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Abstract

This thesis presents a connectionist theory of how infinite languages may fit within finite

minds. Arguments are presented against the distinction between linguistic competence

and observable language performance. It is suggested that certain kinds of finite state

automata—i.e., recurrent neural networks—are likely to have sufficient computational

power, and the necessary generalization capability, to serve as models for the processing

and acquisition of linguistic structure. These arguments are further corroborated by

a number of computer simulations, demonstrating that recurrent connectionist mod-

els are able to learn complex recursive regularities and have powerful generalization

abilities. Importantly, the performance evinced by the networks are comparable with

observed human behavior on similar aspects of language. Moreover, an evolutionary ac-

count is provided, advocating a learning and processing based explanation of the origin

and subsequent phylogenetic development of language. This view construes language

as a nonobligate symbiant, arguing that language has evolved to fit human learning

and processing mechanisms, rather than vice versa. As such, this perspective promises

to explain linguistic universals in functional terms, and motivates an account of lan-

guage acquisition which incorporates innate, but not language-specific constraints on

the learning process. The purported poverty of the stimulus is re-appraised in this light,

and it is concluded that linguistic structure may be learnable by bottom-up statistical

learning models, such as, connectionist neural networks.
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Chapter 1

Introduction

Imagine a world without language. What would be the fate of humanity, if language

as we know it suddenly ceased to exist? Would we end up as the ill-fated grunting

hominids in “Planet of the Apes”? Not likely, perhaps, but try to imagine the devas-

tating consequences of language loss on a more personal scale. Language is so tightly

interwoven into the very fabric of our everyday lives that losing even parts of it would

have far-reaching detrimental repercussions. Consider, for example, the problems fac-

ing someone with agrammatic aphasia as evidenced in the following speech sample from

a patient explaining that he has returned to the hospital for some dental work:

Ah. . . Monday. . . ah, Dad and Paul Haney [referring to himself by his full
name] and Dad. . . hospital. Two. . . ah, doctors. . . , and ah. . . thirty
minutes. . . and yes. . . ah. . . hospital. And, er, Wednesday. . . nine
o’clock. And er Thursday, ten o’clock. . . doctors. Two doctors. . . and
ah. . . teeth. Yeah,. . . fine. (Ellis & Young, 1988: p. 242)

Now, imagine an evolutionary scenario in which the hominids did not evolve a capability

for language. In such a picture, it is obvious that humankind would never have ended

up where we are today. For example, instructing the young in new skills without the

use of language would have been difficult, once we get beyond a certain skill complexity.

The development and spread of new technologies would therefore be severely impeded,

and we might never have evolved beyond being hunters and gatherers.

As should be clear, language is a very powerful means of communication, apparently

unique to humans, allowing us to communicate about an unbounded number of different

objects, situations and events. Language permits us to transfer cultural information

readily from generation to generation—originally, in terms of verbal instructions and

enlightening tales; later, writing ensured a more constant source of storing information,

making it easier to share knowledge across time; and most recently, computers have

1



CHAPTER 1. INTRODUCTION 2

allowed us to communicate rapidly over great distances (for instance, via the various

INTERNET facilities, such as, email and Mosaic). The main reason why language is

such a powerful means of communication is—as first pointed out by Wilhelm von Hum-

boldt (quoted in Chomsky, 1965: p. v)—that it “makes infinite use of finite means”.

That is, we can use language to describe anything that is within the limits of our per-

ceptual and intellectual capacities. In other words, despite the finite resources of the

human mind, we are able to produce languages that are infinite in nature.

As one of the hallmarks of human cognition, language has received much atten-

tion within the science dedicated to the study of the human mind: cognitive science.

For many years this study was dominated by the ‘computer metaphor of the mind’,

proposing an analogy between the processing of symbols in a digital computer and

the workings of the mind. More recently, a different view of cognitive processing has

emerged, based on artificial neural networks of inter-connected, very simple processing

units. The two different approaches are often construed as two different paradigms

(e.g., Schneider, 1987), and—as was to be expected (cf. Kuhn, 1972)—the prolifer-

ation of connectionism in the second half of the 80’s led to much subsequent debate

(e.g., Chalmers, 1990b; Chater & Oaksford, 1990; Christiansen & Chater, 1992, 1994;

Fodor & Pylyshyn, 1988; Fodor & McLaughlin, 1990; Hadley, 1994a, 1994b; Niklasson

& Sharkey, 1992; Niklasson & van Gelder, 1994; Smolensky, 1987, 1988; van Gelder,

1990). In this debate, language has been considered by many to be the largest stum-

bling block for connectionism. Indeed, Pinker & Prince (1988) argue:

From its inception, the study of language within the framework of genera-
tive grammar has been a prototypical example of how fundamental proper-
ties of a cognitive domain can be explained within the symbolic paradigm.
. . . Language has been the domain most demanding of articulated symbol
structures governed by rules and principles and it is also the domain where
such structures have been explored in the greatest depth and sophistication
. . .Many observers thus feel that connectionism, as a radical restructuring
of cognitive theory, will stand or fall depending on its ability to account for
human language. (p. 78)

More recently, Chomsky (1993) has provided a rather negative assessment of con-

nectionism’s current contribution to our general understanding of cognition and, in

particular, of language.

Connectionism is a radical abstraction from what’s known about the brain
and the brain sciences . . . There’s no reason to believe you’re abstracting the
right thing. There’s no evidence for it. In the case of language, the evidence
for connectionist models is, for the moment, about zero. The most trivial
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problems that have been addressed—like learning a few hundred words—
have been total failures.” (p. 85–86)

In this thesis, I take up the challenge posed by Pinker & Prince, showing how a con-

nectionist picture might explain our infinite use of language given our finite minds, and

thereby rebut Chomsky’s negative assessment of connectionism. My account involves a

view of language processing, which appear to be more in line with psycholinguistic data,

as well as a learning and processing based perspective on the acquisition and evolution

of language. But before outlining this theory, I will make some brief methodological

remarks.

1.1 Some Methodological Preliminaries

In discussions of symbolic and connectionist approaches to cognitive science, the his-

torical predominance of the symbolic view has meant that, to some extent at least,

the ground rules concerning what key cognitive phenomena must be explained and

what counts as a good explanation, have been set in largely symbolic terms (van

Gelder, 1991). Thus, if connectionism amounts to a genuinely new paradigm for the

understanding of mind, there is a very real danger of falling into what I elsewhere

(Christiansen & Chater, 1992) have called the ‘incommensurability trap’. That is, con-

nectionist models may be unfairly judged either because they fail to fit the classical

standards or because when they are made to fit, the resulting explanation looks forced

and unattractive. The danger is analogous to that of judging vegetarian food by the

standards of the butcher. After all, connectionism—construed as a new paradigm (e.g.,

Schneider, 1987)—may involve a revolutionary reconstruction of the field from new fun-

damentals, leading to changes in methodology and basic theoretical assumptions. Since

rival paradigms prescribe different sets of standards and principles, connectionist and

classical approaches to cognitive science may also differ on what constitute meaningful

and legitimate scientific questions. Due to this incommensurability, discussions be-

tween proponents of different paradigms on the issue of paradigm choice often become

circular. Each group will tend to praise their own paradigm and criticize the other’s

with arguments based on their own paradigm. In other words, when comparing and

assessing the individual explanatory power of rival paradigms, the incommensurabil-

ity trap constitutes a nontrivial methodological obstacle to negotiate since it involves

engaging in the process of radical translation (Quine, 1960). Or so, much philosophy

of science would have us to believe (e.g., Kuhn, 1970). In any case, there are signs

that communication is becoming difficult, and hence it is imperative that the merits

of connectionism are judged from “within”—i.e., on its own terms—not through the
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looking glass of the classical paradigm1.

The incommensurability trap might manifest itself in different ways. It is often pre-

supposed that the level of explanation within cognitive science must necessarily be that

of the classical paradigm. This is, for example evident when Prince & Pinker (1989),

in their criticism of the Rumelhart & McClelland (1986) model of the acquisition of

English past tense, assert that “neuroscientists study firing rates, excitation, inhibition,

plasticity; cognitive scientists study rules, representations, symbol systems” (p. 1: my

emphasis). If cognition has to be couched in terms of ‘rules’, ‘symbols’, and so on, then

connectionism is likely to fail as a genuine new approach to cognitive science. However,

these terms are theoretical constructs belonging to the classical paradigm (at least, in

their most typical instantiations). As such, it is fallacious to assume that such classical

constructs are a necessary part of cognitive explanations. That connectionist models

might not be able to embody rules and context-independent symbols should therefore

not be taken a priori as evidence of shortcomings. Instead, connectionism must be

judged on whether they can account for the (uninterpreted) data that originally let to

the postulation of those classical constructs.

Another consequence of the incommensurability trap is the tendency to hold connec-

tionist models to a higher standard than similar symbolic models. Often a particular

connectionist model is criticized for not reaching a certain level of performance—as

when Hadley (1994a) criticizes connectionist models of language acquisition for not ac-

commodating a certain kind of generalization (which humans appear to exhibit). Such

criticisms might, indeed, be warranted (as in Hadley’s case; see chapter 4), but it is

most often not acknowledged that symbolic models also suffer from the same (or very

similar) deficits. This problem of ‘not seeing the splint in one’s own eye’ is further ag-

gravated by the fact that most connectionists models are implemented as computational

models, whereas many of their symbolic counterparts are not, but remain conceptual

models. This means that the empirical results of connectionist simulations are often

compared directly with conceptual predictions from an unimplemented symbolic model

(as it is, e.g., in the case of Pinker & Prince, 1988, and Prince & Pinker, 1989). Of

course, it is possible that the symbolic models when implemented would provide the

1For example, much of the criticism of connectionism launched by Fodor & McLaughlin (1990)
as well as Fodor & Pylyshyn (1988) does not stem from inconsistencies or incoherence within the
theoretical framework of connectionism. Instead, it stems from the failure on behalf of Fodor and
collaborators to couch connectionism in the terminology of the classical processing paradigm (also cf.
van Gelder, 1991). Similarly, another non-classical approach to cognition—situation theory—has also
been victim of the same kind of terminologically based criticism: “Fodor thinks that computation is
formal. So when I argue that thought is not formal, he annoyingly charges me with claiming that
thought are not computational. I suppose Fodor is so caught up in his own identification of formal with
computational as to be unable to maintain the distinction” (Barwise, 1989: p. 156–7).
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right empirical results; but in the absence of such implementations, the conceptual

models should not be taken as existence proofs of classical solutions (given that they

can always be modified in some ad hoc fashion to accommodate problematic data).

This leads to the last methodological point that I want to make before outlining the

content of my thesis. The presupposition of classical theoretical constructs in cogni-

tive explanation and the mismatched comparisons between connectionist and symbolic

models, together, may lead to in principle arguments against connectionist models

subserving certain (or all) cognitive functions. Consider, for instance, the following

summary from Pinker & Prince (1988):

we will conclude that the claim that parallel distributed processing net-
works can eliminate the need for rules and rule induction mechanisms in
the explanation of human language is unwarranted. In particular, we ar-
gue that the shortcomings are in many cases due to central features of
connectionist ideology and irremediable; or if remediable, only by copying
tenets of the maligned symbolic theory. The implications for the promise
of connectionism in explicating language are, we think, profound. (p. 82)

This is, perhaps, not an ‘in principle-argument’, but it comes very close. In any event,

the problem here is that the empirical shortcomings of a particular connectionist model

performing some function is generalized to a principled argument against all connec-

tionist models of that given function. However, only additional empirical research can

establish whether such shortcomings are endemic to connectionist networks, or merely

an artifact of a particular implementation. In closing these methodological preliminar-

ies regarding the incommensurability trap, it is worth noting that the opposite danger

is equally real—symbolic models can look unattractive from a connectionist perspec-

tive. This raises the danger of ignoring all that has been learned from the symbolic

approach, and simply starting the project of understanding the mind afresh. In this

thesis, I hope to keep clear of this danger.

1.2 Content

One of the dominating characteristics of much connectionist work is the combined em-

phasis on learning and processing—in particular, when it comes to connectionist models

of language. In contrast, much work within the classical approaches to language invoke

Chomsky’s (e.g., 1980, 1986, 1988, 1993) notion of Universal Grammar (UG); that is,

a massive body of innately specified, language specific knowledge. The main challenge

for connectionism is thus to account for the variety of linguistic phenomena which tra-

ditionally have been taken to support a nativist position on language. Recently, the
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general relation between connectionism and nativism has been the focus of some debate

(e.g., Christiansen & Chater, 1992; Clark, 1993; Quartz, 1993), especially in connection

with language acquisition (e.g., Bates & Elman, 1993; Elman, 1993; Karmiloff-Smith,

1992; Kirsh, 1992; Narayanan, 1992; Ramsey & Stich, 1991). One of the important

conclusions to be drawn from this debate is that connectionist models do not have to

be, and in most cases are not, tabula rasa models of learning. More specifically, it is

important to distinguish between domain-specific and more general innate constraints

on connectionist learning. In this thesis, I present a connectionist theory of the use,

acquisition and evolution of language, incorporating innate, but not language-specific

constraints on processing and learning. As such, the theory provides a learning and

processing based alternative to UG approaches to language.

First, in chapter 2, I address the issue of how much processing power is required

to account for human language behavior. A distinction is made between what I call

iterative recursion, which can be subserved by a finite-state automaton (FSA), and

non-iterative recursion, for which at least a push-down automaton (PDA) is needed.

The existence of the latter kind of recursion has been used as evidence against FSA

models of language. However, an unconstrained PDA can process sentences that are be-

yond the abilities of humans—most notably, in English sentences with multiple center-

embeddings. To solve this problem a distinction is typically made between a limited

language performance and an infinite linguistic competence. This distinction has gen-

erally served as a major obstacle against processing based approaches to language, and

against connectionist language models in particular. I therefore challenge the validity

of the competence/performance distinction, stressing that it is impossible to distin-

guish in a theory-neutral way between evidence pertaining to linguistic performance

and evidence pertinent to language competence. In addition, the distinction makes the

grammar functionally independent of processing, thus threatening to make linguistic

theories immune to potentially falsifying empirical evidence.

Having argued against the competence/performance distinction, I turn my attention

to the amount of recursion that can be observed in actual language behavior. Psycholin-

guistic results show that only very limited instances of non-iterative recursion can be

found in naturally occurring language. However, a possible objection is that perfor-

mance on these kind of recursive structures—such as, center-embedded sentences—can

be improved given training and external memory aids. I rebut this objection, suggesting

via an analogy with the processing of garden path sentences (i.e., structurally ambigu-

ous sentences) that such performance improvements are not rooted in an unbounded

linguistic competence, but in the conscious use of reasoning abilities that are not spe-

cific to language. The underlying idea is that under normal circumstances we process
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language without conscious effort, but when sentences of a certain complex nature are

met (such as, garden path and multiply center-embedded sentences), processing fails

and higher level reasoning processes are recruited to complete the parse.

From this I conclude that language models in general do not need to account for

unlimited non-iterative recursion. Rather, the models only have to be able to deal

with a very limited amount of non-iterative recursion, but must also encompass a

substantial capacity for the processing of iterative recursive structures. Connectionist

models seem to fit this mold. Furthermore, they have no straightforward separation of

competence and performance, making them ideal models of language processing vis-a-

vis the problems facing more traditional approaches. I therefore discuss in some detail

the nature of neural network processing and distributed representation as related to the

learning of linguistic structure, paving the way for the simulation experiments reported

in chapters 3 and 4.

The existence of non-iterative recursive structure in natural language was one of the

principal, and most telling, sources of difficulty for associationist models of linguistic

behavior. It has, more recently, become a focus in the debate surrounding the generality

of neural network models of language, which many would regard as the natural heirs of

the associationist legacy. Non-iterative recursive sentence constructions are difficult to

process because it is necessary to keep track of arbitrarily many different dependencies

at once. This is not possible for associationist accounts, which assume that the language

processor is a (particular kind of) FSA. Similarly, assuming, as we must, that all

parameters have finite precision, any finite neural network is also a finite state machine.

The important question is, then, whether neural networks can learn to handle non-

iterative recursive structures? If not, many would argue, neural networks can be ruled

out as viable models of language processing. Chapter 3 therefore investigates to what

extent connectionist models are able to learn some degree of non-iterative recursion.

Chomsky’s (1956, 1957) original proof against FSA accounts of language was pre-

sented in terms of three non-iterative recursive languages. In a number of simulation

experiments, I use slightly altered versions of these languages to test the ability of two

kinds of recurrent neural networks to acquire non-iterative recursive regularities. Net-

work performance is further measured against a simple statistical prediction method

based on n-grams, strings of consecutive words. I outline a number of performance

expectations given the complexity of the three test languages, and report the results of

two experiments involving, respectively, a 2-word and an 8-word vocabulary. Finally,

a comparison is made between network performance and human performance on the

same kind of structures, suggesting that both exhibit a similar break-down pattern in

performance as the level of embedding increases. I therefore conclude that the existence
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of limited non-iterative recursion no longer can be used as a priori evidence against

connectionist models of linguistic behavior.

In chapter 4, I present simulation experiments which extend the results from the

previous chapter. That is, I investigate how a simple recurrent network deals with lim-

ited non-iterative recursion in the context of a natural language grammar also incorpo-

rating iterative recursion. Results from two experiments are reported: one simulation

involving the combination of center-embedded structures with left- and right-branching

constructs, and another combining cross-dependency sentence structures with left and

right recursive structures. The results show that network behavior on cross-dependency

and center-embedded structures in these simulations is comparable with that reported

in chapter 3, and therefore with human behavior on similar sentence constructs. More-

over, results pertaining to the model’s behavior on the iterative structures is presented,

making certain predictions regarding human behavior on such structures.

If connectionist models are to be genuine candidates as mechanisms subserving

human language acquisition, it is important that they be able to generalize from past

experience to novel stimuli. In this connection, Hadley (1994a) has recently attacked

connectionist models of language learning for not affording a sufficiently powerful kind

of generalization compared with humans. I discuss this challenge in the second half of

chapter 4, and recast it in a more formal and precise way. Then I report additional

results from the above simulations, indicating that connectionist models can afford a

more sophisticated type of generalization. It is therefore concluded that connectionist

models may indeed have sufficient computational power to serve as models for language

learning.

Having argued for a processing based view of our language ability and demonstrated

the computational adequacy of connectionist models of language, I sketch a theory of

the evolution and acquisition of language in chapter 5. The theory distances itself from

the dominating exaptationist (e.g., Piattelli-Palmarini, 1989) and adaptationist (e.g.,

Pinker & Bloom, 1990) perspectives on language evolution by construing language as

a nonobligate symbiant (that is, a kind of beneficial parasite). As such, there has

been a much stronger pressure on language to adapt to the constraints imposed by

human learning and processing mechanisms, than vice versa. This view promises to

provide functional explanations for apparently arbitrary linguistic principles—such as,

subjacency—which appear to be universal to all human languages.

I then speculate that language originated as a manual language of gestures, sub-

served by evolutionary ancient implicit learning processes presumably seated some-

where near Broca’s area in the left hemisphere of the brain. Changes in the human
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vocal tract are likely to have facilitated the shift from a manual language to a pre-

dominately vocal language. The key to understanding subsequent linguistic change, I

argue, is vocabulary growth, forcing a gradually more regularized morphology in order

to accommodate the growing number of words in a finite memory system. This, in

turn, lead to a more complex syntax to ensure reliable communication. Moreover, it is

contended that the Baldwin effect, which allows learned traits to become innate, does

not apply in the case of language evolution.

Since the evolutionary scenario suggests that learning still plays the dominating

role in language acquisition, I close the chapter by outlining a maturationally based

theory of language learning. Importantly, language has evolved to be learnable by

human infants undergoing maturational changes. It is therefore not surprising that

children, despite their limited memory and perceptual abilities, are better language

learners than adults. This explains the existence of a critical period of language acqui-

sition. The maturational picture provides the basis for a re-appraisal of the poverty of

stimulus argument in all its instantiations; that is, the existence of arbitrary linguistic

universals, noisy input, infinite generalization from limited input, the early emergence

of many linguistic principles in child language, and the inadequacy of empirical learn-

ing methods. After having shown that the primary linguistic stimulus may not be as

poor as assumed in theories of UG, I finally respond to possible objections based on,

respectively, creolization and the purported existence of a ‘morphology gene’.

The conclusion in chapter 6 sums up the main arguments presented in this thesis

in favor of processing and learning based theory of the human language ability and its

evolutionary past. This theory has summoned evidence from not only connectionist

modeling and psycholinguistics, but also anthropology, implicit learning theory, evo-

lutionary theory, and neuroscience. It makes a number of empirical predictions, some

of which are presented in the conclusion along with proposals for their further investi-

gation via connectionist simulations or psycholinguistic experiments. Obviously, much

still needs to be said and done, but I believe that in this thesis I have taken us a few

steps closer to a learning and processing based theory of language.



Chapter 2

Grammars and Language

Processing

Since the emergence of generative grammar, language has been construed predomi-

nately as a paradigmatic example of the symbolic view of cognition (e.g., Fodor &

Pylyshyn, 1988; Pinker & Prince, 1988). However, the conception of cognition as sym-

bol processing arguably grew out of Chomsky’s (1959b) attack on Skinner’s (1957)

behavioristic account of language. Following this attack, the statistical approach to

language advocated by the behaviorists quickly became anathema. Instead, theories of

language couched in terms of symbols governed by recursive rules became the focus of

mainstream linguistics. This cleared the way for a general dismissal of behaviorism and

the subsequent dominance of the symbolic paradigm, leading to the birth of cognitive

science (and artificial intelligence).

Within the symbolic view of cognition, the apparently unbounded complexity and

diversity of natural language, contrasted with the finite character of our cognitive

resources, is often taken to warrant a recursive language processing mechanism. Nev-

ertheless, it is important to consider whether it is necessary to postulate a recursive

language mechanism in order to account for language productivity. What seems to be

needed in the first place is a mechanism which is able to generate, as well as parse,

an infinite number of natural language expressions using only finite means. Obviously,

such a mechanism has to be of considerable computational power and, indeed, recursive

rules provide a very elegant way of achieving this. Consequently, recursion has been

an intrinsic part of most accounts of natural language behavior—perhaps due to the

essentially recursive character of most linguistic theories of grammar.1

1For example, in GB (e.g., Chomsky, 1981) the underlying principles of X-theory are recursive, as

10
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The existence of recursion in natural language is often taken to be a major stumbling

block for connectionist models of linguistic processing—but this is, strictly speaking,

not true. Neural networks (and other finite state automata) are able to process a certain

kind of recursion which I will refer to as ‘iterative recursion (i-recursion)2. This kind

of recursion permits the iteration of a given structure either by branching to the left

(such as, the multiple prenominal genitives in ‘Anita’s cat’s tail’) or to the right (as,

for instance, the multiple sentential complements in ‘I thought Anders said he left’).

