frequencies. For

example, verb-subject-object languages only account for 10% of the world's language

types, but the model’s performance on it exceeded performance on the more frequent

subject-first languages. Van Everbroeck suggested that making the simulations more

sophisticated (incorporating semantics or other aspects of language) might allow network

performance to better approach observed frequencies.  Together, the simulations by Van

Everbroeck and Christiansen and Devlin provide preliminary support for a connection

between learnability and frequency in the world's languages based on the learning and



processing properties of connectionist networks. The next section discusses additional

simulations that show how similar network properties may also help explain linguistic

change within a particular language.

Linguistic Change

The English system of verb inflection has changed considerably over the past 1,100

years. Simulations by Hare and Elman (1995) demonstrate how neural network learning

and processing constraints may help explain the observed pattern of change. The

morphological system of Old English (ca. 870) was quite complex involving at least 10

different classes of verb inflection (with a minimum of six of these being "strong").  The

simulations involved several "generations" of neural networks, each of which received as

input the output generated by a trained net from the previous generation.  The first net

was trained on data representative of the verb classes from Old English.  However,

training was stopped before learning could reach optimal performance.  This reflected the

causal role of imperfect transmission in language change.  The imperfect output of the first

net was used as input for a second generation net, for which training was also halted

before learning reached asymptote.  Output from the second net was then given as input

to a third net, and so on, until seven generations were trained.  This training regime led to

a gradual change in the morphological system. These changes can be explained by verb

frequency in the training corpus, and internal phonological consistency (i.e., distance in

phonological space between prototypes).  The results revealed that membership in small

classes, inconsistent phonological characteristics, and low frequency all contributed to

rapid morphological change.  As the morphological system changed through generations

in these simulations, the pattern of results closely resembled the historical change in

English verb inflection from a complex past tense system to a dominant "regular" class

and small classes of "irregular" verbs.

Discussion

This chapter has surveyed the use of neural networks for the modeling of language

evolution and change. The results discussed in this chapter are encouraging even though

the field of neural network modeling of language evolution is very much in its infancy.



However, it is also clear that the current models suffer from obvious shortcomings. Most of

them are highly simple, and do not fully capture the vast complexity of the issues at hand.

For example, the models of the emergence of verb-object syntax and linguistic diversity

incorporated very simple relationships between meaning and form.  Moreover, although

the simulations of the influence of processing constraints on the shape of language

involved relatively complex grammars, they did not include any relationship between the

language system and the world. Nevertheless, these models demonstrate the potential for

exploring the evolution of language from a computational perspective.

Both connectionist and non-connectionist models (e.g., Nowak and Komarova,

2001) have been used to provide important thought experiments in support of theories of

language evolution.  Connectionist models have become prominent in such modeling,

both for their ability to simulate social interaction in populations, and for their

demonstrations of how learning constraints imposed on communication systems can

engender many of the linguistic properties we observe today. Together, the models point

to an important role for cultural transmission in the origin and evolution of language. This

perspective receives further support from neuroscientific considerations, suggesting a

picture of language and brain that argues for their co-evolution (e.g., Deacon, 1997). The

studies discussed here highlight the promise of neural network approaches to these

issues. Future studies will likely seek to overcome current shortcomings and move toward

more sophisticated simulations of the origin and evolution of language.
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