The real obstacle for connectionist language processing is therefore not recursion per

se, but rather the complex forms of recursion that here will be referred to as ‘non-

iterative recursion’ (ni-recursion). One of the most important kinds of ni-recursion is

center-embedding as exemplified in the doubly center-embedded sentence ‘the girl that

the cat that the dog chased bit saw the boy’. As such, ni-recursion allows the generation

of structures which cannot readily be redescribed in terms of iteration. This implies

that no finite state automaton (FSA) can capture ni-recursion—at least, not without

additional memory structures. The same also seems to apply to connectionist models.

But, does this mean that connectionist networks are not viable as models of language

processing? What does the empirical data tell us about the kind of computational

power we may need to account for human language behavior?

In this chapter, I address these questions by first discussing the close relation be-

tween recursion and linguistic grammars, illustrated by a detailed example involving the

parsing of a ni-recursive sentence. An unrestricted parser of this kind can process sen-

tences beyond any human capacity. A distinction is therefore typically made between

the finite observable performance of humans and the infinite competence inherent in the

parser’s recursive grammar. Section 2 challenges this competence/performance distinc-

tion on methodological grounds, suggesting that it be abandoned. Next, psycholinguis-

tic results are presented which show that only a very limited amount of ni-recursion

occurs in natural language, whereas i-recursion seems to abundant. In this connec-

tion, it is argued that performance improvements following training on ni-recursive

sentences reflect aspects of higher level cognitive reasoning, rather than unveiling an

underlying unbounded competence. Finally, connectionism is proposed as a processing

framework which may permit the eschewal of the competence/performance distinction,

while promising to have sufficient computational power to deal with both i-recursion

and a limited degree of ni-recursion.

are the ID-rules of GPSG (Gazdar et al., 1985).
2Note that I am not talking about the recursive languages of automata theory, but about recursive

structure in natural languages. Thus, the use of the adjective ‘recursive’ throughout this thesis refers
to the latter structural meaning. My use of ‘recursion’ will be explicated below.
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2.1 Grammars and Recursion

The creative nature of natural language use—its productivity—has been assumed to be

subserved by a system of rules for more than 150 years (cf. Chomsky, 1965). Yet, the

generative aspect of grammar had to wait for the development of recursion theory in the

foundations of mathematics before it could be properly captured in mechanistic terms.

In other words, “although it was well understood that linguistic processes are in some

sense ‘creative’, the technical devices for expressing a system of recursive processes were

simply not available until much more recently” (Chomsky, 1965: p. 8). Thus recursion

has been an intrinsic part of the generative grammar framework from its inception.

The history of generative grammar dates back to Chomsky’s (1956, 1957) demon-

stration that language can in principle be characterized by a set of recursive phrase

structure rules, complemented by a set of transformational rules. There are three ways

in which recursion can occur in a phrase structure rule. Suppose X is a (non-terminal)

symbol and α and β non-empty strings of symbols and terminals3. A rule involves left-

embedding when X ⇒ Xβ (i.e., there is a derivation from X to Xβ), center-embedding

when X ⇒ αXβ, and right-embedding when X ⇒ αX. The mechanistic realization

of such recursive phrase structure grammars imposes certain demands regarding com-

putational power. For example, Chomsky (1956, 1957) has argued that the language

processing mechanism cannot be realized by a finite state automaton (FSA). This is

because the latter can only produce regular languages and these are not able to support

an unbounded depth of center-embedding. In contrast, the set of human languages is

generally assumed to fall (mostly) within the broader class of languages, referred to as

‘context-free’ within the Chomsky (1959a) hierarchy of languages.

This hierarchy of languages is couched in terms of grammars comprising a number

of rewrite rules of the general form α → β. Every class within the hierarchy is defined in

terms of the restrictions imposed on its rewrite rules. At each level a given class forms

a proper subset of the less restrictive class(es) above it. Restricting α to be a single

symbol and β either a single symbol followed by a (possibly empty) string of terminals,

or vice versa, then we obtain the most narrow of the classes: the regular languages

which can be generated by an FSA. For example, a right-linear rewrite rule takes the

form A → wB (assuming that A and B are symbols, and w a string of terminals,

possibly empty), whereas a left-linear rule will have the format of A → Bw4. The

less restrictive class of context-free languages5 allows β to be any (non-empty) string

3Here, terminals correspond to words and symbols to variables ranging over the left handsides of
the set of rewrite rules (including themselves).

4Notice that if A = B then we get right and left recursion, respectively.
5The classes of languages from context-free and upwards in the hierarchy all support ni-recursion,
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S → NP VP
NP → N rel
NP → N
VP → V
rel → NP V(trans)

Figure 2.1. The recursive set of phrase structure rules used to assign syntactic structure to

sentences with object relative clauses.

of symbols and terminals, making center-embedding possible, e.g., A → w1Aw2. A

push-down automaton (i.e., an FSA augmented with a stack—see below) is needed to

produce the set of non-regular languages in this class. The context-sensitive languages

constitute an even broader class, loosening the restriction on α and, thus, allowing more

than one symbol to occur on the lefthand-side (though still ensuring that β is at least

of the same length as α). As an example, consider the rewrite rule A1B1 → A1A2B1B2

which takes A1B1 and expands it such that the dependency between A1 and B1 crosses

that of A2 and B2. To generate the set of these languages that are not also context-

free, we need a linear bounded automaton (that is, a Turing machine whose tape is

linearly bounded by the length of the input sentences). Finally, the broadest class

of unrestricted languages does not have any restrictions on α and β, and can only be

produced in its entirety by a Turing machine with an arbitrarily long tape.

2.1.1 A Parsing Example

If Chomsky (1956, 1957, 1959a) is right in that we need the power of context-free

languages in order to account for English (and other natural languages), we might

ask what kind of computational mechanism is warranted? As mentioned earlier, the

natural language processing mechanism has traditionally been construed as a symbolic

processing device using recursion. As such, recursion entails that the non-terminal

symbol (α) on the lefthand side of a rule reappears (in the β-string) on the righthand

side of the same or another rule (as described above). In addition, recursion often

occurs as a consequence of the application of a set of rules, each of which by themselves

is not recursive. For example, assigning syntactic structure to the (ni-recursive) string

‘boys girls cats bite see fall’ (and recognizing it as a complex sentence involving two

center-embeddings) is readily done using the recursive set of phrase structure rules in

Figure 2.1. An analysis of the string in terms of these phrase structure rules would

save their subset of regular languages which only permits i-recursion.
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rel

NP V

NP

N

V

relN

NP VP

V

N

boys girls cats bite see fall

S

Figure 2.2. The syntactic tree for the doubly center-embedded sentence ‘boys girls cats bite

see fall’.

result in the syntactic tree illustrated in Figure 2.2.

At this point one might wonder how we can recover the syntactic information as

exemplified by Figure 2.2 from the set of phrase structure rules listed in Figure 2.1.

Or, more generally, how can the assignment of syntactic structure given a particular

grammar be mechanized so as to allow the processing of arbitrary utterances? What we

need is a mechanism—a parser—which in some way realizes a grammar such that it is

able to recover the syntactic structure of (grammatical) utterances. As such, parsers are

typically built as rule-based production systems (Newell & Simon, 1976)6, comprising

a knowledge base realizing the grammar, a working memory in which intermediate

processing results are stored, and a mechanism for applying the grammar rules given

the content of the working memory. Non-iterative recursion is typically implemented

by configuring part of the working memory as a last-in-first-out push-down store, also

known as a stack. This data structure can be visualized as a pile (or stack) of papers

that can only be manipulated in two ways: either, we can remove a single piece of

paper from the top of the pile, or, place yet another piece of paper on top. The last

6For example, Marcus (1978) acknowledges this when describing his parser, PARSIFAL, in which
the grammar “is made up of pattern/action rules; this grammar can be viewed as an augmented form
of Newell and Simon’s production systems” (p. 237).
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boys . . .

[
NP

boys ? ] � top

[. . . ]

(a)

boys girls . . .

[
NP

boys ? ]

[
NP

girls ? ] � top

[. . . ]

(b)

boys girls cats . . .

[
NP

boys ? ]

[
NP

girls ? ]

[
NP

cats ? ] � top

[. . . ]

(c)

boys girls cats bite . . .

[
NP

boys ? ]

[
NP

girls ? ] � top

[rel cats bite]

(d)

boys girls cats bite see . . .

[
NP

boys ? ] � top

[rel girls [rel cats bite] see]

(e)

boys girls cats bite see fall

� top

[S boys [rel girls [rel cats bite] see] fall]

(f)

Figure 2.3. Stack (above) and constituent buffer (below) contents when parsing the doubly

center-embedded sentence ‘boys girls cats bite see fall’

paper to be placed on top of the pile will therefore be always be the first paper that

can be accessed. Notice that just as it is not possible to read papers that are in the

pile, the parser typically only has access to the element on top of the stack.

To provide a rough idea of how ni-recursion is implemented via a stack, consider

the following simplified version of a left-to-right parse of the above sentence. For the

purpose of clarification, the parser is not equipped with lookahead buffer. Figure 2.3

shows the stack contents during the processing of ‘boys girls cats bite see fall’. In (a),

the parser receives ‘boys’ as input, and categorizes it as a noun that can instantiate

the N variable in either of the two NP rules from Figure 2.1. Since the parser cannot

do anything with just a single noun, a partly instantiated NP rule is ‘pushed’ on the

stack (leaving the constituent buffer empty). Next, the parser gets the noun ‘girls’ as

illustrated in (b). The parser is unable to attach the two nouns to each other via a

rule, so it is forced once more to push a partly instantiated NP rule on top of the stack.

When the parser subsequently encounters ‘cats’ in (c), it must again push a partly

instantiated NP rule on the stack. Following the categorization of ’bite’ as a transitive



CHAPTER 2. GRAMMARS AND LANGUAGE PROCESSING 16

verb, the partly instantiated NP rule is ‘popped’ off the stack (d). The two most recent

input words can now form a reduced relative clause, [rel cats bite], in the constituent

buffer. This means that rel in the complex NP can be instantiated with ‘girls’ as N.

The parser then receives the transitive verb ‘see’ in (e), and the process is repeated.

The constituent buffer now contains [rel girls [rel cats bite] see]. Once again, the next

item on the stack can be used to instantiate N in yet another complex NP with the

content of the constituent buffer as rel. Finally in (f), the parser gets the last remaining

verb, ‘fall’, which matches as a VP with the complex NP to form an S. The constituent

buffer now holds the full syntactic parse of the doubly center-embedded sentence (in

bracketed form) corresponding to the syntactic tree in Figure 2.2.

From the example, we can see that a stack provides an elegant way of realizing a ni-

recursive grammar. Notice that the rules used by the parser above correspond directly

to the phrase structure rules in Figure 2.1. However, such a direct identity relation

is not required between the parser rules and the rules of the grammar that the parser

is realizing. Indeed, this is most often not the case for parsers of some complexity

(e.g., the parsers developed by Berwick & Weinberg, 1984; Church, 1982; Marcus,

1980). Instead, a general mapping between the theoretical grammar as a whole and its

parsing realization is typically adopted (for a more detailed picture, see, for example,

Berwick & Weinberg, 1984). Importantly, in this weaker version of the grammar/parser

relationship the recursive nature of generative grammar is still mirrored directly in the

(recursive) workings of the parser (as exemplified in Figure 2.3—albeit without the

one-to-one mapping between grammar and parser rules).

Historically, the direct identity relation was tried out first, ideally providing a basis

for a strong link between grammatical competence and parsing performance. This was

the motivation behind the Derivational Theory of Complexity—first outlined by Miller

& Chomsky (1963)—which sought to establish a one-to-one correspondence between

grammar rules and the parser’s computation over its representations. The basic idea

was that the number of transformations required to derive the syntactic structure

for a given utterance would be reflected in terms of parsing complexity (that is, the

actual time it would take to parse the utterance). This hypothesis was abandoned in

favor of more general mappings in the late sixties, following a number of experimental

studies showing no direct relationship between the length of tranformational derivation

and processing time. However, this move also led to a methodological separation of

grammatical knowledge from processing behavior, and subsequently accentuated the

competence/performance distinction to which I turn to next.
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2.2 The Competence/Performance Distinction

In modern linguistics, the paradigmatic method of obtaining data is through intuitive

grammaticality judgments. However, it is a generally accepted fact that the greater

the length and complexity of a particular utterance is, the less sure people are in

their judgment thereof. Moreover, a variety of psycholinguistic studies have provided

much evidence demonstrating the limitations of human language processing (for exam-

ple, in the case of center-embedded sentences, Bach, Brown & Marslen-Wilson, 1986;

Blaubergs & Braine, 1974; Foss & Cairns, 1970; King & Just, 1991; Larkin & Burns,

1977; Marks, 1968; Miller, 1962; Miller & Isard, 1964; Stolz, 1967). In order to sal-

vage the unbounded capacity of the recursively specified generative grammar from the

dilemma caused by such human shortcomings, a distinction is typically made between

an infinite linguistic competence and a limited observable performance. The latter is

limited by memory limitations, attention span, lack of concentration, and other pro-

cessing constraints, whereas the former is construed as being essentially infinite in

virtue of the recursive nature of grammar and a total lack of constraints on syntactic

derivation. Consequently, “a grammar of a language purports to be a description of

the ideal speaker-hearer’s intrinsic competence” (Chomsky, 1965, p. 4).

The competence/performance distinction has been strongly advocated by Chomsky

as having important methodological implications for language research. In particular,

he has stressed that it is a common fallacy

. . . to assume that if some experimental result provides counter-evidence to
a theory of processing that includes a grammatical theory T and parsing
procedure P . . . then it is T that is challenged and must be changed. The
conclusion is particularly unreasonable in the light of the fact that in general
there is independent (so-called “linguistic”) evidence in support of T while
there is no reason at all to believe that P is true. (Chomsky, 1981: p. 283)

Since this position endorses a sharp functional distinction between linguistic compe-

tence and processing performance, I will refer to it as the strong C/PD. According to

the strong C/PD, linguists do not need to pay much attention to psycholinguistics.

Indeed, Chomsky seems to doubt the relevance of psycholinguistic results to language

research:

In the real world of actual research on language, it would be fair to say, I
think, that principles based on evidence derived from informant judgment
have proved to be deeper and more revealing than those based on evidence
derived from experiments on processing and the like, although the future
may be different in this regard. (Chomsky, 1980: p. 200)
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In this light, the strong C/PD provides its proponents with a protective belt that sur-

rounds their grammatical theories and makes them empirically impenetrable to psy-

cholinguistic counter-evidence.

2.2.1 The Chomskyan Competence Paradox

There is, however, a methodological problem inherent in the strong C/PD. On the

one hand, all linguistic theories rely on grammaticality judgments that (indirectly via

processing) display our knowledge of language. The strong C/PD, on the other hand,

makes T immune to all kinds of empirical falsification—even (in a pinch) to informant

judgments—should they not fit T. This leads to what I will call the Chomskyan compe-

tence paradox. Thus, it seems paradoxical from a methodological perspective to accept

only certain kinds of empirical evidence (i.e., grammaticality judgments), whereas the

rest is dismissed on what appears to be rather opportunistic grounds. Interestingly,

George (1989) has argued against the ‘processing fetishism’ of cognitive psychology and

in defense of the psychological reality of linguistic grammars, that it is a “a peculiar,

but common, assumption that we know a priori which kind of data (here, ‘the behav-

ioral sort’) is relevant to which conjectures” (p. 104). Note that this argument (mutatis

mutandis) applies equally well to the general rejection of psycholinguistic data, and, in

particular, to the selective use of informant judgments. George’s argument is therefore

just as dangerous for proponents of the strong C/PD as for cognitive psychologists

focusing entirely on behavioral data.

The early history of generative grammar provides an interesting background for the

Chomskyan competence paradox. Chomsky originally stated that for an utterance to

be grammatical it must be “acceptable to a native speaker” (1957, p. 13). He even sug-

gested a negative test for grammaticality in which an ungrammatical sentence would be

read “with just the intonation pattern given any sequence of unrelated words” (p. 16).

This ungrammaticality test became problematic in the light of Miller’s (1962) results

which showed that when subjects are asked to repeat center-embedded sentences, “their

intonation is characteristic of the recitation of a list of unrelated phrases, not the ut-

terance of a sentence” (p. 755–6). It was therefore soon abandoned, as was the positive

test; i.e., the link between grammaticalness and acceptability. Instead, Chomsky (1965)

contended that “acceptability is a concept that belongs to the study of performance,

whereas grammaticalness belongs to the study of competence. . . . although one might

propose various operational tests for acceptability, it is unlikely that a necessary and

sufficient operational criterion might be invented for the much more abstract and far

more important notion of grammaticalness” (p. 11, my emphasis). Having thus severed
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the direct link between grammaticalness and acceptability, endorsing the strong C/PD,

the opportunistic escape hatch was then further secured: “it is quite apparent that a

speaker’s reports and viewpoints about his behavior and his competence may be in er-

ror. Thus generative grammar attempts to specify what a speaker actually knows, not

what he may report about his knowledge” (p. 8). This makes linguistic theory immune

towards potentially damaging informant judgments such as those reported in Marks

(1968). He found that people judge center-embedded sentences with more than one

level of embedding to be ungrammatical (whereas left- and right-embedded sentences

of differing length are judged to be grammatical).

The Chomskyan competence paradox should now be obvious: how can it be that

amongst informant judgments, which are all elicited in exactly the same way, some

are considered to be ‘true’ facts about linguistic competence whereas others merely

reflect performance? In other words, how can a theory (of linguistic competence) which

builds on a set of facts (i.e., grammaticality judgments) at the same time be used to

distinguish among those very same facts, dismissing some of them, without circularity?

One could, of course, respond that in certain exceptional cases we can allow (to rephrase

Quine, 1960) that the ‘tail’ of the theory is wagging the ‘dog’ of evidence. However,

this methodological move just leads us to a new version of the problem: how can we

determine in a theory-neutral way which linguistic constraints are true limitations on

competence and which are merely performance shortcomings? For example, why is

it that the subjacency principle (which can be explained as a processing constraint

cf., e.g., Berwick & Weinberg, 1984; Marcus, 1980) is typically considered to be a

genuine constraint on competence, whereas human processing limitations with respect

to center-embedded sentences are regarded as performance constraints? This echoed

by Church (1982) who—whilst construing subjacency as a competence idealization—

nevertheless notes that “in general, though, it is extremely difficult to prove that a

particular phenomenon is necessarily a matter of competence. We have no proof that

subjacency is a competence universal, and similarly, we have no proof that center-

embedding is a processing universal” (p. 12). The Chomskyan competence paradox

therefore seems to be an unavoidable methodological implication of the strong C/PD,

suggesting that the latter be eschewed7.

7It might also be objected that we need a C/PD to account for the often mentioned fact that
people’s performance on center-embedded sentences can be improved with training and the use of
pen and paper. So, the argument goes, we must have an (at least) in principle infinite competence
underlying our linguistic behavior. I will address this argument in section 2.3, suggesting that upon
scrutiny it does not hold water.
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2.2.2 A Weaker Competence/Performance Distinction

A more moderate position, which I will refer to as the weak C/PD, contends that

although linguistic competence is supposed to be infinite, the underlying grammar

must directly support an empirically appropriate performance. This is done by explic-

itly allowing performance—or processing—considerations to constrain the grammar.

Pickering & Chater (1992) have suggested that such constraints must be built into

the representations underlying the grammatical theory, forcing a closer relation to the

processing theory. This ensures that the relation between the theory of grammatical

competence (Chomsky’s T) and the processing assumptions (Chomsky’s P) is no longer

arbitrary, resulting in an opening for empirical testing. Nevertheless, inasmuch as T

and P are still functionally independent of each other, the option is always open for

referring any falsifying empirical data questioning T to problems regarding the inde-

pendent P, i.e., to performance errors. In addition, although this position does not

lead directly to the Chomskyan competence paradox, it still relies on a methodologi-

cally problematic, theory-laden notion of what counts as evidence of competence and

what counts as performance data.

To compare the methodological differences between models of natural language

processing that adopt, respectively, the strong or the weak C/PD, it is illustrative to

construe the models as rule-based production systems. Recall that within the produc-

tion system conceptualization of a parser, the grammar of a particular linguistic theory

corresponds to the system’s knowledge base. The system can therefore be said to have

an infinite linguistic competence in virtue of its independent knowledge base, whereas

its performance is constrained by working memory limitations. This is in direct cor-

respondence with the strong C/PD, since the grammar is completely separated from

processing. Models adhering to the weak C/PD would similarly have an independent,

declarative knowledge base corresponding to the grammar, but in addition they would

also encompass a separate knowledge base consisting of what we might coin linguistic

meta-knowledge. This knowledge consists of various performance motivated parsing

heuristics—such as, for example, the ‘minimal attachment principle’ (Frazier & Fodor,

1978), ‘early closure’ (Kimball, 1973), and ‘late closure’ (Frazier & Fodor, 1978)—that

provide constraints on the application of the grammar rules. Thus, the performance

of the model is constrained not only by limitations on working memory but also by

linguistic meta-knowledge.

From the production system analogy it can be seen that proponents of both the

strong and the weak C/PD stipulate grammars that are functionally independent from

processing. As a consequence, empirical evidence that appears to falsify a particular
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grammar can always be rejected as a result of processing constraints—either construed

as limitations on working memory (strong C/PD) or as a combination of working mem-

ory limitations and false linguistic meta-knowledge (weak C/PD). In short, as long as

the C/PD—weak or strong—is upheld, potentially falsifying evidence can always be

explained away by referring to performance errors. This is methodologically unsound

insofar as linguists want to claim that their grammars are part of the psychological

reality of natural language. It is clear that Chomsky (1986) finds that linguistic gram-

mars are psychologically real when he says that the standpoint of generative grammar

“is that of individual psychology” (p. 3). Nevertheless, by evoking the distinction

between grammatical competence and observable natural language behavior, thus dis-

allowing negative empirical testing, linguists cannot hope to find other than speculative

(or what Chomsky calls ‘independent linguistic’) support for their theories. In other

words, if linguistic theory is to warrant psychological claims, then the C/PD must be

abandoned8.

Having argued against the C/PD, both weak and strong, on methodological grounds,

I will now turn to the question of whether the apparent occurrence of different kinds of

recursion in natural language after all does warrant talk about a linguistic competence

functionally independent from observable performance.

2.3 Recursion and Natural Language Behavior

The history of the relationship between generative grammar and language behavior

dates back to Chomsky’s (1957) demonstration that language can, in principle, be

characterized by a set of recursive rules. Recall that he argued that natural language

cannot be accounted for by a finite state automaton, because the latter can only produce

regular languages. This class of languages—although able to capture left- and right-

branching i-recursive structures—cannot represent center-embedded expressions. For

linguistic theories adhering to the C/PD (weak or strong), this restriction on the power

of the finite-state grammars prevents them from being accepted as characterizations of

the idealized linguistic competence. On this view, natural language must be at least

context-free, if not weakly context-sensitive (cf. Horrocks, 1987). However, having

eschewed the C/PD on methodological grounds in the previous section, the question

still remains concerning how much processing power is needed in order to account for

8By this I do not mean that the present linguistic theories are without explanatory value. On the
contrary, I am perfectly happy to accept that these theories might warrant certain indirect claims with
respect to the language mechanism, insofar as they provide means for describing empirical natural
language behavior.
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observable language behavior. Do we need to postulate a language mechanism with

the full computational power of a ni-recursive context-free grammar?

2.3.1 Non-iterative Recursion

Before answering this question, it is worth having a look at some examples of different

kinds of recursive natural language expressions. Since the crucial distinction between

regular and other richer languages is that the former cannot produce expressions in-

volving unbounded center-embedding, we will look at such ni-recursive sentences first.

As the following three examples show, the difficulty of processing a center-embedded

sentence increases with the depth of embedding:

(1) The cat that the dog chased bit the girl.

(2) The girl that the cat that the dog chased bit saw the boy.

(3) The boy that the girl that the cat that the dog chased bit saw fell.

The processing of center-embedded sentences has been studied extensively. These

studies have shown, for example, that English sentences with more than one center-

embedding (e.g., (2) and (3) above) are read with the same intonation as a list of

random words (Miller, 1962), cannot be easily memorized (Foss & Cairns, 1970; Miller

& Isard, 1964), and are judged to be ungrammatical (Marks, 1968). Bach, Brown

& Marslen-Wilson (1986) found the same behavioral pattern in German, reporting a

marked deterioration of the understanding and a sharp increase in the negative judg-

ments of comprehensibility of center-embedded sentences with an embedding depth of

more than one. It has also been shown that semantic bias and training can improve

performance on such structures (Blaubergs & Braine, 1974; Stolz, 1967), and that pro-

cessing is influenced by individual differences in memory span. Importantly, Larkin &

Burns (1977) have furthermore demonstrated that the difficulty in the processing of

ni-recursion is not confined to a linguistic context. These findings, in turn, have lead

to much debate concerning how they should be incorporated into accounts of natural

language processing (e.g., Berwick & Weinberg, 1984; Church, 1982; Frazier & Fodor,

1978; Kimball, 1973; Pulman, 1986; Reich, 1969; Wanner, 1980).

Proponents of the C/PD have explained the difficulty in terms of performance limi-

tations. For example, in order to account for the problems of parsing center-embedded

sentences, both Kimball’s (1973) parser and Frazier & Fodor’s (1978) ‘Sausage Machine’

parser apply a performance-justified notion of a viewing ‘window’ (or look-ahead). The

window, which signifies memory span, has a length of about six words and is shifted

continuously through a sentence. Problems with center-embedded sentences are due to

the parser not being able to attach syntactic structure to the sentences because the verb
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belonging to the first NP is outside the scope of the window. However, this solution is

problematic in itself (cf. Wanner, 1980) since doubly center-embedded sentences with

only six words do exist and are just as difficult to understand as longer sentences of

similar kind; e.g.:

(4) Boys girls cats bite see fall.

Others (e.g., Church, 1982; Pulman, 1986) impose limitations on the number of items

allowed at any one time on the stack and invoke some kind of “forgetting” procedure to

ensure the stack does not grow beyond its limit. However, this stack limit is determined

in a rather ad hoc fashion so as to tailor the behavior of the parser to be comparable

with human performance9.

A possible way out of this problem due to Reich (1969) is to argue that center-

embedded sentences, such as (2)–(4), are ungrammatical. However, this suggestion

has met strong opposition—even from many psycholinguists emphasizing performance

models of natural language (e.g., Berwick & Weinberg, 1984; Church, 1982; Pulman,

1986). The standard counter-argument consists in pointing out that performance can be

improved via training and by allowing the use of external memory aids (such as pen and

paper) and extra time, whereas this does not appear to be the case for ungrammatical

strings. This is therefore taken to reflect a genuine grammatical competence underlying

the improvements in performance. Because this argument typically is considered to

provide a solid defense of the C/PD, I will address it in detail.

My main objection to the practice/extra resource argument is that it may not tell

us anything about the language capacity per se. Notice that these performance im-

provements can only be obtained through hard conscious work (e.g., through verbal

rehearsing, writing, etc.). In contrast, the processing of natural language under “nor-

mal” circumstances is effortless and unconscious. This suggests a process of consciously

‘augmenting’ an already existing—but relatively limited—grammatical ability10, rather

than unveiling parts of an underlying infinite competence.

A Lesson from Garden Path Sentences

This objection is inspired by Marcus’ (1980) ‘determinism hypothesis:

9It should be noted that even though Pulman’s parser uses an unconventional ‘stack-like’ memory
structure, in which items within the stack can be accessed, the limitation on the number of items on
this stack is still determined in an ad hoc fashion.

10This process of conscious augmentation may rely on abstract knowledge of language acquired
through schooling and/or semantic and contextual information about which lexical items may go to-
gether. The latter has also been proposed by Stolz (1967), suggesting that subjects “might ‘learn’ the
[center-embedded] construction by noticing some connection between the test sentences and aspects of
his nonlinguistic knowledge during the course of the experiment” (p. 869).
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There is enough information in the structure of natural language in general,
and in English in particular, to allow left-to-right deterministic parsing of
those sentences which a native speaker can analyze without conscious effort.
(Marcus, 1980, p. 204; my emphasis)

In this context, ‘determinism’ means that the language processor is committed to

whatever syntactic structure it is presently building, thus disallowing deterministic

simulations of non-determinism such as backtracking and pseudo-parallelism (i.e., the

possibility of following several different syntactic paths simultaneously)11. Marcus pro-

posed the above hypothesis in order to be able to predict which sentences would send

people “down the garden path”. Garden path sentences are fully grammatical sen-

tences in which a structural ambiguity encountered early in the sentence might lead

the reader/listener to go down the wrong syntactic path. Consider, for example, the

classic garden path sentence:

(5) The horse raced past the barn fell.

In (5), the word ‘raced’ induces a potential structural ambiguity, since it can be parsed

either as the main verb of a past tense sentence, or as the start of an unmarked reduced

relative clause (i.e, as a past tense participle). The former parse leads the language

processor down the garden path, because it will not be able to fit ‘fell’ into the syntactic

structure that it is building. Interestingly, most people will parse ‘raced’ in this way,

as if they were expecting the sentence to look like (6) rather than (5)12.

(6) The horse raced past the barn.

So, when they encounter ‘fell’ they become aware of their misparsing, backtrack, and

then try to reparse the sentence from scratch13.

11It may be that this strict determinism will have to be replaced by a more qualified determinism
as found in the recent multiple-constraint models of parsing and comprehension (e.g., Taraban &
McClelland, 1990). Such a change would, however, not change the general gist of the present conscious
augmentation hypothesis.

12The preference of the main verb reading over the participle reading of ‘raced’ might be explained in
terms of the distributional statistics concerning the relative occurrence of the two verb forms in everyday
language. We may therefore expect that the main verb (past tense) reading occurs significantly more
often than the participle reading, leading to a strong bias towards the former in ambiguous cases such
as (5). Thus, (6) is more likely to occur in normal English than (5). Evidence presented in, e.g., Juliano
& Tanenhaus (1993) corroborates this expectation

13Note that the garden path in (5) can be avoided if the relative clause is marked and unreduced as
in: ‘The horse that was raced past the barn fell’ (making it a center-embedded sentence of depth one).
Moreover, experiments have shown that semantic (Milne, 1982) and contextual information (Altmann
& Steedman, 1988; Crain & Steedman, 1985; Taraban & McClelland, 1990) can both induce and
prevent garden paths.
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The observable behavior of people, when faced with garden path sentences, have

lead Marcus (1980) to propose his determinism hypothesis, and subsequently Milne

(1982) to suggest that

. . . the processing of a normal sentence does not require conscious effort
and [it] is generally agreed that to understand a garden path sentence re-
quires conscious effort. The reader notices a mental ‘jump’ or ‘block’ when
reading of the sentence, stops and the garden path is consciously realized.
Experimentally, conscious effort is detected by an increase in reaction time
to a given task. As an armchair definition; any grammatical sentence that
seems abnormal to read, requires conscious effort. (p. 353)

The operational criterion for ‘conscious effort’ has been confirmed by response time

studies (Milne, 1982) demonstrating significantly longer reading times for garden path

sentences, such as (5), compared with the corresponding non-garden path sentences,

such as (6) (the latter being slightly altered to control for sentence length: ‘The horse

raced past the old barn’). Eye-tracking studies further support the idea that conscious

effort may be needed to recover from the garden path. For example, Rayner, Carlson

& Frazier (1983) found that people make regressive eye movements when experiencing

the garden path effect in (5), indicating that conscious backtracking may be necessary

to recover from certain garden path sentences. However, there are also garden path

sentences which produce longer reading times, but which nevertheless do not seem to

require conscious effort14. This may be paralleled by the processing of sentences with a

single center-embedded object relative clause, such as (1), which do not appear to elicit

conscious awarenes. These sentences also produce longer reading times in comparison

with sentences expressing the same sentential content using a subject relative clause

(cf. King & Just, 1991), as it was the case with the ‘unconscious’ garden path effect.

The lesson to be learned from the garden path case is that syntactic processing

(in Milne’s words) “is unconscious, deterministic and fast, but limited” (1982, p. 372).

Despite the limitations, syntactic processing rarely fails. But when it does, conscious

effort is needed to recover from the error. This allows the allocation of non-language

specific, cognitive resources so that conscious re-processing of the problematic utterance

is made possible.

Center-embedding and Conscious Processing

Returning to the case of center-embedded sentences, I submit that when people are

presented with these kind of language constructions they exhibit the same kind of

14In this connection, it should be noted that conscious awareness is presumably not an all or non
phenomena.
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behavior as with garden path sentences. For example, Miller & Isard (1964) report

work by Mackworth & Bruner in which the latter “have recorded the eye movements

of subjects when reading these sentences and have found that the number of fixations

and the number of regressive movements of the eyes both increase markedly as the

amount of self-embedding increases” (p. 299). Miller & Isard also go on to note the

direct correlation between conscious awareness and the point in the sentence where the

grammatical complexity starts:

Mackworth and Bruner’s recordings of eye movements while reading such
sentences confirms the introspective impression that the difficulty does not
begin until the long string of apparently unrelated verbs is encountered to-
ward the end of the self-embedded sentence. At this point the recursive eye
movements begin and one feels that all grasp of the sentence has suddenly
crumbled away” (p. 301; my emphasis).

It should be clear that these behavioral findings are similar to evidence concerning

the processing of garden path sentences (recall the “mental jump” mentioned by Milne,

1982, and the regressive eye movements reported by Frazier, Carlson & Rayner, 1983).

Thus the processing of center-embedded sentences is unconscious and effortless until

the second or third verb is encountered towards the end of the sentence. At this point

conscious effort becomes necessary so that the string of verbs can be combined with the

correct NPs in the beginning of the sentence. Notice that the first verb (e.g., ‘chased’ in

(1)–(3)) can easily be combined with the last NP (i.e., ‘the dog’ in (1)–(3)). The results

of Bach, Brown & Marslen-Wilson (1986), Marks (1968), Miller (1962), and Miller &

Isard (1964) taken together suggest that the combination of the second verb and the

last but one NP should not provide too much difficulty either (so that (1) would still

be processed without the need of additional conscious processing). But as soon as a

sentence has more than one embedding (i.e., (2)–(4)), thus requiring the combination

of more than two NPs with their respective VPs, then the language processor will not

be able to complete the parse without additional conscious processing.

But what about the performance improvements on center-embedded sentences ob-

tained through training and/or the addition of extra processing resources? Such im-

provements are in contrast with the often made observation that “no amount of practice

or artificial aids can make a clearly ungrammatical sentence like ‘on mat cat the sat

the’ become grammatical” (Pulman, 1986, p. 204). Although this is trivially true, it

is begging the question at hand. The real question, when making a comparison with

the center-embedding case, must be whether people would also be able to improve

their performance on ungrammatical sentences (and not whether the latter can be-

come grammatical). When addressing this question it is important to keep in mind
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that even with training the human performance on center-embedded structures is very

limited (Blaubergs & Braine, 1974). Indeed, experimental data seem to suggest that

many “listeners can decode a novel [ni-]recursive sentence only when its recursive qual-

ity has been learned as a specific part of the specific grammatical rule involved” (Stolz,

1967: p. 872; my comment and emphasis).

It is often noted that Miller & Isard have demonstrated that free recall of center-

embedded sentences can be improved via learning, but it is almost equally often over-

looked that they also reported a positive learning effect on strings of random words.

In fact, the increase in performance through learning was three times higher for the

ungrammatical strings (about 100% from trial 1 to 5) than for each of the center-

embedded sentences (with 0–4 embeddings). Since learning can improve performance

on both grammatical center-embedded sentences and ungrammatical strings of random

words, the former cannot be assigned a special status as evidence in favor of an un-

bounded competence15. That is, the learning induced performance improvements on

center-embedded constructions do not support a distinction between competence and

performance. Presumably, we do not want to claim that the improvement of perfor-

mance on the ungrammatical strings is evidence of the language processor’s ability to

learn ungrammatical constructions (which would be a direct consequence of maintaining

the traditional practice/extra resource argument). Instead, we can explain both kinds

of performance improvement as pertaining to the conscious use of non-language spe-

cific cognitive resources. When the language processor is facing either center-embedded

sentences (with more than one embedding) or strings of random words, its unconscious

processing is interrupted and the help of our general cognitive reasoning abilities is

recruited to complete the task.

This picture would be threatened if we could find naturally occurring sentences

with a depth of more than one. De Roeck, Johnson, King, Rosner, Sampson & Varile

(1982) claim to have found such evidence. They provide examples from both German

and English of sentences with up to six levels of embedding. Importantly, all these

examples are from written texts (and, furthermore, mostly from sources (in)famous

for their complicated constructions). These examples are most certainly conscious

15In this connection, I predict that people might also be able to improve their comprehension of
ungrammatical sentences (such as, ‘on mat cat the sat the’ and more complex cases) via learning. The
only restriction necessary on a set of ungrammatical sentences would be that they must all reflect the
same ungrammatical regularities (such as, for example, similar incorrect word order). The work on
the learning of artificial grammars (for an overview, see Reber, 1989) can be taken to support this
prediction, since the former essentially involves the learning of a particular set of regularities (as it
would also be the case for the latter). Furthermore, in chapter 5 I argue that such learning processes
may subserve our language ability
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products of their authors, and also seem to require considerable conscious effort on

behalf of the reader to be understood16. Such sentences would presumably lead to the

characteristic regressive eye movements as mentioned above, suggesting an interruption

of the language processor, and the subsequent backtracking and conscious reprocessing.

De Roeck et al (1982, p. 332) do however provide one spoken example of a center-

embedded sentence of depth two:

(7) Isn’t it true that example sentences that people that you know produce are

more likely to be accepted?

This sentence appears to be parsable without any problems, thus potentially causing

a problem for the above picture of the processing of center-embedded sentences. I

contend, however, that this is not the case, because the relative clause ‘people that

you know’ arguably is parsed as something like a single unit (because of its frequent

occurrence in everyday English). This seems to be in accordance with Miller & Isard’s

(1964) speculation that “subjects could, to a certain extent, organize the discontinuous

constituents as single units” (p. 300). In this light, compare (7) with (8).

(8) Isn’t it true that example sentences that people that you threaten produce are

more likely to be accepted?

In (8), ‘people that you threaten’ cannot be as easily chunked into a single unit as it

was the case with the innermost relative clause in (7). The subsequent increase in the

processing difficulty makes (8) more comparable with (2) than (7)17. This difference

in processing difficulty between (7) and (8) suggest that semantic, contextual or (as

here) distributional statistics might ease the processing of doubly center-embedded

sentences—similarly to the case of garden path sentences.

2.3.2 Iterative Recursion

Given the discussion above (and in the previous section), I contend that a language

processor need not be able to account for unbounded center-embedding (at any level

of analysis). Rather, it should experience difficulty comparable with the experimental

16The latter is, e.g., indicated by De Roeck et al with respect to their German examples: “The
sentences containing multiple center-embeddings . . . are, certainly, somewhat clumsy; a German-Swiss
colleague commented on . . . [one of these sentences], for instance, that it is the kind of sentence which
you have to look at twice to understand” (1982, p. 335).

17It could be objected that the use of ‘threaten’ in (8) makes the sentence semantically odd. However,
this oddness does not appear until after all the three verbs have been encountered. Thus, talk about
example sentences uttered by people that you threaten does not appear to be less semantically coherent
than talk about example sentences uttered by people that you know.
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evidence when encountering center-embedded sentences. Still, this leaves left- and

right-recursion to be dealt with. That these i-recursive structures cannot be easily

dismissed, but seem to be relatively ubiquitous in natural language, can be seen from the

following examples involving such constructions as multiple prenominal genitives (9),

right-embedded relative clauses (10), multiple embeddings of sentential complements

(11), and PP modifications of NPs (12):

(9) [[[[Bob’s] uncle’s] mother’s] cat]. . .

(10) [This is [the cat that ate [the mouse that bit [the dog that barked]]]].

(11) [Bob thought [that he heard [that Carl said [that Ira was sick]]]].

(12) . . . the house [on [[the hill [with the trees]][at [the lake [with the ducks]]]]].

Furthermore, prima facie there seems to be no immediate limits to the length of such

sentences (but see section 4.2 in chapter 4 for a discussion of possible limitations on

i-recursive structures).

Even though (9)–(12) are describable in terms of left- or right-recursion, it has been

argued—with support from, e.g., intonational evidence (Reich, 1969)—that these ex-

pressions should be construed not as recursive but as iterative (Pulman, 1986). Strong

support for this claim comes from Ejerhed (1982) who demonstrated that it is pos-

sible for an FSA, comprising a non-recursive context-free grammar, to capture the

empirical data from Swedish (provided that unbounded dependencies are dealt with

semantically). This demonstration is significant because Swedish is normally assumed

to require the power of context-sensitive languages (e.g., cf. Horrocks, 1987). Thus, we

have strong reasons for believing that an FSA may provide sufficient computational

power to account for natural language performance without needing to postulate a

functionally independent infinite competence.

In section 2.2, we saw that the competence/performance distinction was a direct

consequence of construing the grammar underlying linguistic behavior as a set of re-

cursive rules. Thus generative grammar by its very nature necessarily requires that

performance be separated from competence in order to account for observable language

behavior. So, it seems that if we are to abandon the distinction between competence

and performance (as the previous two sections suggest that we should), then we need a

different way of representing our knowledge of language. That is, we need a represen-

tational vehicle that will allow us to avoid the methodological problems of the C/PD

as well as model syntactic processing as being deterministic and unconscious in com-

pliance with the limitations set by the experimental evidence. In the remaining part of

this chapter, I present connectionism as a possible alternative framework in which to

represent the regularities subserving our language skills. First I provide a brief account
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of the main properties of connectionist representation and processing, before turning

to a general discussion of neural networks as models of natural language.

2.4 Connectionist Natural Language Processing

Connectionism typically implies using artificial neural networks as models of psycholog-

ical phenomena18. As such, these networks consist of a collection of simple processing

units, typically organized into layers, that are connected to each other by weighted

links (for an introduction to connectionism, see, e.g., Bechtel & Abrahamsen, 1991;

Clark, 1989; Rumelhart et al. , 1986). An important property of neural networks is

that they can be trained to develop the representations necessary to deal with a specific

task. Moreover, it has been observed that, through learning, connectionist models (with

hidden units) are able to develop distributed representations whose internal structure

mirrors that of the externally given input. More specifically, vectors corresponding to

the individual patterns of activation over the hidden units can be conceived as points in

a multidimensional state space (e.g., van Gelder, 1991a). The exact location of a given

vector is determined by the specific values of its constituents; i.e., by its internal con-

figuration. As a result, similar vectors are mapped into similar locations in space. The

degree of similarity between vectors—the ‘distance’ between them in space—can be

measured using a variety of standard vector comparison methods (e.g., cluster analysis

or trajectory analysis). Due to the superpositional and highly distributed nature of the

networks in question, representations that are structurally similar—i.e., that have sim-

ilar internal structure or, more precisely, have similar vector configurations—end up as

‘neighboring’ positions in state space. Thus, structurally related input representations

will invoke ‘adjacent’ representations in hidden unit state space.

It is important to notice from a computational perspective that these similarities

have causal significance. The behavior of a network, being a complex dynamical system,

is causally dependent on the current pattern of activation over the hidden units; that is,

on the current representation’s particular location in space. In other words, the specific

location in space of a given representation will causally effect how it is processed. Since

the internal structure of such distributed representations corresponds systematically

and in an essentially non-arbitrary way to the structural configuration of the input

representations, allowing us to project any semantic interpretation we might assign the

input onto the appropriate positions in vector space, and since variations of position

in state space are causally efficacious, the processing of a network can be seen as

18The following is based in part on Christiansen & Chater (1992).
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being determined systematically according to the semantic content of the distributed

representations.

Judging from this exposition it would seem to be the case that connectionist rep-

resentations can be assigned content in an essentially non-arbitrary way, since their

internal structure (given successful training) will correlate with structural contingen-

cies in the input and produce a non-arbitrary representation; that is, connectionist

representations appear to be able to possess at least some bona fide intrinsic content.

However, the internal states of present day connectionist networks appear to be no

more “grounded” than their symbolic counterparts (also cf. Bechtel, 1989; Cliff, 1990;

Sharkey, 1991). Crucially, the distributed representations in question are only non-

arbitrary in relation to the structure of the given input representations, not in relation

to what the latter are representations of ; i.e., the entities they refer to in the outside

world. Consequently, similarity is defined as a relation between input representations,

and not as a relation to the appropriate external objects they are to represent. Fur-

thermore, since the input representations provided by the programmer are typically

pre-structured and of a highly abstract nature, it is always possible to give a network’s

input representations a different interpretation, thus changing the projected content

of the internal distributed representations. This has been mirrored empirically by the

fact that only a few experiments have been carried out with “real” sensory-type data

(in the sense of not having been pre-processed by the programmer), and then with a

mostly unsuccessful outcome (see Christiansen & Chater, 1992, for an example and

further discussion of this issue).

There is, however, a sense in which connectionist representations are non-arbitrary;

that is, the inter-representational relations in a network are essentially non-arbitrary.

In contrast to symbolic systems in which the atomic symbols have no relation to each

other (albeit, complex symbols have non-arbitrary inter-relations), distributed repre-

sentations are non-arbitrarily related to each other in state space. Whereas atomic sym-

bols designating similar objects have no (non-coincidental) relation to each other, con-

nectionist representations of similar object representations in the input will end up as

neighboring points in state space. Thus, connectionist networks provides us with a kind

of non-arbitrary representational “shape” that allows a notion of inter-representational

similarity. The important ability of connectionist networks to generalize derives from

these similarity relations between representations corresponding to structurally similar

input. Despite the non-arbitrariness of these inter-relations and their grounding of a

robust notion of representational similarity, the extra-representational links are still

fundamentally arbitrary and therefore ungrounded.
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2.4.1 Compositionality in Connectionist Models

Turning to the issue of learning linguistic structure, the problem of learning structured

representations comes into focus. This problem has received much attention follow-

ing the debate initiated by Fodor’s & Pylyshyn’s (1988) attack on connectionism (for

example, Chalmers, 1990b; Chater & Oaksford 1990a; Fodor & McLaughlin, 1990;

Oaksford, Chater & Stenning, 1990; Smolensky 1987, 1988; van Gelder, 1990a, 1991a).

In this connection, it has been suggested that the classical notion of compositionality

may be unnecessarily restrictive from the point of view of connectionist systems (that

is, the classical understanding of compositionality may induce an instance of the incom-

mensurability trap—forcing connectionist systems into an inappropriate framework).

This classical notion is labeled as concatenative (or ‘syntactic’) compositionality, which

“must preserve tokens of an expression’s constituents (and the sequential relations

among tokens) in the expression itself” (van Gelder 1990a: p. 360).

A broader notion, functional compositionality, does not demand the preservation of

constituents in compound expressions. What is needed is a general and reliable mech-

anism that can produce composite expressions from arbitrary constituents and later

decompose them back into their original constituents. As an example of functional

compositionality, van Gelder (1990a) points to Gödel numbering, which is a one-to-one

correspondence between logical formulae and the natural numbers. For instance, on a

given scheme the proposition P will be assigned the Gödel number 32, whereas a logical

expression involving P as a constituent, say, (P&Q) would be assigned the Gödel num-

ber 51342984000. It is clear that the Gödel number for (P&Q) does not directly (or

syntactically) contain the Gödel number for P. Still, by applying the prime decomposi-

tion theorem we can easily determine the Gödel numbers for its primitive constituents.

Thus, we have constituency relations without concatenative compositionality. Since

distributed networks using superimposed representation appear to ‘destroys’ the con-

stituents of composite input tokens (at least from the viewpoint of human observers),

they do not qualify as having concatenative compositionality. However, this is not

irreversible because the original constituents can be recreated in the output.

There is a danger that this would leave connectionist representations with the same

status as, for example, data-compressed, or otherwise encrypted, files on a standard

computer—as being useful only as storage but not for processing. For a genuinely con-

nectionist account of the representation and processing of structured representations,

it is necessary to be able to manipulate the functionally compositional representations

directly as van Gelder stresses. In the case of Gödel numbering, operations which are

sensitive to compositional structure (e.g., inferences) will not correspond to a (readily
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specifiable) function at the arithmetic level. Hence, performing logical inference over

Gödel numbers is a rather hopeless endeavor. Notice too, the compositional semantics

which can be easily defined over logical representations will have no (readily specifiable)

analog at the level of Gödel numbers.

What is important, from the viewpoint of language acquisition and processing, is

whether or not connectionist networks can handle (and, in particular, learn to handle)

problems which are standardly viewed as requiring structured representations. That is,

can connectionist representations attain what we shall call ‘apparent’ compositionality.

If apparent compositionality can be learned, then there are two possibilities concern-

ing the nature of the representations that the network employs. It could be that, on

close analysis, the net is found to have devised a standard, concatenative composi-

tional representation. Alternatively, the network might behave as if it used structured

representations, without using structured representations at all. In the former case,

it would seem appropriate to say that the network representations are compositional

(in the standard sense); in the latter, that the network is not using a compositional

representation (also in the standard sense). What is required, it appears, is not a new

notion of compositionality, but the attempt to devise networks which can behave as

if they had structured representations, followed by an analysis of their workings. Of

course, there is a third possibility: that representations within networks do, implement

compositionality, but in some heretofore unknown way, unlike that used by classical

systems (with appropriate operations over it, and an appropriate semantics). This pos-

sibility would cause us to revise the notion of compositionality, much as the discovery

of non-Euclidean geometry enlarged and changed the notion of straight lines, parallel

and so on. It will only be possible to develop a specifically connectionist notion of

compositionality, or even know if this possibility is coherent at all, post hoc—that is,

by analyzing networks that exhibit apparent compositionality.19 In other words, what

kind of compositionality we should ascribe connectionist representations is an empirical

question, which can only be answered by empirical investigation.

Recently, research efforts have therefore been made towards defining operations

that work directly on the encoded distributed representations themselves, instead of

their decomposed constituents. Chalmers (1990a) devised a method by which a simple

feed-forward, back-propagation network—dubbed a transformation network (TN)—was

able to manipulate compact distributed representations of active and passive sentences

according to their syntactical structure. First, a Recursive Auto-Associative Memory

19Of course, it is likely that any such notion would be included as a subclass of functional compo-
sitionality (as it is the case with concatenative compositionality)—but functional compositionality per

se does not put us any further forward to finding such a notion.
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(RAAM) network (Pollack, 1988) was trained to encode distributed representations of

the sentence structures. Chalmers then trained the TN to transform compact represen-

tations of active sentences into compact representations of passive sentences; that is,

he trained the network to associate the RAAM-encoded distributed representations of

active sentences with their distributed passive counterpart. In similar vein, Niklasson

& Sharkey (1992) successfully applied the same combination of RAAM20 and TN to (a

subpart of) the domain of logical axioms. These empirical investigations have shown

that it is possible to devise models, such as the TN, that can manipulate the compact

distributed representations in a structure sensitive way.

It is worth mentioning that when addressing the issue of connectionist composition-

ality there is a potential danger of falling into the incommensurability trap. As pointed

out by Sharkey (1991), the division between semantics and structural considerations

might be somewhat artificial, since such a division seems to be collapsed in much con-

nectionist research. On this view, even our own notion of apparent compositionality

could get us trapped in the claws of incommensurability. Nevertheless, bearing this in

mind, re-interpretation of old terminology seems to be the only productive way forward

for a research program still in its infancy.

Importantly, the above discussion of the general properties of connectionist models

suggests that a connectionist perspective on language promises to eschew the C/PD,

since it is not possible to isolate a network’s representations from its processing. The

relation between the ‘grammar’—or, rather, the grammatical regularities which has

been acquired through training—and the processing is as direct as it can be (van Gelder,

1990b). Instead of being a set of passive representations of declarative rules waiting to

be manipulated by a central executive, a connectionist grammar is distributed over the

network’s memory as an ability to process language (Port & van Gelder, 1991). In this

connection, it is important to notice that although networks are generally ‘tailored’ to

fit the linguistic data, this does not simply imply that a network’s failure to fit the data

is passed onto the processing mechanism alone. Rather, when you tweak a network to

fit a particular set of linguistic data, you are not only changing how it will process the

data, but also what it will be able to learn. That is, any architectural modifications will

lead to a change in the overall constraints on a network, forcing it to adapt differently to

the contingencies inherent in the data and, consequently, to the acquisition of a different

set of grammatical regularities. Thus, since the representation of the grammar is an

inseparable and active part of a network’s processing, it is impossible to separate a

20Actually, they applied a slightly modified version of the RAAM in which an additional bit de-
noted whether the input/output representations were atomic (i.e., not distributed) or complex (i.e.,
distributed).
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connectionist model’s competence from its performance.

2.4.2 Rules and Connectionism

Nevertheless, it might be objected that connectionist models of language may still

somehow embody linguistic rules and thus, perhaps, encompass a C/PD after all. Much

has been written about the question of rules in neural networks, but for present purposes

a brief overview will suffice (given the inconclusive nature of the overall discussion)21.

Dennett (1991) argues on instrumentalist grounds that there are no rules to be found

in connectionist nets, but many find that nets embody some kind of ‘implicit’ rules

(which is to be contrasted with the ‘explicit’ rules of the classical approach). For

example, Hatfield (1991) suggests that connectionist nets are rule instantiating systems

(in the implicit sense of rules). Similarly, Clark (1991) notes the implicitness of rules in

neural nets, stressing the need to accommodate explicit rules (perhaps by letting a net

implement a virtual machine simulating a rule system, as suggested in Clark, 1989)22.

The worry about the representation of explicit rules is echoed by Hadley (1993a) who,

furthermore, strongly criticizes connectionist models for merely embodying implicit

rules. In contrast, Sharkey (1992) emphasizes the flexible nature of the implicit rules in

neural nets, arguing that they are well-suited to serve as soft syntactic preference rules

(in contrast with their classical counterparts). Moreover, Davies (1993) has offered a

distinction between two notions of implicit rules, suggesting that this distinction might

help discover whether nets (and humans) embody rules.

A radically different approach has been taken by Kirsh (1990) who argues that the

implicit/explicit discussion is misguided, and that we instead should take the explic-

itness of a rule to be dependent on whether it is accessible in constant time (for a

criticism of this view and a proposal for a ‘narrow’ and a ‘broad’ sense of both implicit

and explicit rules, see Hadley, 1993b). Finally, MacLennan (1991) has proposed a for-

malization of connectionist knowledge representation, a simulacrum (i.e., a continuous

analog to discrete calculus), in which almost discrete rules can sometimes be said to

emerge from network processing, whereas the latter at other times form a continuum

21It is worth noting that in this discussion it not always clear whether rules are implicit from our

point of view (i.e., we cannot readily find them in the net), or from the net’s perspective (i.e., it cannot
‘see’ them).

22In this connection, Bechtel & Abrahamsen (1991) list three possible connectionist responses to
the problem of dealing with explicit rules: i) the approximationist approach in which the rules are
considered to be mere approximations of underlying connectionist substrate; ii) the compatibilist view
which implies that connectionist models must be able to implement the rules directly; and iii) the
externalist position which states that networks must be able to develop the capacity to manipulate
rules that are external to the net.
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that is not expressible in terms of rules.

Taken together, the research on whether connectionist networks embody rules (ex-

plicit, implicit or otherwise) does not show much overall consensus. In my view, this

discussion may be seen as a parallel to the above discussion of compositionality. A

connectionist language model might behave as if it has linguistic rules, although no

rules have been programmed into it. But does this warrant saying that the model

has ‘implicit’ (or ‘fuzzy’) rules? Such talk about implicit rules is in danger of forc-

ing connectionism into a symbolic mold by trying to apply a particular concept—i.e.,

the classical notion of a computationally efficacious rule—to connectionism. As in the

case of apparent compositionality, we can only solve this problem through empirical

research, developing a much better conception of what is really going on inside neural

networks.

However, this still leaves the question of what kind of linguistic performance data

should form the basis for connectionist models of language. For the purpose of empirical

tests of candidate language mechanisms we may need to distinguish between ‘real’

performance data as exhibited in normal natural language behavior and examples of

abnormal performance, such as, ‘slips-of-the-tongue’, blending errors, etc23. Notice

that the traditional notion of ‘grammaticality’ does not capture the kind of data that

I would want to account for. Instead, we might apply something like Reich’s (1969)

notion of ‘acceptable’ in the characterization of the data set to be modeled:

A sentence is acceptable to me if my estimate of the probability of oc-
currence of a sentence of like construction in natural language is greater
than zero. I exclude from natural language text sentences dreamed up by
linguists, psychologists, English teachers and poets. (p. 260)

In this way, what counts as valid data is not dependent on an abstract, idealized

notion of linguistic competence but on observable natural language behavior under

statistically ‘normal’ circumstances. Consequently, we should be able operationalize

Reich’s notion of acceptability in order to filter out the abnormal performance data

from a language corpora simply by using ‘weak’ statistical methods. For example,

Finch & Chater (1992, 1993) applied simple distributional statistics to the analysis of

a noisy corpus consisting of 40,000,000 English words and were able to find phrasal

categories defined over similarly derived approximate syntactic categories. It seems

very likely that such a method could be extended to a clausal level in order to filter

out abnormal performance data.

23Of course, this does not mean that one should not try to model this kind of performance breakdown
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Having shown the strong connection between the recursive nature of generative

grammar and the competence/performance distinction, as well as providing arguments

against upholding the latter distinction and in favor of a connectionist framework,

which does not necessarily rely on such a distinction, I now present a number of con-

nectionist simulations experiments in the next two chapters. In chapter 3, I present

simulations demonstrating the ability of recurrent neural networks to deal with dif-

ferent kinds of recursion in three artificial languages involving ni-recursion, normally

considered to require the power of context-free (and even context-sensitive) grammars.

Chapter 4 reports the results of simulations involving a linguistic grammar of consid-

erable complexity (incorporating sentences such as (1)–(3) and (9)–(12), that is, both

i- and ni-recursive structures).



Chapter 3

Modeling Recursion in Recurrent

Neural Networks

One of the Chomskyan legacies in modern linguistics is the stipulation that a finite state

automaton cannot capture the linguistic structure of natural language. This position

is to a large extent based on the fact that no FSA can produce strings which contain

embedded substrings of arbitrary complexity and length. In this connection, the two ni-

recursive linguistic phenomena—center-embedding and cross-dependency—have played

an important part in the history of the theory of language. In particular, they have been

used as an existence proof of the need for increasingly powerful language formalisms

to describe natural language. Thus, in the second half of the fifties, Chomsky (1956,

1957) proved that regular languages cannot capture center-embedding of an arbitrary

depth. Given that center-embedding does occur in natural language, he concluded that

we would need at least the power of context-free (CF) languages in order to specify

adequate grammars. In fact, at that time Chomsky went even further, arguing for the

combination of a CF grammar and a transformational component. The latter enables

transformations of CF strings into strings not derivable from the grammar itself. This

was, for example, used to account for passive constructions: an active CF string, say,

‘Betty loves Anita’ is transformed into the passive string ‘Anita is loved by Betty’.

About a quarter of a century later, arguments were put forward—most notably

by Pullum & Gazdar (1982)—defending the sufficiency of CF grammars (without an

additional transformational component). Shortly thereafter, the existence of cross-

dependency in some languages was used in an attack on the adequacy of CF gram-

mar formalisms (e.g., Shieber 1985—for a defense against that attack, see Gazdar &

Pullum 1985). At the moment, this discussion is undecided, but the historic trend

38
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within linguistics points towards increasingly powerful grammar formalisms. In con-

trast, connectionist and other statistically based models of natural language processing

are essentially finite state machines producing ‘only’ regular languages. It is therefore

not surprising that linguists in general do not pay much attention to these kind of

approaches to natural language processing. They are dismissed a priori as not being

powerful enough to do the job. Part of the motivation for the simulation experiments

presented in this chapter (and the next) is therefore to challenge this speculative dis-

missal of finite state models of language.

In order to make this task more precise, consider an artificial language whose only

‘words’ are the letters ‘a’ and ‘b’. Given this restricted basis, Chomsky (1957: p. 21)

constructed the following three languages involving ni-recursion:

i. ab, aabb, aaabbb, . . . , and in general, all sentences consisting of n occurrences of

a followed by n occurrences of b and only these;

ii. aa, bb, abba, baab, aaaa, bbbb, aabbaa, abbbba, . . . , and in general, all sentences

consisting of a string X followed by the ‘mirror image’ of X (i.e., X in reverse),

and only these;

iii. aa, bb, abab, baba, aaaa, bbbb, aabaab, abbabb, . . . , and in general, all sentences

consisting of a string X of a’s and b’s followed by the identical string X, and only

these.

If it is required that the strings of these three languages are to be of a possibly

infinite complexity, then an FSA will not suffice (even though it can produce i-recursive

strings of an arbitrary length as pointed out in chapter 2). Assuming, as we must, that

all parameters have finite precision, any finite neural network is also an FSA. Thus,

connectionist accounts of language processing appear to inherit the shortcomings of the

FSA. On the other hand, if we only need to account for a certain depth of embedding,

then we can devise an FSA that can process all the strings up to that particular limit.

Similarly, we might be able to train a neural network to process bounded recursion.

In chapter 2, I argued against using a distinction between an idealized competence

and the actual human performance in psychological theories of natural language pro-

cessing. Empirical studies (e.g., Bach, Brown & Marslen-Wilson, 1986) have shown

that sentences involving three or more embeddings (such as, ii) or three or more cross-

dependencies (such as, iii) are universally hard to process and understand. Neverthe-

less, we do need to account for a limited depth of ni-recursive embedding. The question

is therefore whether this relatively simpler problem can be solved by a system adapting

to mere statistical contingencies in the input data. Furthermore, is it possible for such
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a system to develop an ability to generalize to new instances? In other words, can a

neural network capture the ni-recursive regularities of natural language, while accept-

ing that arbitrarily complex sentences cannot be handled? And very importantly, will

the system develop behavior comparable with humans on similar tasks?

To address the above questions I have developed a number of benchmark tests

based on Chomsky’s three abstract languages. This chapter reports the results of these

tests based on computer simulations involving two kinds of artificial neural networks

as well as a program implementing n-gram statistics. The first section describes the

three artificial languages that comprises the basis of the benchmark tests—both with

respect to their relationship to natural language and performance expectations. Section

2 describes the neural network architectures and the n-gram statistical program. It also

provides a description of the form and configuration of the input data. The next two

sections report the results obtained in two experiments involving, respectively, a two

word and an eight word vocabulary. The final section summarizes and discusses the

results from the two benchmark experiments, comparing them with experimentally

observed limitations on human processing of ni-recursive structures.

3.1 Three Bench Mark Tests Concerning Recursion

The issue of ni-recursion has been addressed before within a connectionist framework.

For example, both Elman (1991a) and Servan-Schreiber, Cleeremans & McClelland

(1989, 1991) have demonstrated the ability of Simple Recurrent Networks (SRN) to

deal with right-branching i-recursive structures as well as limited instances of center-

embedded ni-recursion (Chomsky’s second abstract language). In addition, the latter

form of ni-recursion has been studied further by Weckerly & Elman (1992). However,

no study has directly addressed the Chomskyan challenge expressed in terms of the

three abstract languages mentioned above. This chapter takes up that challenge from

a connectionist perspective incorporating psycholinguistic considerations.

In order to make the tests slightly more natural language-like a constraint on Chom-

sky’s original languages was introduced1. This constraint consists of an agreement be-

tween a ‘noun’ class of words and a ‘verb’ class of words. Each word has two forms—a

lower case form and a upper case form—which can be seen as corresponding to the

singular and plural forms of English. In this way, the constraint enforces an agreement

1I am aware that the test languages are still far from being anything like natural language. Never-
theless, they express the abstract structure of certain linguistic constraints (see below) and are therefore
well-suited as benchmark tests concerning learnability and generalization. Moreover, the simulations
presented in the next chapter involves more language-like data. Chapter 4 will also deals with the
combination of ni- and i-recursion.
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between the ‘subject noun’ and the verb so that lower case nouns only occur with lower

case verbs and similar for upper case words (except in the case of the first language).

Furthermore, each sentence has an end of sentence marker, a ‘.’ (full stop), after the

last verb2. The three test languages have the following structure:

i. az., aZ., AZ., Az., aAZZ., aAazzZ., . . . , and in general, all sentences consisting of

n occurrences of nouns followed by n occurrences of verbs and only these, as well

as a ‘.’. That is, in the simple case, a combination of a’s and/or A’s is followed

by the exact same number of z’s and/or Z’s plus a ‘.’, but with no agreement

between nouns and verbs”.

ii. az., AZ., aazz., aAZz., AAZZ., AazZ., AaazzZ., aaAZzz., . . . , and in general,

all sentences consisting of a string n of nouns followed by a string n of verbs

whose agreement features constitute a ‘mirror image’ of those in N (i.e., the

order reversed with respect to N), and only these, as well as a ‘.’. That is, in

the simple case, a combination of a’s and/or A’s is followed by the exact same

number of z’s and/or Z’s plus a ‘.’, but with the constraint that the last verb

agrees with the first noun, the second but last verb with the second noun, and so

forth for all words in a given sentence.

iii. az., AZ., aazz., aAzZ., AAZZ., AaZz., AaaZzz., aaAZzz., . . . , and in general, all

sentences consisting of a string n of nouns followed by a string n of verbs whose

agreement features are ordered identically to those in N, and only these, as well

as a ‘.’. That is, in the simple case, a combination of a’s and/or A’s is followed by

the exact same number of z’s and/or Z’s plus a ‘.’, but with the constraint that

the first verb agrees with the first noun, the second verb with the second noun,

and so forth for all words in a given sentence.

Chomsky (1957) has claimed that the first test language correspond to naturally

occurring sentence constructions in English, such as, ‘If S1, then S2’ and ‘Either S3,

or S4’ (where S1, S2, S3 and S4 are declarative sentences). These sentence structures,

supposedly, can be nested arbitrarily deeply within each other as, for example, in the

sentence ‘If, either, if the cat is out, then let the dog in, or, the bird is out, then go

for lunch’. It should be clear from this example that sentences with only two levels

of nesting become very difficult to process. Although there is no direct experimental

evidence to corroborate this, Reich 1969 has suggested that these constructions only

will occur naturally with a limited depth of nesting.

2Another motivation for the agreement constraint was to provide the systems with minimal help
(e.g., cf. Cleeremans, Servan-Schreiber & McClelland, 1991).
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(a)

A b c x y Z

(b)

(the) boys (the) woman (the) cat chases sees walk

Figure 3.1. Illustration of the structural similarity between the second test language and

English.

The second language corresponds structurally to center-embedded sentences which

are found in many languages (although typically not with a high frequency). Fig-

ure 3.1(a) illustrates the subject-noun/verb dependencies in a sentence, ‘AbcxyZ’, from

the second test language. These dependencies correspond structurally to the abstract

structure of the subject-noun/verb agreements in (b) the English sentence, ‘(the) boys

(the) woman (the) cat chases sees walk’ (where lower case denotes singular and upper

case plural). Again, it is clear that even sentences with two center-embeddings are

difficult to process, an intuition which is supported by psycholinguistic studies (e.g.,

Bach, Brown, & Marslen-Wilson, 1986; Blaubergs & Braine, 1974; Larkin & Burns,

1977).

In much the same way, the structural properties of the third test language is similar

to the much less common cross-dependency structures found in languages such as Dutch

and Swiss-German3. Figure 3.2 shows (a) a sentence from the third test language,

‘AbcXyz’, that can be seen as structurally equivalent (in terms of subject-noun/verb

dependencies) to (b) the Dutch sentence ‘(de) mannen (hebben) Hans Jeanine (de paar-

den) helpen leren voeren’ (again with the convention that lower case denotes singular

and upper case plural). The literal English translation of the latter is ‘the men have

Hans Jeanine the horses help teach feed’ and can be glossed as ‘the men helped Hans

teach Jeanine to feed the horses’. As with center-embedding, there is experimental

evidence suggesting a limit on the number of cross-dependencies acceptable to native

speakers of Dutch (Bach, Brown, & Marslen-Wilson, 1986).

3The ‘respectively’ constructions in English—e.g., ‘Anita and Betty walked and skipped,

respectively’—are sometimes said to involve cross-dependency. However, many find that these con-
structions rely on semantic rather than syntactic constraints (e.g., Church 1982). Although I tend to
lean towards the latter position, it will not matter for the arguments presented here if the former is
adopted. In both cases there seems to be a limit on the length of acceptable ‘respectively’ construc-
tions. For instance, ‘Betty, the dogs, and Anita runs, walk, and skips, respectively’ is questionable at
best. In unison with Church (1982), I find that three cross-dependencies in these constructions is the
limit in terms of acceptability.
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(a)

A b c X y z

(b)

(de) mannen (hebben) Hans Jeanine (de paarden) helpen leren voeren

Figure 3.2. Illustration of the structural similarity between the third test language and

Dutch.

3.1.1 Performance Expectations

When considering the three languages certain predictions can be made concerning the

difficulty of processing each of them. The task in question is to predict the next word in

a sentence or a sentence ending. That is, the system gets a word as input at time t and

then has to predict the next word at time t+1. In this connection it should be noted that

it is not possible to determine precisely how many nouns are going to be encountered in

a sentence or what their (upper/lower case) form might be.4 It is, however, possible to

determine exactly how many verbs a sentence will have and which (upper/lower case)

form each of them will have (except, of course, for the first language). Assuming that

the system can learn to distinguish nouns from verbs, it should be able to make correct

predictions about subsequent verbs as well as the sentence ending once it receives the

first verb as input. More specifically, the number of verbs will correspond to the number

of nouns, and the form of the former will agree with the form of the latter as specified

by each particular language. The end of sentence marker should be predicted after the

last verb.

Bearing this in mind, it appears to be the case that the first language should be the

least difficult to process. Since this language does not have any agreement constraints

imposed on it, a system ‘merely’ needs to predict the correct number of verbs in a

sentence and the end of sentence marker. To perform this task the system therefore

needs to count the exact number of nouns encountered. It is then able to predict

4Still, a learning system might develop some sensitivity to sentence length based on the length
distribution of all the sentences in the input. In this way, the system would tend to predict L/2 nouns,
where L is the average sentence length in the input (measured in words). This sensitivity will probably
also cause the system to activate the end of sentence marker after it has encountered L words. For



CHAPTER 3. RECURSION IN RECURRENT NEURAL NETWORKS 44

(a)

lower case � top

a

(b)

upper case
lower case

� top

aA

(c)

lower case � top

aAZ

(d)

� top

aAZz

Figure 3.3. Stack contents when processing the the mirror recursive sentence aAZz.

the correct number of verbs as well as the end of sentence marker by decreasing its

counter for each verb it predicts. For that reason I will refer to the structure of the

first test language as counting recursion. As an example, imagine that the system

previously has received aAZ 5 as its input. If the system has counted the number of

nouns encountered it should be able to predict the next word as being a verb (of either

form). Next, it should predict the end of sentence marker as the last ‘word’.

The most efficient way to process the second language is to develop a stack-like

memory structure (as we saw in chapter 2); that is, to ‘implement’ a last-in-first-

out memory storing the agreement forms of the nouns in the exact order they were

encountered. Once the system receives the first verb as input, its form should agree

with the noun form on the top of the stack. This form information is removed from the

stack. The next verb form can then be predicted as corresponding to the noun form

which constitutes the new stack top. The same procedure is followed for subsequent

verb form predictions until the stack is empty and an end of sentence marker can be

predicted. Using this memory structure a system will be able to predict the agreement

form of all verbs (save the first) as an exact mirror image of the noun forms. I will

therefore refer to the structure of the second test language as mirror recursion.

Consider as an example the mirror recursive sentence ‘aAZz.’. After having re-

ceived the first noun, ‘a’, as input, the stack would look something like Figure 3.3(a);

sentences longer than this average this might lead to increasingly inaccurate predictions.
5I will adopt the following typographical convention regarding prediction context: All the previous

input words will be listed up to and including the current input word. The latter will be emphasized
in bold. Underscore signifies the item to be predicted.
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(a)

lower case � first

a

(b)

upper case lower case � first

aA

(c)

upper case � first

aAZ

(d)

� first

aAzZ

Figure 3.4. Queue contents when processing the identity recursive sentence aAzZ.

indicating that if the next word is a verb it must be lower case. Since the next word

is another ‘noun’, its dependency constraint is put on top of the stack as illustrated in

(b), predicting that if a verb is next it should be upper case. When the system gets the

first verb, as in (c), the agreement form on the top of the stack is removed. The new

top (lower case) is used to predict the form of the next word as a lower case verb. After

receiving the last verb the stack becomes empty (d), and an end of sentence marker

can be predicted.

To process the third language most efficiently a system needs to develop a queue-

like memory structure. This is a first-in-first-out memory where the agreement forms

of the nouns are stored in the exact order they are received as input (while keeping

track of both first and last word form). Once the first verb is encountered its form will

agree with the first noun form in the queue. This word form is removed from the queue

and the next verb form can then be predicted as having the form of the new head of

the queue. Subsequent verb forms can be predicted using the same procedure. When

the queue becomes empty the end of sentence marker should be predicted. By using a

queue memory structure a system is able to predict the agreement forms of all the verbs

(save the first) as being identical to those of the encountered nouns. Consequently, I

will refer to the structure of the third test language as identity recursion.

As an example consider the identity recursive sentence ‘aAzZ.’. Figure 3.4 illus-

trates the queue states while processing this sentence. Having received a noun, ‘a’, as

input, its dependency constraint is stored in the queue (a). This allows the system to

predict that if the next word is a verb it should have a lower case form. In (b), another

noun, ‘A’, has been given as input, and its agreement form stored behind the previous
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form in the queue. Thus, a lower case form is still predicted as the first occurring verb.

When the system gets the first verb, ‘z’, the first element of the queue is removed. This

leaves the upper case form in the queue (c), indicating that the next verb must have

this agreement form. Finally, the queue becomes empty after the system receives the

second verb, ‘Z’, and an end of sentence marker can be predicted (d).

At first glance the two last test languages appear to be equally hard in terms of

making predictions about the form of the verbs. Nonetheless, I suggest that mirror re-

cursion should be easier to process than identity recursion. This is because the former

appears to be less demanding in relation to both memory load and learning. First,

in traditional (symbolic) implementations of stacks only one pointer is needed to keep

track of the stack top if it is assumed that the individual elements are linked together

by pointers. In contrast, given the same assumption two pointers are necessary to

build and maintain a queue structure (pointing to the first and last element, respec-

tively). This creates a higher load on a system’s memory, which, in turn, might impair

performance. Secondly, there is a fundamental difference between the two languages

with respect to learning. In the case of mirror recursion, strings with an embedding

depth, D, generalizes directly to the next depth of embedding, D + 1. For example,

the simple string az generalizes to the more complex strings aazz and AazZ. These, in

turn, generalize to strings at the next embedding depth: AAazZZ, aAazZz, AaazzZ,

and aaazzz, and so on ad infinitum. This is, however, not the case for identity recur-

sion. In this language, the most simple strings, e.g., az, do not generalize directly to

the more complex strings such as AaZz or AAaZZz. That is, the system cannot use

generalizations from simple strings to facilitate the learning of more complex strings.

This is very likely to make learning of identity recursive structures more difficult.

In addition, I expect there to be differences between the second and third test

languages in the way the length of a sentence will influence prediction accuracy6. It is

reasonable to assume that a system only has a limited amount of memory available for

the implementation of a stack or a queue structure. This, in turn, limits the size, S, of

the stack or queue (measured in terms of the number of elements they can maximally

contain). Given S and the length, L, of a sentence we can envisage prediction problems

when L/2 becomes greater than S. Regarding mirror recursion, the system should

6Note that if a system implements the most efficient way of processing counting recursion—that is,
develop a counter—then the length of a sentence should not matter. However, it is likely that neural
networks are not able to adopt this strategy. For example, Servan-Schreiber, Cleeremans & McClelland
(1991) report simulations which suggest that SRNs tend to develop stack-like memory structures. In
relation to counting recursion this implies that the system would store redundant information about
previous input. If this is the case, then the system should exhibit the same behavior as systems dealing
with mirror recursion—but perhaps with slightly better performance.
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be able to make fairly accurate predictions with respect to the S innermost symbols

independent of L.7 This is because these symbols will always be on the top part of the

stack. For example, consider the sentence aAAaAZzZZz for S being 3. Although, the

system might lose agreement information about the two first nouns, a and A, it should

still be able to make fairly accurate predictions about the second and the third verbs.

In effect, the system is likely to ‘see’ the sentence as AaazzZ and predict an end of

sentence marker after the third verb. On the other hand, prediction performance on

identity recursion is likely to break down altogether when L/2 exceeds S because the

front of the queue will be lost. Consider the sentence aAAaAzZZzZ as an example for

S being 3. Since it has lost the two first noun forms, a and A, it will erroneously expect

the first verb to be a Z because its queue will only contain agreement information about

AaA. The prediction for the next verb will also be wrong (z instead of Z) whereas the

prediction for the third verb form will be correct by chance (Z). Overall this should

lead to better performance on the second test language than on the third.

3.2 Network Architectures and n-gram Stats

One way of approaching the problem of dealing with recursion in connectionist models

is to “hardwire” symbolic structures directly into the architecture of the network. Much

early work in connectionist natural language processing (e.g., McClelland & Kawamoto,

1986) adopted this implementational approach. Such connectionist re-implementations

of symbolic systems might have interesting computational properties and even be il-

luminating regarding the appropriateness of a particular style of symbolic model for

distributed computation (Chater & Oaksford, 1990a). On the other hand, there is the

promise that connectionism may be able to do more than simply implement symbolic

representations and processes; in particular, that networks may be able to learn to form

and use structured representations. The most interesting models of this sort typically

focus on learning quite constrained aspects of natural language syntax. These models

can be divided into two classes, depending on whether preprocessed sentence structures

or simply bare sentences are presented.

The less radical class (e.g., Hanson & Kegl, 1987; Pollack, 1988, 1990; Sopena, 1991;

Stolke, 1991) presupposes that the syntactic structure of each sentence to be learned is

7In fact, since neural networks only approximate a traditional stack structure (cf. Servan-Schreiber,
Cleeremans & McClelland, 1991; Weckerly & Elman, 1992) it is to be expected that prediction accuracy
will deteriorate gradually as we move down the stack (even within S). Performance on identity sentences
where S is greater than L/2 should likewise exhibit the same graded behavior.
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given. The task of the network is to find the grammar which fits these example struc-

tures. This means that the structural aspects of language are not themselves learned

by observation, but are built in. These models are related to statistical approaches to

language learning such as stochastic context free grammars (Brill et al., 1990; Jelinek,

Lafferty, & Mercer, 1990) in which learning sets the probabilities of each grammar rule

in a prespecified context-free grammar, from a corpus of parsed sentences.

The more radical models have taken on a much harder task, that of learning syn-

tactic structure from strings of words, with no prior assumptions about the particular

structure of the grammar. The most influential approach is to train SRNs developed by

Jordan (1986) and Elman (1988). These networks provide a powerful tool with which

to model the learning of many aspects of linguistic structure (for example, Cottrell &

Plunkett, 1991; Elman, 1990, 1991a; Norris, 1990; Shillcock, Levy & Chater, 1991);

there has also been some exploration of their computational properties (Chater, 1989;

Chater & Conkey, 1992; Cleeremans, Servan-Schreiber & McClelland, 1989; Maskara &

Noetzel, 1992, 1993; Servan-Schreiber, Cleeremans & McClelland, 1989, 1991). It is fair

to say that these radical models have so far reached only a modest level of performance.

In general, it seems to be possible to learn simple finite state grammars involving left

and right recursion. Still, only little headway has been made towards more complex

grammars involving center-embedded recursion (most noticeable by Elman, 1991 and

Weckerly & Elman, 1992—furthermore, see next chapter for a non-trivial extension of

these results), but not towards cross-dependency recursion. The simulations reported

in this chapter build on and extend this work.

The SRN is a limited version of a more general neural network architecture: viz.,

a fully recurrent network. Figure 3.5(a) shows an example of such a network. These

networks are, however, difficult to train because they involve lateral connections be-

tween the units in the hidden layer, thus preventing the application of standard back-

propagation learning. Recurrent networks are therefore usually trained by ‘unfolding”

them into feedforward networks with the same behavior. The hidden units from the

previous time-step are then treated as an additional set of inputs, allowing the resulting

feedforward network to be trained using conventional back-propagation.

There are various ways in which this unfolding can be achieved (see Chater &

Conkey, 1992). One approach is to unfold the network through several time steps

(Rumelhart, Hinton & Williams, 1986) so that each weight has several ‘virtual incar-

nations’ and then back-propagate error through the resulting network. The overall

weight change is simply the sum of the changes recommended for each incarnation. As

illustrated in Figure 3.5(b), this ‘back-propagation through time’—or, Recurrent Back-

Propagation (RBP)—is typically implemented by unfolding through a small number of
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time steps (7 for the current simulations).

t

t + 1

t + 2

t + 3

1.0

(a)

(b)

(c)

Figure 3.5. Unfolding a recurrent neural network (a) into a back-propagation through time

network (b) and into a simple recurrent network employing copy-back training (c).

The copy-back scheme employed in SRNs can be viewed as a special case of RBP,

in which the back-propagation of error stops at the first copy of the hidden units—the

context units—as indicated Figure 3.5(c). Note that the one-to-one copy-back links

going from the hidden layer to the context layer always have a value of 1.0, copying the

activation of the hidden units at time t to the context units so they can be used as input

at t+1. Simulations by Chater & Conkey (1992) have shown that RBP performs better

than SRNs on a number of tasks (such as, learning to be a delay line and performing

discrete XOR), although the former is considerably more computationally expensive.
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A secondary motivation for the present simulations is therefore to compare the two

training regimes on tasks that more closely resemble language8.

In order to provide an independent basis for assessing the performance of the two

kinds of networks, I developed a simple statistical prediction method, based on n-

grams, strings of n consecutive words. The program is “trained” on the same stimuli

used by the networks, and simply records the frequency of each n-gram in a look-up

table. It makes predictions for new material by considering the relative frequencies of

the n-grams which are consistent with the previous n − 1 words. The prediction is a

vector of relative frequencies for each possible successor item, scaled to sum to 1, so

that they can be interpreted as probabilities, and are therefore directly comparable

with the output vectors produced by the networks. Below, I report the predictions of

bigram, quadrogram, hexagram and octogram models and compare them with network

performance.

3.3 Experiment 1: Two Word Vocabulary

The first experiment involves the vocabulary found in Chomsky’s description of his

three abstract languages (with the additional singular/plural agreement constraint as

described in section 3.1). Thus, we have a vocabulary consisting of a noun in a singular

and plural form, ’a’ and ’A’ respectively, and a verb likewise in a singular and plural

form, ’z’ and ’Z’ respectively. Each of the networks in experiment 1 was trained with

5, 10 and 25 hidden units on a data set consisting of 2000 sentences of variable length.

For each sentence the depth of nesting was computed by iterating the following: if

r < pn(1− p) then an extra level of nesting would be added to the sentence, where r is

a random number between 0 and 1; p the probability of adding a level of nesting (0.3 in

the simulations reported here); and n the number of nestings that the sentence already

has. Then all the nets in the present experiment were tested on a data set consisting of

1000 sentences, generated in the same way as the training set. The inputs and output

were represented as binary localist vectors with one bit for each word form and one for

the end of sentence marker (totaling 5 inputs/outputs).

Initial explorations indicated that the best performance for the SRNs was to be

obtained with a learning rate of 0.5, a momentum of 0.25 and an initial randomization

8In any interesting language-like task, the next item will not be deterministically specified by the
previous items, and hence it is appropriate for the prediction to take the form of a probability distribu-
tion of possible next items. Consequently, network performance in the simulations reported below was
measured against this probability distribution directly, rather than against predictions of the specific
next item in the sequence. Following Elman (1991) the mean cosine between network output vectors
and probability vectors given previous context is used as the main quantitative measure of performance.
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of the weights between ±0.5. In the case of RBP, no momentum was used, the learning

rate was set to 0.5 and the weights initialized randomly between ±1.0. Through cross-

validation it was found that the number of epochs necessary to reach peak performance

in both cases varied with the size of the hidden unit layer. Increasing the hidden unit

layer resulted in faster training (although the RBP net exhibited much faster training

across the board)9. Subsequently, the SRNs with 5, 10 and 25 hidden units were trained

for 500, 450 and 350 epochs, respectively. The RBP network with 5, 10 and 25 hidden

units were trained for 275, 250 and 200 epochs, respectively.

3.3.1 Counting Recursion

The networks were trained on a training set consisting entirely of sentences with count-

ing recursive structures of variable length (mean: 4.69; sd: ±1.37) and then tested on

a test set (mean: 4.76; sd: ±1.36). Table 3.1 shows the embedding distribution in both

data sets.

Embedding Depth 0 Depth 1 Depth 2 Depth 3

Training set 31.15% 54.10% 13.65% 1.10%

Test set 29.20% 54.40% 15.70% 0.70%

Table 3.1. The distribution of different depths of embedding in the training and test sets

involving counting recursion.

General Performance

Both nets generally performed well on the counting recursion task10. The simulation

results are reported in table 3.2. It is clear that the nets have picked up the sequential

structure of the data, otherwise their performance would not have surpassed the level

of performance obtained by merely making predictions according to the simple relative

frequency of the words in the data set (1gram)11. In fact, the performance of both

nets is at the same level as the bigram based performance. This could suggest that

net processing is sensitive to the bigram statistics found in the input data. However,

the nets are not able to perform as well as quadrogram, hexagram and octogram based

9However, even though the SRNs require more epochs to learn a task, they are faster in overall
computing time, because the RBP nets are very expensive in computational terms and take more CPU
time per epoch.

10This is in comparison with Elman’s (1991) results. He reported a mean squared error of 0.177 and
a mean cosine of 0.852. Perfect performance would have resulted in 0.0 and 1.0, respectively.

11This level of performance (1gram) is what, at best, could be expected from a standard feedforward
back-propagation network without any recurrent connections.
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Network/ Mean squared Mean Cosine
n-gram error

5hu 0.2060 ± 0.1841 0.8143 ± 0.1426
srn 10hu 0.1817 ± 0.1938 0.8450 ± 0.1258

25hu 0.2315 ± 0.2214 0.8095 ± 0.1573

5hu 0.2145 ± 0.2285 0.8469 ± 0.1548
rbp 10hu 0.2862 ± 0.1579 0.7746 ± 0.1279

25hu 0.1758 ± 0.2519 0.8636 ± 0.1618

1gram 0.3464 ± 0.2468 0.6481 ± 0.1226

2gram 0.1876 ± 0.1904 0.8301 ± 0.1705

4gram 0.0570 ± 0.2120 0.9589 ± 0.1558

6gram 0.0301 ± 0.1163 0.9724 ± 0.0802

8gram 0.1026 ± 0.2081 0.9042 ± 0.1905

Table 3.2. General performance on counting recursive structures.

performance. Also notice the decrease in performance for the octogram based predic-

tions. This is presumably caused by the limited size of the training set which leads to

too many single occurrences of unique octograms.

Network/ Mean squared Mean Cosine
error

5hu 0.9506 ± 0.4326 0.6515 ± 0.2132
srn 10hu 1.0844 ± 0.1402 0.6214 ± 0.0934

25hu 0.4008 ± 0.2347 0.6441 ± 0.1147

5hu 1.4760 ± 0.2458 0.5956 ± 0.1283
rbp 10hu 1.4055 ± 0.1956 0.6213 ± 0.0984

25hu 1.5039 ± 0.5310 0.6235 ± 0.2188

Table 3.3. Baselines for the general performance on counting recursive structures.

Table 3.3 shows net performance on the test set measured before any learning had

taken place. Mean squared error is high for all net configurations (except for the

SRN with 25 hidden units12). The mean cosines are all near the performance found

by predicting according to the simple relative frequency of the words in the data set

(1gram). This suggests that the net configurations are well-suited for the task at hand.

Still, learning improves performance across the board by approximately 30%.

12The low mean squared error for the SRN with 25 hidden units was also found for the same net
in the mirror and identity recursion task because all nets of the same size started out with the same
set of initial weights for the sake of cross-task comparisons. However, the mean cosines for these SRN
configurations are of the approximately same size as the ones for the other two configurations. Since
mean cosines are going to be the quantitative focus of the performance assessments, the present mean
squared error anomaly should be of no importance.
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Network/ Mean Luce ratio Mean Luce ratio Mean Luce ratio
n-gram difference hits misses

5hu 0.2967 ± 0.1904 0.3780 ± 0.0689 0.3769 ± 0.0645
srn 10hu 0.2635 ± 0.2034 0.3601 ± 0.0639 0.3578 ± 0.0646

25hu 0.2825 ± 0.2103 0.4361 ± 0.0561 0.4385 ± 0.0542

5hu 0.2626 ± 0.2225 0.4882 ± 0.0785 0.5163 ± 0.0933
rbp 10hu 0.3519 ± 0.1474 0.6137 ± 0.1400 0.6427 ± 0.1660

25hu 0.1699 ± 0.1716 0.5508 ± 0.1427 0.4769 ± 0.1073

2gram 0.2309 ± 0.1760 0.4460 ± 0.1234 0.4307 ± 0.1158

4gram 0.0832 ± 0.1359 0.5657 ± 0.2100 0.5559 ± 0.1115

6gram 0.0671 ± 0.1018 0.6308 ± 0.2499 0.5304 ± 0.1069

8gram 0.1377 ± 0.1831 0.6956 ± 0.2475 0.5734 ± 0.2435

Table 3.4. Confidence in predictions concerning counting recursive structures.

The amount of confidence that the nets had in their predictions is shown in table 3.4,

measured as the Luce ratio (that is, the activation of the most active unit in proportion

to the sum of the activation of the remaining units). The mean Luce ratio difference

provides a measure of the absolute difference in confidence between a set of predictions

and the full conditional probabilities. The RBP network generally seems to be slightly

closer than the SRN to the full conditional probabilities in terms of confidence. This

is also mirrored in the higher Luce ratio for both hits and misses13 obtained by the

former. Notice, however, that whereas the SRNs have the same confidence regarding

both hits and misses, the RBP nets have a higher confidence in their misses (except

the net with 25 hidden units which is the net that did best on all measures).

Comparisons with the n-gram predictions again indicate that net performances is

on the level of bigram predictions (though the RBP net does somewhat better). Mean

Luce ratio differences are exceptionally low for quadrogram and hexagram predictions,

and only slightly higher for octogram predictions. Predictions based on these three

n-grams also exhibit a higher confidence in their hits, compared with their misses.

Embedding Depth Performance

Since we are dealing with recursive structures of variable length it is worthwhile looking

at performance across recursive embedding depth. Figure 3.6 illustrates that network

performance generally decreases across embedding depth (except for the RBP network

with 5 hidden units—its behavior might be a product of slight overtraining). This

13A hit is recorded when the highest activated unit in a prediction vector is also the highest activated
unit in the full conditional probability vector. When this is not the case a miss is recorded.
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Figure 3.6. Network performances on counting recursion plotted against embedding depth.
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Figure 3.8. Network (SRN: 10hu; RBP: 25hu) and n-gram performance regarding counting

recursion plotted against embedding depth.
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is exactly what we would expect according to the performance predictions made in

Section 3.1.1. Figure 3.7 shows the same network behavior, this time measured in

terms of mean squared error.

From Figure 3.8 we can, once again, see that the performances of the best net of

each kind (the SRN with 10 hidden units and RBP network with 25 hidden units)

has a performance across recursion depth that is comparable with that of the bigram

predictions (perhaps even slightly better). The higher n-gram predictions are once

more superior than the net predictions. It is worth noticing that even though the

accuracy of net and n-gram predictions degrades over time, all predictions seem to

meet at depth three at the level of predictions discernible using only the simple relative

frequence of the words in the data set (except the octogram predictions which for the

reason mentioned above deteriorates rather than degrade). Figure 3.9 illustrates the

same net and n-gram prediction behavior, but measured in terms of mean squared error

(since the mean squared error graphs essentially are mere mirror images of the mean

cosine graphs, only the latter will be presented hereafter).

In summary, the counting recursion simulations came out very much as expected

with performance gracefully degrading over embedding depth. However, the difference

in the size of the hidden unit layer did not seem to matter much given the task at

hand. In addition, it seems to be the case that both kinds of nets can only learn to be

sensitive to bigram stats.

3.3.2 Mirror Recursion

In this task the nets were trained on a training set containing only sentence structures

of variable length from the mirror recursive test language (mean: 4.73; sd: ±1.36).

After training the nets were tested on a different mirror recursion data set (mean:

4.79; sd: ±1.33). The distribution of the sentence embeddings is shown in Table 3.5.

Embedding Depth 0 Depth 1 Depth 2 Depth 3

Training set 29.55% 55.50% 13.80% 1.15%

Test set 26.90% 57.50% 14.70% 0.90%

Table 3.5. The distribution of different depths of embedding in the training and test sets

involving mirror recursion.
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General Performance

The performance of the two nets on this task is generally poorer than on the counting

recursion task, but still at an acceptably high level.14 Moreover, this difference in

Network/ Mean squared Mean Cosine
n-gram error

5hu 0.3417 ± 0.3062 0.7508 ± 0.1874
srn 10hu 0.3122 ± 0.2886 0.7953 ± 0.1783

25hu 0.3550 ± 0.4610 0.7553 ± 0.2567

5hu 0.3062 ± 0.4822 0.7914 ± 0.2674
rbp 10hu 0.2991 ± 0.3032 0.8069 ± 0.2042

25hu 0.3689 ± 0.4070 0.7692 ± 0.2353

1gram 0.5003 ± 0.2652 0.5688 ± 0.1161

2gram 0.2877 ± 0.3281 0.8071 ± 0.2176

4gram 0.0605 ± 0.2642 0.9660 ± 0.1585

6gram 0.0121 ± 0.0951 0.9901 ± 0.0678

8gram 0.0221 ± 0.1051 0.9784 ± 0.1092

Table 3.6. General performance on mirror recursive structures.

performance was to be expected cf. Section 3.1.1. The results—shown in Table 3.6—

once again indicate that net performances are comparable with bigram predictions and

that predictions made using larger n-grams are superior to net predictions. Notice

that performance based on the higher n-grams are slightly better than their respective

performance on the counting recursion task. In addition there is an improvement of

the octogram based performance (i.e., octograms are doing better than quadrograms,

whereas the opposite was the case in the previous task). The overall performance

improvement obtained by predictions based on higher n-gram statistics can plausibly

be ascribed to the existence of more deterministic structure in the mirror recursive

task.

From Table 3.7 it can be seen that even though learning increased performance

approximately 20 percentage points on both counting and mirror recursion, the relative

increase in performance on mirror recursion was considerably bigger (about 45% versus

30% for counting recursion). Learning also provided a bigger increase in performance

on the present task compared with the previous one, when the difference between the

obtained net performance and the performance based on the simple relative frequencies

of the word in the data set is considered (1gram). In addition, it should be noted that

14Both nets displayed a performance below what Elman (1991) has reported, but well above the
performance obtained by Weckerly & Elman (1992) on mirror recursive structures.
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the performance of the untrained nets is a great deal worse (about 30%) on the mirror

recursion task compared with the previous task. This suggests that the present task is

more difficult than counting recursion (which was also predicted in Section 3.1.1).

Network Mean squared Mean Cosine
error

5hu 1.1040 ± 0.4187 0.5675 ± 0.1934
srn 10hu 1.2309 ± 0.2962 0.5568 ± 0.1278

25hu 0.5579 ± 0.2517 0.5602 ± 0.1033

5hu 1.6253 ± 0.4779 0.5381 ± 0.1923
rbp 10hu 1.5590 ± 0.2442 0.5425 ± 0.0946

25hu 1.6616 ± 0.6922 0.5621 ± 0.2566

Table 3.7. Baselines for the general performance on mirror recursive structures.

On the mirror recursion task, the nets were generally less confident about their

predictions than on the counting recursion task. This is expressed in the higher mean

Luce ratio differences found in Table 3.8. The same is the case for the bigram based

predictions. On the other hand, the higher n-gram predictions are actually doing

slightly better on this measure (especially octogram based predictions). This is also

Network/ Mean Luce ratio Mean Luce ratio Mean Luce ratio
n-gram difference hits misses

5hu 0.4185 ± 0.2495 0.3666 ± 0.0810 0.3519 ± 0.0869
srn 10hu 0.3782 ± 0.2984 0.3998 ± 0.0615 0.3382 ± 0.0477

25hu 0.3767 ± 0.2448 0.5343 ± 0.0928 0.4545 ± 0.1079

5hu 0.2810 ± 0.2757 0.5769 ± 0.1784 0.5747 ± 0.1020
rbp 10hu 0.3486 ± 0.2399 0.6290 ± 0.1454 0.5255 ± 0.1158

25hu 0.3671 ± 0.2238 0.6939 ± 0.1333 0.6364 ± 0.1113

2gram 0.3229 ± 0.2659 0.5266 ± 0.0130 0.5360 ± 0.0003

4gram 0.0744 ± 0.1697 0.7445 ± 0.2190 0.4725 ± 0.1712

6gram 0.0329 ± 0.0757 0.7980 ± 0.2309 0.4387 ± 0.1095

8gram 0.0484 ± 0.1100 0.8202 ± 0.2251 0.4513 ± 0.1403

Table 3.8. Confidence in predictions concerning mirror recursive structures.

mirrored in the distribution of mean Luce ratios on hits and misses for the higher n-

grams. There is a bigger gap between the confidence exhibited on correct predictions

and on incorrect ones—resulting from an increase of the mean Luce ratios for the former

and a decrease with respect to the latter. Net confidence on hits and misses replicate

this pattern (although not with the same significant gap between their confidence in

correct and incorrect predictions). This differs from the pattern of net mean Luce
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ratios on hits and misses found on the counting recursion task, suggesting that the

more deterministic structure in the mirror recursion data sets allows the nets (and

n-gram program) to be more confident about their predictions.

Embedding Depth Performance

Turning to performance in terms of embedding depth, Figure 3.10 illustrates that per-

formance generally degraded over embedding depth. This is of the same pattern as

found in the counting recursion task and in unison with the performance anticipations

expressed in Section 3.1.1. Figure 3.11 shows the comparison between the best net

performance for each net and the performance based on n-grams. Again, the perfor-

mance of the two nets are comparable with the performance of bigram predictions.

In comparison, the higher n-gram performances follows a different trend with a high

performance up till an embedding depth of two, followed by a quite dramatical drop in

performance on depth three (presumably caused by the very few occurrences (1.10%)

of depth three recursive structures found in the training set). Notice that the higher

n-gram performance across embedding depth is better on the present task than on the

previous task (compare with Table 3.7). Moreover, the drop in octogram based perfor-

mance does not force it below the performance based on the simple relative frequency

of the words in the data set. In fact, neither net performance nor performance based

on n-gram predictions falls below this level of performance.

To sum up, the nets generally did less well on the mirror recursion task compared

with the counting recursion task. However, this was to be expected from the discussion

of performance anticipations in section 3.1.1. As on the previous task, performance

degrades over embedding depth which is at par with human performance on similar

(center-embedded) structures. Furthermore, the nets were not able to do better than

bigram based predictions on this task either.

3.3.3 Identity Recursion

The networks were trained on a data set consisting exclusively of identity recursive

sentences of variable length (mean: 4.73; sd: ±1.39). Then nets were subsequently

tested on a separate data set (mean: 4.70; sd: ±1.35) derived in the same manner as

the training set. Table 3.9 shows the embedding distribution in the two data sets.

General Performance

The performance of both nets on this task were poorer than on the previous two

tasks—confirming part of the analysis of the processings difficulties in Section 3.1.1.
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Figure 3.10. Network performance regarding mirror recursion plotted against embedding

depth.
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recursion plotted against embedding depth
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Embedding Depth 0 Depth 1 Depth 2 Depth 3

Training set 30.70% 53.10% 15.10% 1.10%

Test set 30.40% 54.80% 13.90% 0.90%

Table 3.9. The distribution of different depths of embedding in the training and test sets

involving identity recursion.

However, the performance was only slightly worse on the present task than on the

mirror recursion task. The nets, then, did better on the identity recursion task than

was expected given the structural complexity of the learning task. In comparison

Network/ Mean squared Mean Cosine
n-gram error

5hu 0.3521 ± 0.3208 0.7367 ± 0.2150
srn 10hu 0.3815 ± 0.2817 0.7185 ± 0.1972

25hu 0.3722 ± 0.3067 0.7306 ± 0.2067

5hu 0.4893 ± 0.3358 0.6696 ± 0.2245
rbp 10hu 0.4857 ± 0.3007 0.6904 ± 0.2200

25hu 0.3442 ± 0.3915 0.7409 ± 0.3114

1gram 0.4960 ± 0.2657 0.5714 ± 0.1178

2gram 0.3308 ± 0.3352 0.7621 ± 0.2371

4gram 0.0514 ± 0.2565 0.9717 ± 0.1427

6gram 0.0085 ± 0.0593 0.9914 ± 0.0506

8gram 0.0188 ± 0.0813 0.9811 ± 0.0853

Table 3.10. General performance on identity recursive structures.

with the predictions based on n-grams, the nets, once again, display the same level of

performance as bigram predictions. This is furthermore reflected in the decrease of the

bigram based performance on the identity recursion task compared with the previous

task. The performance obtained by higher n-gram predictions, on the other hand, is

at the same level as on the previous task (and subsequently slightly higher than on the

counting recursion task).

Since the baselines as reported in Table 3.11 are similar to those found on the

mirror recursion task (Table 3.7), the relative increase in performance obtained through

learning is smaller on the present task than on the previous task (approximately 35%

versus 45%). This indicates that identity recursion is relatively harder to learn than

mirror recursion (although perhaps not as difficult as anticipated). Still, the nets were

able to pick up a considerable part of the sequential structure in the training set as

evinced by the gap between the performance of the two nets and that based on the

simple relative word frequency.
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Network Mean squared Mean Cosine
error

5hu 1.0980 ± 0.4227 0.5712 ± 0.1971
srn 10hu 1.2290 ± 0.2897 0.5571 ± 0.1271

25hu 0.5476 ± 0.2515 0.5680 ± 0.1048

5hu 1.6166 ± 0.4656 0.5422 ± 0.1880
rbp 10hu 1.5448 ± 0.2349 0.5485 ± 0.0969

25hu 1.6383 ± 0.6744 0.5704 ± 0.2507

Table 3.11. Baselines for the general performance on identity recursive structures.

Prediction confidence as expressed in terms of the mean Luce ratio differences pre-

sented in Table 3.12 was smaller than on the mirror recursion task. This trend is also

reflected in the bigram based prediction confidence, but not by the higher n-gram pre-

dictions. The latter show the same confidence as on the previous task—with a small

increase in confidence for both correct and incorrect predictions. The higher confidence

exhibited by the higher n-grams on correct predictions compared with incorrect predic-

tions noted with respect to the mirror recursion task can also be found on the present

task. The network confidence pattern on hits and misses are less clear, deviating from

the confidence pattern on the previous task.

Network/ Mean Luce ratio Mean Luce ratio Mean Luce ratio
n-gram difference hits misses

5hu 0.4346 ± 0.2551 0.3961 ± 0.0977 0.3853 ± 0.0971
srn 10hu 0.4549 ± 0.2434 0.4007 ± 0.0399 0.4486 ± 0.1023

25hu 0.4036 ± 0.3033 0.4349 ± 0.0456 0.3644 ± 0.0325

5hu 0.4418 ± 0.2161 0.6440 ± 0.1105 0.5557 ± 0.1194
rbp 10hu 0.4701 ± 0.1707 0.6273 ± 0.1550 0.6743 ± 0.1507

25hu 0.3805 ± 0.2634 0.6642 ± 0.1053 0.6093 ± 0.0973

2gram 0.3696 ± 0.2785 0.4832 ± 0.0821 0.4488 ± 0.0812

4gram 0.0690 ± 0.1448 0.8040 ± 0.1882 0.4804 ± 0.1423

6gram 0.0316 ± 0.0586 0.8472 ± 0.2011 0.4470 ± 0.0908

8gram 0.0478 ± 0.0921 0.8410 ± 0.2116 0.4703 ± 0.1158

Table 3.12. Confidence in predictions concerning identity recursive structures.

Embedding Depth Performance

Looking at Figure 3.12, we can see that network performance across embedding depth

follows a pattern comparable with the one found on mirror recursion; viz., performance

degrades as a function of embedding depth (except for the RBP network with 5 hidden
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depth.

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3

M
ea

n 
C

os
in

e

Embedding Depth

srn  
rbp  

1gram
2gram
4gram
6gram
8gram

Figure 3.13. Network (SRN: 5hu; RBP: 25hu) and n-gram performance regarding identity

recursion plotted against embedding depth.
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units). This was more or less what was predicted in Section 3.1.1. Figure 3.13 illus-

trates that bigram based predictions follow the same trend. However, prediction based

on higher n-grams (especially hexagrams and octograms) are performing remarkably

well—considerably better than on the mirror recursion task. This might be explained

by the fact that the distance between the first noun and its verb is shorter in an deeply

embedded identity recursive sentence compared with a mirror recursive sentence of the

same embedding depth. In addition, both network and n-gram based performance

is always above the level of performance that can be obtained by making predictions

according to the simple relative frequency of the words in the data set.

To recapitulate, the nets did better than expected on this task–even though their

performance is slightly worse than on the mirror recursion task. Once again, perfor-

mance degraded across depth of embedding which is also the case for human perfor-

mance on similar (cross-dependency) structures. However, the higher n-gram predic-

tions did not display the same degraded performance, suggesting that they are not

suitable as a basis for a human performance model. And once more, net performance

was very close to that exhibited by bigram based predictions.

3.3.4 Summary

The performance of the two nets on the three tasks turned out to be close to the

performance predictions made in Section 3.1.1. However, a few things are worth noting.

First of all, the overall performance (of both nets and n-gram based predictions) on

the identity recursion task was somewhat better than expected. This is a positive

result, given that dealing with identity recursive structures require the acquisition of

(something closely related to) a context-sensitive grammar. Secondly, there was no

significant performance difference between the two kind of networks on either of the

tasks (albeit that the RBP network generally was more confident in its predictions).

Thirdly, network performance was on the same level as performance obtained on bigram

based predictions. And finally, the size of the hidden layer did not seem to influence

performance—in particular, bigger nets did not do better (although there is a weak

tendency towards better confidence for bigger nets).

3.4 Experiment 2: Eight Word Vocabulary

In order to test further the ability of both networks to capture the recursive regularities

necessary for dealing with novel sentences, I conducted a second experiment involving
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an eight word vocabulary15. Thus, we have four nouns in a singular (‘a’,‘b’,‘c’,‘d’) and a

plural form (‘A’, ‘B’, ‘C’, ‘D’), an four verbs likewise in a singular (‘w’, ‘x’, ‘y’, ‘z’) and

a plural form (‘W’, ‘X’, ‘Y’, ‘Z’). In experiment 1, I found that the size of the hidden

unit layer did not appear to influence performance on either of the tasks. I therefore

decided only to train networks with 20 hidden units in the present experiment. The

SRN was trained for 400 epochs and the RBP net for 200 epochs (using the same back-

propagation parameters as in experiment 1). Throughout experiment 2 the training

sets contained 2000 sentences and the test sets 1000 sentences.

Pilot studies indicated that the localist representation of words that I used in the

previous experiment was inappropriate for the current experiment. Instead, I adopted

a different representation scheme in which each word was represented by a single bit

(independently of its number) and the number was represented by one of two bits

(common to all words) signifying whether a word was singular or plural. Thus, for

each occurrence of a word two bits would be on—one bit signifying the word and one

bit indicating its number16. The input/output consisted of 11 bit vectors (one for each

of the eight words, one for each of the two word numbers (singular or plural), and one

for the end of sentence marker). To allow assessment of network performance on novel

sentences, I introduced two extra test sets with, respectively, 10 novel sentences and

10 previously seen sentences (all with mean length: 5.30; sd: ±1.64).

3.4.1 Counting Recursion

In this version of the counting recursion task, the nets were trained on a training set

consisting of counting recursive sentences of variable length (mean: 4.73; sd ±1.33) and

tested on a separate large data set (mean: 4.72; sd: ±1.34) as well as on two small test

sets consisting of, respectively, novel and previously seen sentences. The embedding

distribution of the two large data sets is shown in table 3.13.

15This extension of the vocabulary was necessary, since leaving out certain sentence structures in the
previous experiment would have skewed the training set in a problematic fashion. Moreover, I wanted
to investigate how the networks would perform with a bigger vocabulary.

16It is worth noticing that this kind of representational format appears more plausible than a strict
localist one. In particular, it is unlikely that we ‘store’ singular and plural forms of the same word
(e.g., ‘cat’ and ‘cats’) as distinct and completely unrelated representations as it would be the case
with localist representations. Rather, I would expect the human language processing mechanism to
take advantage of the similarities between the two word forms to facilitate processing. Derivational
morphology could, perhaps, be construed as the instantiation of such a system
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Embedding Depth 0 Depth 1 Depth 2 Depth 3 Depth 4

Training set 29.20% 55.70% 14.45% 0.65% 0.00%

Test set 29.50% 55.90% 13.80% 0.70% 0.10%

Table 3.13. The distribution of different depths of embedding in the training and test sets

involving counting recursion.

General Performance

Both nets performed slightly worse on this version of the counting recursion task com-

pared with the previous version. As can be seen from table 3.14, the SRN is doing

better than the RBP net. The latter is not doing better than performance based on

the relative frequency of the words in the training set (1gram), perhaps suggesting that

the RBP net has not quite picked up the sequential structure of the data. Still, com-

parisons between performance before and after training (presented in table 3.15 and

3.14, respectively) indicates that performance improved considerably through learning.

Thus, the SRN increased its performance 30% (from cos = 0.603 to cos = 0.789) and

the RBP net 58% (from cos = 0.466 to cos = 0.737).

Network/ Mean squared Mean Cosine
n-gram error

srn 0.3972 ± 0.4146 0.7894 ± 0.1722

rbp 0.4870 ± 0.5412 0.7371 ± 0.2324

1gram 0.4487 ± 0.4269 0.7327 ± 0.2336

2gram 0.3004 ± 0.4316 0.8424 ± 0.1903

4gram 0.1867 ± 0.4814 0.9218 ± 0.1746

6gram 0.5342 ± 0.6257 0.7198 ± 0.3188

8gram 0.9367 ± 0.4230 0.1898 ± 0.3167

Table 3.14. General performance on counting recursive structures.

Network Mean squared Mean Cosine
error

srn 1.3277 ± 0.4506 0.6029 ± 0.1451

rbp 3.4272 ± 0.8095 0.4657 ± 0.1928

Table 3.15. Baselines for the general performance on counting recursive structures tested on

the full conditional probabilities of the test set.

However, it should be noted that the high level of performance obtained by the

simple relative frequency predictions is due to the semi-arbitrariness of the counting

recursion task. As there are no agreement constraints between nouns and verbs in this



CHAPTER 3. RECURSION IN RECURRENT NEURAL NETWORKS 67

task, predicting the next word according to the relative frequency of the words in the

training set will result in decent performance. In this experiment the bigram based

performance is slightly better than the SRN performance. Yet, the biggest difference

is that the higher n-gram based performance is quite poor (save quadrogram based

predictions). As in experiment 1, this is because there are too many single occurrences

of unique higher n-grams in the training set. This impairs generalization from the

training set to the test set.

Network Novel Previously seen
sentences sentences

(mean cosine) (mean cosine)

srn 0.4594 ± 0.2583 0.4819 ± 0.2404

rbp 0.4050 ± 0.2603 0.3909 ± 0.2747

Table 3.16. Network performance on novel and previously seen sentences involving counting

recursive structures.

Table 3.16 shows net performance on the novel and previously seen sentences. It is

clear that both networks have acquired the ability to generalize to novel sentences17.

There is only a small decrease in performance when comparison is made between the two

types of test sentences. The performance of the SRN degrades by less than 5%, whereas

the performance of the RBP net actually improves very slightly by 4%. It is likely

that the RBP network performed slightly better on the novel sentences compared with

previously seen sentences because the network might have been somewhat undertrained.

Embedding Depth Performance

Turning to performance across embedding depth, Figure 3.14 shows that the general

trend from experiment 1 is replicated in the present task: performance degrades as a

function of embedding depth. Both nets exhibit the same behavior across embedding

depth—though the RBP net performance is slightly poorer than that of the SRN.

The bigram performance is closer to the SRN performance than table 3.14 suggests.

Quadrogram based predictions do well at the first two embedding depths, but degrades

rapidly after that. Hexagram and octogram based performance are doing very poorly—

especially the latter (for the reasons mentioned above). Most strikingly, predictions

17Noe that this apparently low performance is due to the fact that it was measured against the
probability distribution of these two sets, whereas the nets had been trained on (and, thus, become
sensitive to) the much more complex probability distribution of the 2000 sentences in the training set.
In addition, the embedding distribution in these test sets were skewed slightly towards longer sentences
(hence the higher mean sentence length reported above).
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Figure 3.14. Network and n-gram performance regarding counting recursion plotted against

embedding depth.

relying entirely on the relative frequency of the words in the training set are superior

to all other kinds of prediction methods from depth 2 onwards.

To sum up, both nets did slightly worse on this task than on the same task in the

previous experiment. Nevertheless, the nets were able to generalize to novel sentences.

On the other hand, predictions made from the simple relative word frequency did

surprisingly well, suggesting that the semi-random nature of the counting recursion

task makes it difficult to learn for larger vocabularies.

3.4.2 Mirror Recursion

Both networks were trained on exclusively mirror recursive sentences (mean: 4.77; sd:

±1.36) and tested on a large separate data set (mean: 4.68; sd: ±1.35) as well as two

10 sentence data sets with, respectively, novel and previously seen sentences. Table

3.17 shows the embedding distribution in the two large data sets.

Embedding Depth 0 Depth 1 Depth 2 Depth 3 Depth 4

Training set 28.50% 55.65% 14.85% 0.95% 0.05%

Test set 31.10% 54.30% 13.90% 0.70% 0.00%

Table 3.17. The distribution of different depths of embedding in the training and test sets

involving mirror recursion.
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General Performance

On this task the SRN, once more, performed modestly better than the RBP network as

can be seen from table 3.18. In contrast to the previous task, both nets achieve a level of

performance that is better than what can be accomplished by making predictions based

on simple relative word frequency (1gram). Moreover, the performance on this task

Network/ Mean squared Mean Cosine
n-gram error

srn 0.3499 ± 0.4202 0.8127 ± 0.1931

rbp 0.4838 ± 0.4901 0.7756 ± 0.1979

1gram 0.4492 ± 0.4304 0.7328 ± 0.2361

2gram 0.2984 ± 0.4314 0.8443 ± 0.1888

4gram 0.1985 ± 0.4944 0.9163 ± 0.1786

6gram 0.5393 ± 0.6404 0.7174 ± 0.3209

8gram 0.9473 ± 0.4132 0.1862 ± 0.3113

Table 3.18. General performance on mirror recursive structures.

(though somewhat poorer than on the counting recursion task) is comparable with the

performance on the same task in experiment 1. The n-gram based performance is very

close to that obtained on the previous task. Bigram based predictions are still slightly

better than net predictions. A comparison between the performance of the untrained

(table 3.19) and the trained (table 3.18) nets reveals that the RBP net had a much

higher relative performance improvement through learning (67% – from cos = 0.464 to

cos = 0.776) than the SRN (35% – from cos = 0.602 to cos = 0.813).

Network Mean squared Mean Cosine
error

srn 1.3313 ± 0.4512 0.6016 ± 0.1451

rbp 3.4352 ± 0.8087 0.4635 ± 0.1926

Table 3.19. Baselines for the general performance on mirror recursive structures.

From table 3.20 it can be seen that the networks exhibited no significant difference

in performance on, respectively, the novel and the previously seen test sentences. Thus,

the nets have learned to generalize to novel sentences. The performance of the SRN

is practically the same on both kinds of sentences (a difference of less than 1%). The

RBP net, again, had an increase in performance (9%) on the novel test sentences

compared with the sentences it had already been exposed to during training (once

more suggesting, perhaps, undertraining). Notice also that the SRN is doing better on

both kinds of sentences compared with the previous task. In the same way, the RBP
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net performs better on the novel sentences on this task.

Network Novel Previously seen
sentences sentences

(mean cosine) (mean cosine)

srn 0.5546 ± 0.2007 0.5504 ± 0.1995

rbp 0.4370 ± 0.2703 0.3994 ± 0.2846

Table 3.20. Network performance on novel and previously seen sentences involving mirror

recursive structures.

Embedding Depth Performance

Figure 3.15 shows that performance as a function of embedding depth exhibits much the

same general pattern of degradation as found on the same task in the previous experi-

ment (except from a minor peak at depth 1). Once again, we see that the performance

of the nets is comparable with that of bigram predictions. As in the counting recursion

task, the prediction based on quadrograms obtain the best performance—though it

degrades to the level of the nets at depth 2—whereas hexagram and octogram based

predictions do badly. Compared with the previous task, the nets accomplish a better

performance in relation to performance based on simple relative word frequency pre-

dictions (1gram); though the latter is still the superior prediction method for depths 2

and 3.
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Figure 3.15. Network and n-gram performance regarding mirror recursion plotted against

embedding depth.

In summary, the nets performed satisfactorily on this task—especially on novel
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sentences. The SRN reached the same level of performance as on the mirror recursion

task in the previous experiment. The RBP net performed slightly worse.

3.4.3 Identity Recursion

On the final task, the networks were trained on a identity recursion training set (mean:

4.75; sd: ±1.34) and tested on a similar, but separate, data set (mean: 4.70; sd: ±1.33)

as well as two 10 sentence test sets comprised of, respectively, novel and previously seen

sentences. Table 3.21 presents the distribution of embeddings in the two large data sets.

Embedding Depth 0 Depth 1 Depth 2 Depth 3

Training set 28.70% 55.90% 14.55% 0.85%

Test set 29.70% 54.10% 13.40% 0.80%

Table 3.21. The distribution of different depths of embedding in the training and test sets

involving identity recursion.

General Performance

The overall performance of the two nets was much alike, though favoring the SRN. This

is in contrast to the relative increase in performance achieved through learning, where

the RBP network obtained a 58% improvement (from cos = 0.476 to cos = 0.755)

compared with the SRN’s 28% (from cos = 0.604 to cos = 0.773) (cf. table 3.22

and 3.23). The performance of both nets on identity recursion was better in this

Network/ Mean squared Mean Cosine
n-gram error

srn 0.4097 ± 0.4417 0.7732 ± 0.1760

rbp 0.4629 ± 0.5070 0.7546 ± 0.2002

1gram 0.4456 ± 0.4217 0.7326 ± 0.2325

2gram 0.2962 ± 0.4214 0.8429 ± 0.1866

4gram 0.1918 ± 0.4773 0.9174 ± 0.1739

6gram 0.5371 ± 0.6202 0.7129 ± 0.3253

8gram 0.9375 ± 0.4147 0.1849 ± 0.3127

Table 3.22. General performance on identity recursive structures.

experiment compared with the same task in experiment 1 (but worse than on the

previous two tasks—which is in accordance with the performance predictions made in

Section 3.1.1). All the n-gram based performances closely mirrored the performance

on the previous two tasks.
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Network Mean squared Mean Cosine
error

srn 1.3229 ± 0.4466 0.6036 ± 0.1442

rbp 3.2900 ± 0.7834 0.4763 ± 0.1903

Table 3.23. Baselines for the general performance on identity recursive structures.

Most importantly, as it was the the case in the previous tasks, both networks were

able to deal with novel sentences, indicating that they had learned the underlying

recursive regularities. Table 3.24 contains the results from the testing of the two nets

on novel and previously seen sentences. The SRN performance on novel sentences

degraded by only 2% compared with its performance on previously seen sentences.

Once again, the RBP net achieved a small performance improvement of 3% on novel

sentences compared with its performance on sentences that had been presented to it

during training.

Network Novel Previously seen
sentences sentences

(mean cosine) (mean cosine)

srn 0.5376 ± 0.2436 0.5485 ± 0.2451

rbp 0.4762 ± 0.2473 0.4629 ± 0.2828

Table 3.24. Network performance on novel and previously seen sentences involving identity

recursive structures.

Embedding Depth Performance

Figure 3.16 illustrates the close fit between the performance of the two networks across

embedding depth. It also shows that the nets are not as close to the bigram performance

as in the previous task (and in the previous experiment). As in the previous two tasks,

both hexagram and octogram based predictions reach a poor level of performance

(especially, the latter). Moreover, the performance of both nets is again inferior to the

quadrogram based performance. For embedding depths 2 and 3, predictions relying on

the simple relative frequency of the words in the training set are still superior to all

other prediction methods.

In short, both nets also did well on this version of the identity recursion task. In

particular, they were able to generalize what they had learned to novel sentences—even

though both nets performed slightly worse on this task compared with the previous two

tasks in the current experiment.
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Figure 3.16. Network and n-gram performance regarding identity recursion plotted against

embedding depth.

3.4.4 Summary

The two nets performed in much the same way in the present experiment as in the

previous experiment. Thus, the performance predictions outlined in Section 3.1.1 were

confirmed once more (again with the exception of the relatively good performance

achieved in the identity recursion task). However, there are a few differences between

the two experiments. First, in the current experiment the SRN achieved better results

on all three tasks compared with the RBP net—though there are some indications

that the latter might have been undertrained. Secondly, both nets accomplished a

satisfactory level of generalization when faced with novel sentences. This suggests

that the nets were able to learn the recursive regularities underlying the three tasks.

Thirdly, for all three tasks predictions based on the relative word frequencies of the

training set reached a surprisingly high level of performance. This is presumably due to

the new representation format. Finally, the better performance on novel sentences on

the mirror and identity recursion tasks (measured in terms of mean cosines) compared

with the counting recursive task indicates that the learning of generalization relevant

information is facilitated by the agreement constraints.

3.5 Discussion

In this chapter I have addressed Chomsky’s (1957) challenge in a slightly reformulated

form: Can neural networks capture the ni-recursive regularities of natural language



CHAPTER 3. RECURSION IN RECURRENT NEURAL NETWORKS 74

if we accept that arbitrarily complex sentences cannot (and, perhaps, should not) be

handled? The ability of both kinds of networks to generalize to novel sentences involv-

ing three kinds of ni-recursion (in experiment 2) suggests that neural networks might

be able to do the trick. But where does that leave the pattern of gradual breakdown

of performance as observed in all the simulations presented here? If we compare the

breakdown pattern in the mirror and identity recursion tasks with the degradation of

human performance on center-embedded and cross-dependency structures (as can be

adduced from Figure 3.1718), we can conclude that such a breakdown pattern is, indeed,

desirable from a psycholinguistic perspective. Thus, network (and bigram based) per-

formance across embedding depth appears to mirror general human limitations on the

processing of complex ni-recursive structures. Moreover, given the performance on the

counting recursion task we can make the empirical prediction that human behavior on

nested ‘if–then’ structures will have the same breakdown pattern as observed in relation

to the nested center-embedded and cross-dependency sentences (though with a slightly

better overall performance). That is, I predict that humans are only able to process

a very limited nesting of ‘if–then’ structures, and that the performance, furthermore,

will exhibit graceful degradation over depth of nesting.

Two other things are worth noting. First of all, the overall performance (of both

nets and n-gram based predictions) on the identity recursion task was better than ex-

pected. This is a positive result, given that dealing with identity recursive structures

requires the acquisition of (something closely related to) a context-sensitive grammar,

whereas mirror recursion ‘merely’ requires the acquisition of a context-free grammar.

The networks, then, did better on the identity task than was to be expected given the

structural complexity of the learning task (as outlined in section 3.1.1). This is impor-

tant, since human performance seems to be quite similar on both kinds of ni-recursive

structure (see Figure 3.17). Secondly, there was no significant performance difference

between the two kinds of networks on either of the tasks (in both experiments). This

means that the negative results reported by Chater & Conkey (1992) regarding SRN

performance on certain non-language tasks do not extend themselves to more language-

like tasks. Thus, in addressing my secondary motivation for the present simulations,

we found, rather surprisingly, that unfolding a recurrent network for the purpose of

RBP does not seem to provide additional computational power on the language-like

tasks presented here.

18The data from Bach, Brown & Marslen-Wilson (1986: p. 255, table 1: test results) is displayed
by reversing the scale so that it is readily comparable with the simulation results expressed in terms
of mean cosines. This amounts to plotting the y-coordinates as f(n) = 9 − n, where n is the original
data point.
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Figure 3.17. The performance of native speakers of German and Dutch on, respectively, center-

embedded (mirror recursive) sentences and sentences involving cross-dependencies (identity recursion)

is plotted against embedding depth. The figure is based on data reported in Bach, Brown, & Marslen-

Wilson (1986).

The close similarity between the breakdown patterns in human and neural network

performance on complex ni-recursive structures supports two wide-reaching conjectures.

On the one hand, neural network models—in spite of their finite-state nature—must

be considered as viable models of natural language processing. At least, I have shown

that the existence of center-embedding and cross-dependency no longer can be used as

a priori evidence against neural network (and other finite state) models of linguistic

behavior. On the other hand, the common pattern of graceful degradation also suggests

that humans, like neural networks, are sensitive to the statistical structure of language.

Neural networks pick up certain simple statistical contingencies in the input they receive

(the simulations presented here indicate that such statistics might resemble bigram

based probability distributions19). I suggest that the breakdown pattern in human

performance on complex recursive structures might also be due to a strong dependence

on such statistics in the acquisition of linguistic structure. Whether these conjectures

are true is a matter of future empirical research, not a priori speculation.

This chapter has focused on addressing the Chomskyan (1957) challenge expressed

in terms of his three abstract languages involving ni-recursion. The results presented

19However, it should be noted that the very good n-gram results presented in this chapter should be
taken with some caution. The next chapter shows that an SRN attains better performance than n-gram
based predictions when faced with a more realistic grammar incorporating both i- and ni-recursion.
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here are obviously somewhat limited by the fact that only one kind of recursive struc-

ture occurs in each of the three languages. In the next chapter, I therefore present

simulations replicating the results found here, but in the context of a grammar incor-

porating not only ni-recursion but also different instances of i-recursion.



Chapter 4

Connectionist Learning of

Linguistic Structure

It is often noted that natural language recursion poses a serious problem for connec-

tionist and other finite state models of language. Indeed, the existence of recursion in

any cognitive domain appears to be highly problematic for non-symbolic approaches

to cognition because recursion qua computational property is defined in essentially

symbolic terms (Fodor & Pylyshyn, 1988). This problem becomes even more pressing

since most classical models of cognition rely on recursion to achieve infinite produc-

tivity. For example, the ‘language of thought’ hypothesis (Fodor, 1975) involves the

processing of recursive structures with respect to most—if not all—kinds of cognitive

behavior. However, in their recent defense of the classical position against the threat

of connectionism, Fodor & Pylyshyn (1988) concentrate on language as a paradigm

case for symbolic processing involving recursion. More specifically, they argue that

“the empirical arguments for [recursive] productivity have been made most frequently

in connection with linguistic competence” (p. 34); and that “linguistic capacity is a

paradigm of systematic cognition” (p. 37). Consequently, the productivity and sys-

tematicity arguments they provide in favor of the classical position are all based either

directly on language, i.e., linguistic capacity, or indirectly on language related behavior,

i.e., verbal reasoning.

Crucially, the existence of recursion in natural language presupposes that the gram-

mars of linguistic theory correspond to real mental structures, rather than mere struc-

tural descriptions of language per se. Yet, there are no a priori reasons for assuming

that the structure of the observable public language necessarily must dictate the form

of our internal representations (Stabler, 1983; van Gelder, 1990b). Nevertheless, what-

ever system of internal representations we might want to posit instead of the traditional

77
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linguistic grammars, it must be able to account for the diversity of language behavior.

As pointed out in chapter 2, connectionist models are able to deal with a certain kind

of recursion: iterative recursion (i-recursion). Chapter 3 demonstrated that recurrent

neural networks moreover are capable of processing a limited amount of non-iterative

recursion (ni-recursion) and, furthermore, exhibit a graceful degradation of performance

comparable with that of humans. However, it remains to be seen whether such models

can learn the regularities underlying grammars involving both i- and ni-recursion, and,

at the same time, display a human-like performance.

In the present chapter, I address this question via two simulation experiments in

which simple recurrent networks are trained on grammars incorporating left- and right

i-recursion as well as ni-recursion, either in the form of center-embeddings or cross-

dependencies. The first section describes the two grammars used in the experiments.

The training regime adopted here is that of incremental memory learning (Elman,

1991b, 1993) which simulates the effects of maturational constraints on the acquisition

process. The next section reports the results, with general performance first followed by

the performance on ni- and i-recursive structures, respectively. Section 3 discusses the

issue of generalization in connectionist models, outlines a formalization of linguistic

generalization, and presents simulation results suggesting that connectionist models

may be able to attain a powerful kind of generalization. Finally, I discuss the prospects

for this type of networks as models of language learning and processing.

4.1 Learning Complex Grammars

The simulations presented in this chapter build on, and extend, the results from chapter

3 as well as simulation work reported in Chater (1989), Chater & Conkey (1992),

Cleeremans, Servan-Schreiber & McClelland (1989), Servan-Schreiber, Cleeremans &

McClelland (1989, 1991), and most notably in Christiansen & Chater (1994), Elman

(1991a, 1991b , 1992, 1993), and Weckerly & Elman (1992). In the present simulation

experiments, a simple recurrent network was trained to derive grammatical categories

given sentences generated by a phrase structure grammar. Two grammars were used

in these experiments, both involving left- and right i-recursion but differing in the kind

of ni-recursion they incorporated. Whereas the grammar shown in Figure 4.1 allows

center-embedding, the one illustrated in Figure 4.2 affords cross-dependencies. Both

grammars use the same small vocabulary, presented in Figure 4.3, consisting of two

proper nouns, three singular nouns, five plural nouns, eight verbs in both plural and

singular form, a singular and a plural genitive marker, three prepositions, and three

(‘locative’) nouns to be used with the prepositions.
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Figure 4.1. The phrase structure grammar incorporating center-embedded as well as left-

and right-recursive structures.
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Figure 4.2. The phrase structure grammar incorporating crossed dependencies as well as

left- and right-recursive structures.
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prep
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{John, Mary}

{boy, boys, girl, girls, man, men, cats, dogs}

{jumps, jump, runs, run}

{loves, love, chases, chase}

{sees, see}

{thinks, think, says, say, knows, know}

{near, from, in}

{town, lake, city}

Figure 4.3. The vocabulary used with the two grammars (singular forms are placed before

their corresponding plural forms where appropriate).
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Importantly, the grammars are significantly more complex than the one used by

Elman (1991a, 1992). The latter involved subject noun/verb number agreement, verbs

which differed with respect to their argument structure (intransitive, transitive, and

optionally transitive verbs), and relative clauses (allowing for multiple embeddings with

complex agreement structures). I have extended this grammar by adding prepositional

modifications of noun phrases (e.g., ‘boy from town’), left recursive genitives (e.g.,

‘Mary’s boy’s cats’), conjunction of noun phrases (e.g., ‘John and Mary’), and sentential

complements (e.g., ‘John says that Mary runs’). In the cross-dependency grammar, the

object relative clause (which creates center-embedding) has been removed. Instead,

four additional expansions of S have been added to allow for crossed dependencies

(see section 4.2.2 for further explanation)1. Both grammars can generate the following

sample sentences involving i-recursive structures:

Mary knows that John’s boys’ cats see dogs.

boy loves girl from city near lake.

man who chases girls in town thinks that Mary jumps.

John says that cats and dogs run.

Mary who loves John thinks that men say that girls chase boys.

In addition, the center-embedding grammar are able to produce ni-recursive sentences

such as:

girl who men chase loves cats.

cats who John who dogs love chases run.

These two sentences can be rephrased in terms of subject relative clauses; that is,

as ‘men chase girl who loves cats’ and ‘dogs love John who chases cats who run’, re-

spectively. The cross-dependency grammar, on the other hand, can express the same

sentential content in this way:

men girl cats chase loves.

dogs John cats love chases run.

Notice that the cross-dependency grammar can also rephrase these two sentences in

terms of subject relative clauses.

1The cross-dependency grammar is supposed to correspond to a Dutch grammar, even though the
vocabulary used for convenience is English (Figure 3). This also means that the semantic constraints
on cross-dependency structures in Dutch are likely to be violated. As pointed out to me by Pauline
Kleingeld (a native Dutch speaker), Dutch cross-dependency structures are limited to constructs ex-
pressing something which can be observed together. However, the lack of such semantic constraints
are not important for the present simulations, since the latter only deals with syntax.
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The results from the previous chapter showed no marked difference in the learning

ability of simple recurrent networks (Elman, 1988, 1989, 1990, 1991a) compared with

networks using back-propagation through time (Rumelhart, Hinton & Williams, 1986).

I therefore chose to use only the former in the present simulations because it is much

less expensive in computational terms, and, perhaps, more cognitively plausible. Recall

that this kind of network is a standard feedforward network equipped with an extra

layer of so-called context units to which the activation of the hidden unit layer at time

t is copied over and used as additional input at t + 1 (see also Figure 3.5 in chapter

3). The nets used here had 42 input/output units2 and 150 hidden units (a 42–150–42

configuration) with an additional 150 context units. Each net was trained on a next

word prediction task using incremental memory learning as proposed by Elman (1991b,

1993), providing the net with a memory window which “grows” as training progresses.

Pilot simulations had suggested using a learning rate of 0.1, no momentum, and an

initial randomization of the weights between ±0.001. All training sets used in the

simulations consisted of 10,000 randomly generated sentences of variable length and

complexity. Sentences in the training sets generated by the center-embedding grammar

had an approximate mean length of 6 words (sd: ±2.5). The cross-dependency grammar

also produced sentences with a mean length of about 6 words (sd: ±2.0).

The training, using the incremental memory learning strategy, progressed as follows:

First, the center-embedding net was trained for 12 epochs and the cross-dependency net

for 10 epochs on their respective training sets. To simulate an initially limited memory

capacity, the context units were reset randomly after every three or four words. The

training sets were then discarded, and both nets trained for 5 epochs on new training

sets, now with a memory window of 4–5 words. This process was repeated for two

consecutive periods of 5 epochs, each on different training sets with a memory window

of 5–6 words and 6–7 words, respectively. Finally, the nets were trained for 5 epochs

on new training sets, this time without any memory limitations3. The growing mem-

ory window is assumed to reflect decreasing constraints on a child’s memory abilities

following maturational changes, ending up with the full adult system (Elman, 1993).

Other simulations (not reported in detail here) have shown that ‘adult’ networks—that

2Of the 42 input/output units only 38 were used to represent the vocabulary and other lexical
material in a localist format (the remaining four units were saved for other purposes not mentioned
further here). The choice of the localist representation over the compressed representation used in
experiment 2 in chapter 3 was motivated by the need to separate simultaneous activations of both
single and plural items.

3Although the center-embedding net was trained for 32 epochs and the cross-dependency net for 30
epochs, preliminary results from other simulations, presently underway, suggest that optimal perfor-
mance is reachable after much less training.
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is, nets not undergoing simulated maturational changes—cannot learn the grammati-

cal regularities of the two grammars in a satisfactory way4. This corroborates similar

results presented in Elman (1991b, 1993) and in Goldowsky & Newport (1993), sug-

gesting that the initial memory limitations of children may, at least in part, help with

the bootstrapping of linguistic structure. Data from first and second language learning

further supports this ‘less is more’ hypothesis (Newport, 1990—for further discussion

of maturational constraints on learning, see chapter 5, section 5.3)

4.2 Results

In order to provide an independent basis for the assessment of general network per-

formance on the two grammars, the simple statistical prediction method developed in

connection with the previous chapter, was adjusted to produce n-gram given the data

from either grammar. It should be noted that this program was only trained on the

training set that the networks saw in their final five epochs of training. However, given

the size of the training sets this should not lead to a significant decrease in performance

compared with that of the nets.

4.2.1 General Performance

Both the net trained on sentences from the center-embedding grammar and the net

trained on sentences from the cross-dependency grammar performed very well. Their

overall performance was comparable with general net performance in the two exper-

iments reported in chapter 3 (see also section 4.3.4 on generalization tests). More

interestingly, both nets were able to surpass n-gram based performance, indicating

that the nets are doing more than just learning n-gram statistics.

Performance on the Center-embedding Grammar

The general performance on the center-embedded grammar in Figure 4.1 was assessed

on a test set consisting of 10,000 randomly generated sentences (mean length: 6.13; sd:

±2.53). The results are presented in table 4.15. The trained network is doing slightly

better than n-gram based prediction in terms of mean cosines, but reaching the same

level of mean squared error performance as trigram based prediction. Looking at the

4The adult center-embedding and cross-dependency nets were trained for 32 and 30 epochs,
respectively.

5As in chapter 3, the results were measured not against the target, but against the full conditional
probabilities in order to take the indeterministic nature of the prediction task into account (see also,
chapter 3, footnote 8).
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Network/ Mean squared Mean Cosine
n-gram error

trained net 0.2169 ± 0.3523 0.7904 ± 0.2702

untrained net 9.9506 ± 0.4075 0.3264 ± 0.1527

1gram 0.4093 ± 0.3650 0.3851 ± 0.2181

2gram 0.2662 ± 0.3668 0.7084 ± 0.2909

3gram 0.2255 ± 0.3629 0.7843 ± 0.2948

4gram 0.2636 ± 0.4142 0.7335 ± 0.3118

5gram 0.4225 ± 0.5222 0.5499 ± 0.3579

Table 4.1. General performance of the net trained on the center-embedding grammar.

standard deviation we can also see that the net is more consistent in its predictions

(albeit all standard deviations are relatively high6). Notice the 97% decrease of the

mean squared error (from 9.9506 for the untrained net to 0.2169 for the trained net).

The training induced increase in performance measured via the mean cosine is an

impressive 142%—almost 2.5 times better than the untrained performance (from cos =

0.3264 to cos = 0.7904). Together with the low performance obtained by merely making

predictions according to the basic relative frequency of the words in the training set

(1gram) this strongly suggests that a considerable amount of sequential structure has

been learned by the net. Moreover, although the overall performance of the adult

net (MSE: 0.2142 ± 0.3467; mean cosine: 0.7989 ± 0.2698) is comparable with the

that of the maturationally constrained net, a more detailed analysis of the former’s

predictions showed that it performed significantly worse on complex structures such as

center-embedding.

Performance on the Cross-dependency Grammar

The network trained on sentences produced by the cross-dependency grammar in Figure

2 was tested for general performance on 10,000 randomly generated sentences (mean

length: 5.98; sd: ±2.01), and the results reported in table 4.2. This net was able

to surpass n-gram based predictions both in terms of mean cosine and mean squared

error, distancing itself more clearly from trigram based performance than in the center-

embedding case above. Overall, standard deviations are similar to what was found in

the previous simulation (that is, still rather high). Again, we see a significant increase

in performance as a consequence of learning. The mean squared error was reduced by

6These high standard deviations hide the fact that the errors made by both the center-embedding
and the cross-dependency nets generally increased gradually with sentence length (see the detailed
results below), whereas n-gram errors remained slightly more constant.
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Network/ Mean squared Mean Cosine
n-gram error

trained net 0.1931 ± 0.3436 0.8100 ± 0.2516

untrained net 9.9283 ± 0.4162 0.3597 ± 0.1989

1gram 0.4014 ± 0.3722 0.4304 ± 0.2155

2gram 0.2758 ± 0.3697 0.6547 ± 0.3116

3gram 0.2264 ± 0.3655 0.7646 ± 0.3014

4gram 0.2618 ± 0.4225 0.7247 ± 0.3027

5gram 0.4430 ± 0.5087 0.4977 ± 0.3484

Table 4.2. General performance of the net trained on the cross-dependency grammar.

98% (decreasing it from 9.9283 to 0.1931) and the mean cosine performance improved

by 125% (from cos = 0.3597 for the untrained net to cos = 0.81 after training). And,

once more, it is clear that predictions based on relative word frequency are highly

inadequate for the task at hand. Finally, the detailed behavior on complex structures

evinced by the net trained using the incremental memory strategy again surpassed that

of the adult net, even though the two nets displayed a quite similar general performance

(adult net: MSE: 01978 ± 0.3461; mean cosine: 07950 ± 0.2482).

4.2.2 Performance on Non-iterative Recursive Structures

We saw above that both nets were able to achieve a level of performance above that of

n-gram based predictions. A more detailed analysis of the latter revealed certain short-

comings compared with the nets. Predictions using n-grams are not able to deal with

more complex structures where agreement features have to be remembered over long

distances. The adult nets, on the other hand, were inconsistent in their predictions on

complex structures. As was to be expected following Elman (1993), the maturationally

constrained nets were much more consistent in their prediction behavior vis-a-vis com-

plex grammatical regularities. Next, we shall see in detail how the nets dealt with

multiple instances of center-embedding and cross-dependency, respectively.

Multiple Center-embeddings

In chapter 3, we saw that nets were able to learn a limited amount of center-embedding

(mirror recursion), and furthermore exhibited a behavior similar to that of humans on

similar structures. Recall that the mirror recursion simulations did not involve instances

of i-recursion, so the nets could concentrate entirely on learning the former. However,

in the human case, instances of ni- and i-recursion are interspersed with each other in

the input that children receive. It therefore remains to be seen whether a net can learn
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6 6 6

??
cats who John who dogs love chases run

Figure 4.4. An illustration of the subject noun/verb agreement dependencies (arrows below)

and the object nouns of the transitive verbs (the arrows above) in the doubly center-embedded

sentence ‘cats who John who dogs love chases run’.

a limited degree of ni-recursion from input also incorporating i-recursive structures.

Elman (1991b, 1993) has demonstrated that some ni-recursion can be achieved when a

net is trained on input with center-embeddings and a single kind of i-recursion (in the

form of right-branching subject relative clauses). In the present simulation based on the

grammar in Figure 4.1., the net was faced with the much more complex task of learning

ni-recursive regularities from input also containing several instances of right-branching

i-recursion (sentential complements, prepositional modifications of NPs, conjunction

of NPs, and subject relative clauses) as well as instances of left-branching i-recursion

(prenominal genitives).

Figure 4.4 provides an illustration of the dependency structure involved in the

processing of the multiple center-embedded sentence ‘cats who John who dogs love

chases run’. Notice that the two object relative clauses require transitive verbs which

have the two first nouns as their object (hence creating the double center-embedding).

Figure 4.5 shows the prediction made by the net (in terms of summed activations)

when processing each word in the above sentence7.

In (a), we see the initial state of the network at the beginning of a sentence. Here

the net is expecting either a singular or a plural noun. Having received ‘cats . . . ’ in (b)

the net predicts that it will get a plural verb, ‘who’, ‘and’, a preposition, or a singular

genitive marker (the last three predictions are in misc). Next, the net anticipates

receiving either a noun or a plural verb in (c). Given the context ‘cats who John . . . ’

as in (d) the net correctly predicts a transitive singular verb, because it has realized that

an object relative clause has begun (see Figure 4.4), another ‘who’, an ‘and’, a singular

genitive marker, or a preposition starting a PP modification of John. The picture in

(e) is similar to that of (c)—except that the net is predicting a singular verb. In (f),

the net rightly presupposes that yet another object relative clause may have begun and

7In Figure 4.5 and 4.7, s-N refers to proper/singular nouns; p-N to plural nouns; s-iV, s-tV, and
s-cV to singular intransitive, transitive verbs plus optionally transitive, and clausal verbs, respectively;
p-iV, p-tV, and p-cV to plural intransitive, transitive verbs plus optionally transitive, and clausal
verbs, respectively; wh to who; eos to end of sentence marker, and misc to that, and, genitive markers,
prepositions, and the nouns used with the prepositions.
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Figure 4.5. Network predictions after each word in the center-embedded sentence ‘cats who

John who dogs love chases run’.
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Figure 4.5. continued.
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predicts a plural transitive verb to match with ‘dogs, or, alternatively, a third ‘who’,

an ‘and’, a plural genitive marker, or a preposition. Problems arise in (g) when the net

is supposed to predict the second verb whose subject noun is ‘John’. The net wrongly

activates the end of sentence marker, the plural verbs as well as the intransitive and

clausal forms of the singular verbs. The net should only have activated the transitive

(and optionally transitive) singular verbs. That the latter have the highest activation

of all the verb forms at least suggests that the net is going in the right direction. Again,

in (h) we see that the net is somewhat off target. It should only have predicted plural

verb forms, but also activated both nouns, singular verbs, and the end of sentence

marker. Nevertheless, the net is able to correctly predict the end of sentence marker,

once it has received the last verb, ‘run’, in (i).

The sudden breakdown of performance in (g) is not as detrimental for the net as

a model of language acquisition and processing as one might initially think. In fact,

this breakdown pattern closely follows the observed problems that humans have with

similar sentences assessed in terms of recall (Miller & Isard, 1964), comprehension

(even after some training on center-embedded structures, Larkin & Burns, 1977), and

grammaticality judgements (Marks, 1968). Moreover, whereas the net had significant

problems with doubly center-embedded sentences—as we saw above—it had no, or

very little, trouble with sentences involving a single center-embedding. This has also

been demonstrated in the human case (Bach, Brown & Marslen-Wilson, 1986; Larkin

& Burns, 1977; Marks, 1968; Miller & Isard, 1964). This means that not only was the

net able to reproduce the behavior observed on center-embedded structures in chapter

3 given considerably more complex input, but its performance also closely mimicked

human processing behavior on the same sentence structures8. So, at least, when it

comes to center-embedding, simple recurrent networks are viable candidates as models

of human sentences processing. Next, we shall take a closer look at the detailed behavior

of the network trained on the cross-dependency grammar from Figure 4.2.

Multiple Cross-dependencies

In contrast to the simulation involving the center-embedding grammar from Figure 4.1,

there seems to be no precursors for the simulation incorporating the cross-dependency

grammar, save the identity recursion simulations reported in the previous chapter.

8It should be noted, however, that this is not meant to suggest that humans would exhibit the exact
same breakdown pattern, only that they will experience similar processing difficulties. For example,
concerning Figure 4.5(g) this means that one cannot take the erroneous activation of eos as indicating
that humans would predict end of sentence at this point. Instead, activations of illegal categories should
be taken throughout this chapter as indications of processing difficulties.
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6 6 6

? ?
dogs John cats love chases run

Figure 4.6. An illustration of the subject noun/verb agreement dependencies (arrows below)

and the object nouns of the transitive verbs (the arrows above) in the sentence ‘dogs John cats

love chases run’ with two crossed dependencies.

The latter simulations demonstrated that recurrent networks were able to learn some

degree of cross-dependency recursion, and, furthermore, display a behavior similar to

that of humans on similar structure. This was not a trivial finding given that cross-

dependencies are taken to require the power of context-sensitive languages. Nonethe-

less, as in the mirror recursion case, the training sets used to induce the regularities

underlying identity recursion did not involve any instances of i-recursion. To allow a

more close comparison with natural language, the present cross-dependency simulation

additionally incorporates the same right- and left-branching i-recursive structures as in

the center-embedding simulation.

Figure 4.6 shows the structure of the crossed subject noun/verb dependencies in

the sentence ‘dogs John cats love chases run’ as well as the object nouns of the two

transitive verbs. Recall that this sentence structure is meant to correspond to Dutch

with an English gloss. In Dutch, crossed dependencies allow the objects of transitive

verbs to follow the latter’s subject nouns. So, in Figure 4.6 we see ‘John’ following the

main subject noun ‘dogs’ as the object of the main verb ‘love’. ‘John’ is also the subject

of the first subordinate clause with ‘chases’ as its verb and with ‘cats’ as its object.

The latter is located as the third consecutive noun and is, in turn, the subject of a

second subordinate clause having ‘run’ as its verb. Figure 4.7 illustrates the behavior

of the network when processing the above sentence involving two crossed dependencies.

The first histogram (a) shows that the net always expects a noun as the first word

in a sentence. When it receives ‘dogs’ in (b), it predicts that the next word is either

another noun (leading to crossed dependencies), a plural verb of any form, ‘who’, ‘and’,

a preposition, or a plural genitive marker (the last three predictions are collapsed in

misc). Having seen ‘dogs John . . . ’, the net recognizes in (c) that it is receiving a

sentence with, at least, one crossed dependency, and correctly anticipates either a

noun or a plural transitive verb as the subsequent input. This pattern is replicated in

(d) after the net is fed a third noun, ‘cats’. Given ‘love’ as input in (e), the net rightly

activates the singular transitive verbs to match with ‘John’ (see Figure 4.6), but also

erroneously activates the plural transitive verbs. Notice that the correct activations

are twice as high as the incorrect activations. In (f) the erroneous activations have
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Figure 4.7. Network predictions after each word in the cross-dependency sentence dogs John

cats love chases run.’.
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Figure 4.7. continued.

diminished. The net appropriately predicts a plural verb and the end of sentence

marker, but wrongly activates singular verb forms. Following the last verb ‘run’ in (g),

the net confidently predicts end of sentence as it should.

As it was the case in the center-embedding simulation, the present network experi-

ences problems when it is to predict the second verb in (e). However, the breakdown of

performance here is not as severe as with the net trained on the center-embedding gram-

mar. Moreover, the recovery from the problems following the second verb prediction

also appears to be better. This difference could be a consequence of a heavier memory

load in the processing of the center-embedded sentence because of the additional two

instances of ‘who’ before the first verb is encountered. No such difference was observed

in the simulations presented in chapter 3. Still, it is worth noticing that humans appear

to perform better on cross-dependency structures than on center-embedded construc-

tions of similar depth (Bach, Brown & Marslen-Wilson, 1986). So, in this way the

difference in performance between the net trained on the center-embedding grammar

and the net trained on the cross-dependency grammar may reflect a real difference

in the learnability and processability between the languages that the two grammars

generate—at least, insofar as the same difference is also found in human performance.

But, can the two nets perform equal to humans on i-recursive structures? I turn to

this question next.
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4.2.3 Performance on Iterative Recursive Structures

The results presented above suggested that the nets were able to deal with ni-recursion

in a human-like manner. In chapter 2, I argued that a model of language not only

should be able to process a limited degree of ni-recursion, but also must be able to

handle a considerable amount of left- and right-branching i-recursion. The following

four subsections report the nets’ behavior on left-recursive structures exemplified by

multiple prenominal genitives and right-recursive structures instantiated by multiple

embeddings of sentential complements, multiple subject relative clauses, and multiple

prepositional modifications of NPs. Since the two nets exhibited very similar behavior

on these i-recursive structures, I only report two examples from each net as illustrations

of their common level of performance.

Multiple Prenominal Genitives

Left-branching i-recursive structures are not frequent in English which is a predom-

inately right-branching language (as opposed to, e.g., Japanese). The left-branching

construction that presumably occurs most often in English is the prenominal genitive

phrase. This construction permits the modification of nouns in a left-branching fash-

ion as when we want to express the complex ownership of a given cat in terms of the

phrase ‘Bob’s teacher’s mother’s cat’. Figure 4.8 demonstrates the patterns of acti-

vation (in the cross-dependency trained net) when processing selected words in the

sentence ‘Mary’s boys’ cats’ John sees’ with three prenominal genitives9.

We have already seen the initial activation patterns of both nets in Figures 4.5 and

4.7. In (a), the net is predicting from the context of ‘Mary . . . ’, suggesting that the

next input will be a noun, a singular verb, a singular genitive marker, a preposition,

‘and’, or ‘who’ (the activation of the last three being collapsed in misc). Once the net

receives the singular genitive marker, it expects that a noun must be next in (b). Given

the plural noun ‘boys’ in (c) the net predicts that the next word is either a plural verb

or a plural genitive marker. When the net subsequently gets another genitive marker

as its input, it activates singular and plural nouns only (not shown here, but similarly

to (b)). Next, following the input of ‘cats’ in (d), we have an activation pattern similar

to (c)—albeit the activation is lower for both the plural verbs and the plural genitive

marker, and a small erroneous activation of the end of sentence marker appears. The

9In the remaining figures in this chapter, the verb forms have been collapsed into a set of singular
verbs s-V and a set of plural verbs p-V. The single and plural genitive marker have been separated
from the misc group as, respectively, s-g and p-g. The group misc in Figure 4.8 covers activations of
that, who, and, prepositions, and the nouns used with the latter.
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(f)

Figure 4.8. Network predictions after selected words in a sentence with multiple prenominal

genitives: ‘Mary’s boys’ cats’ John sees’.
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net’s problems grow somewhat in (e), showing the correct prediction of a singular

verb, the singular genitive marker as well as a small activation of ‘and’, ‘who’ and the

prepositions, but also the incorrect prediction of a plural verb and, again, the end of

sentence marker. The net gets back on track in (f), expecting either an object noun or

an end of sentence marker after ‘sees’. Thus, it seems that the net is able to deal with

left-branching i-recursion but in a, perhaps, non-optimal fashion given the apparent

increase in error following the increase in recursion depth. I will return to this point

later, and continue with an illustration of net behavior during the processing of multiple

sentential complements.

Multiple Embeddings of Sentential Complements

Sentential complements provide a convenient way of expressing, for instance, propo-

sitional attitudes in English, such as, ‘Mary thinks that cats chase dogs’. Figure 4.9

depicts the activation patterns (in the net trained on the center-embedding grammar)

observed when processing the sentence ‘Mary says that men think that John knows that

cats run’ which incorporates three sentential complements10.

Having received ‘Mary . . . ’ in (a), the net predicts that the next word will be either

a singular verb, a singular genitive marker, a preposition, ‘and’, or ‘who’ (with the last

three predictions grouped together in misc). In (b), the net has received the clausal

verb ‘says’ and correctly predicts that the complementizer ‘that’ must come next. After

the complementizer has been given to the net as input, only a noun can follow, which

is what the net predicts in (c). When the net receives the predicted noun, in this

case ‘men’, the activation pattern displayed in (d) is similar to that of (a)—save the

correct prediction of a plural verb matching the plural input noun. The subsequent five

prediction patterns follow exactly the previous patterns in the order (b), (c), (a), (b),

(c) (and they will therefore not be shown here). The pattern of summed activation as

illustrated in (e) is similar to (d), but produced given the context of ‘Mary says that men

think that John knows that cats . . . ’. Finally, we see in (f) that the net rightly predicts

the end of sentence marker after the intransitive verb ‘run’. It is clear that the nets were

better at processing sentential complements than prenominal genitives. In fact, there

was no erroneous activation at all. This may suggest that sentential complements are

also easier for humans to process compared with prenominal genitives. Leaving further

discussion of this issue for later, I now describe the nets ability to process multiple

object relative clauses.

10Note that the complementizer ‘that’ has been separated from the misc group. Otherwise, the labels
in Figure 4.9 are the same as in the previous figure.
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Figure 4.9. Network predictions after selected words in a sentence with multiple sentential

complements: ‘Mary says that men think that John knows that cats run’.
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Multiple Right-embedded Relative Clauses

As mentioned earlier, right-embedded relative clauses allow us to rephrase the content

of both center-embedded and cross-dependency sentences in a more readily understand-

able form. Thus, both the center-embedded and the cross-dependency sentences above

can be rewritten as ‘dogs love John who chases cats who run’. Numerous studies have

demonstrated that multiple subject relative clauses are considerably easier to process

than center-embedded sentences (Blaubergs & Braine, 1974; Foss & Cairns, 1970; King

& Just, 1991; Marks, 1968; Miller & Isard, 1964) and cross-dependency sentences (Bach,

Brown & Marslen-Wilson, 1986) of a similar depths of recursion. Figure 4.10 shows

the behavior of the (cross-dependency grammar trained) network whilst processing the

sentence ‘dogs love John who chases cats who see Mary who chases girls’ involving three

right-embedded relative clauses11.

First, the pattern of summed activation pattern given the context ‘dogs love . . . ’

is presented in (a), depicting an activation of the nouns as objects of the transitive

verb. Next, the net predicts either ‘who, the singular genitive marker, end of sentence,

a preposition, or ‘and’ (the last two collapsed in the misc group). The net also has an

incorrect, but insignificant, activation of the verbs. In (c), we also find a very small

erroneous activation of the plural verbs which is dwarfed by the correct activation of the

singular verbs. When the net subsequently gets ‘chases’ as input, it again predicts only

nouns as in (a). Having received ‘cats’ in (d), the net produce a pattern of activation

similar to (b), but with the plural genitive marker activated instead of the singular

one. Given a second ‘who’ in (e), the net rightly predicts a plural verb with some minor

incorrect activations of the singular verbs. Presented with the optionally transitive verb

‘see’ in (f), either an object noun or an end of sentence marker is correctly predicted

by the net. The previous erroneous activation have now become somewhat higher as

exhibited by the activations of the plural and the singular verb forms. As we can see

from (g), the net displays some spurious, but minute, activations of both nouns, verbs,

and the plural genitive marker, all of which are not allowed in the context of ‘dogs

love John who chases cats who see Mary . . . ’. Still, it by far rightly predicts ‘who’,

a singular genitive marker, end of sentence, a preposition, and a conjunction. The

prediction pattern in (h) is similar to that of (c), although the singular verb group is

activated less strongly and the wrong activations slightly more pronounced this time.

A comparison between the noun predictions in (a) and in (i)—both following transitive

verbs—indicates that the net has become less confident in its predictions as the number

11In this figure, ‘who’ has been separated from the misc group. The remaining labels correspond to
those of Figure 4.8.
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Figure 4.10. Network predictions after selected words in a sentence with multiple right

relative clauses: ‘dogs love John who chases cats who see Mary who chases girls’.
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Figure 4.10. continued.
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of embeddings increase. The predictions shown in the last histogram (j) continues this

tendency with spurious, mistaken activation of the nouns and verbs, and decreased

confidence in the correct predictions of ‘who’, end of sentence, and the prepositions.

It thus seems that net performance on subject relative clauses, though superior to

performance on ni-recursive structures of a similar degree of embedding, nonetheless

show evidence of degradation as sentence length increases. I will return to this after

outlining net behavior on sentences involving multiple prepositional modifications of

an NP.

Multiple Prepositional Modifications of NPs

The final example of i-recursion in the present simulations addresses the processing

of complex NPs, such as, ‘the flowers in the vase on the table near the box’. Such

multiple instances of prepositional modifications of NPs are notorious for their inherent

ambiguity. For instance, is it the vase or the table which is near the box? Leaving

these ambiguity issues aside here (they also concern ambiguity concerning NP or VP

attachment of the PP), I focus on simple right-branching PPs modifying a noun. Figure

4.11 demonstrates the behavior of the (center-embedding trained) network during the

processing of the sentence ‘cats from lake in town near city chase girls’ incorporating

two PP embeddings12.

Given the context of ‘cats from . . . ’ in (a), the net confidently predicts that the

following word must be one of the nouns used with the prepositions. Next, in (b) the

net rightly expects either a plural noun or another preposition, but also produce a small

amount of erroneous activation of the singular verbs and the end of sentence marker.

As in (a), the net has no problems predicting another preposition noun subsequent

to receiving the preposition ‘in’ (not shown). In (c), the pattern of (b) repeats itself

with the correct activations of plural verbs and prepositions, but with some mistaken,

minor activation of the singular verbs and the end of sentence marker. This pattern of

error becomes slightly more evident in (d), which also displays a reduced confidence in

the right predictions given the context ‘cats from lake in town near city . . . ’. Having

received ‘chase’, the verb that the net was waiting for, it recovers and predicts that a

noun must come next as the obligatory object of transitive input verb. Finally, the net

makes the appropriate predictions in (f) following ‘dogs’; that is, either the next word

is a preposition, a plural genitive marker, end of sentence, ‘who’, or ‘and’. As with the

right-branching relative clauses exemplified in Figure 4.10, there is a tendency for the

12In Figure 4.11, the prepositions and their nouns have been separated from the misc group. The
remaining labels correspond to those of Figure 4.8.
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Figure 4.11. Network predictions after selected words in a sentence with multiple PP mod-

ifications of the subject noun, ‘cats from lake in town near city chase girls’.
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performance to degrade as the degree of i-recursive complexity increases.

Given the patterns of slow degradation of performance on all the i-recursive struc-

tures, save the case of multiple sentential complements, the question is whether these

patterns are comparable with observed human limitations on similar structures. We

have already seen that net performance on both center-embedded and cross-dependency

structures closely mimicked human behavior on the same ni-recursive constructs. It

is typically assumed that humans are able to deal with i-recursive structures of an in

principle unbounded length. In classical parsers, incorporating grammars consisting

of a recursive set of rules and some kind of stack memory structure (as described in

chapter 2), both left- and right branching i-recursive structures of an infinite length

can be processed—even when a limit is imposed on the stack depth. This is because

i-recursion allows the parser to clear its memory at the start of each recursive level.

The stack memory is therefore not in danger of being exhausted as, for example, in the

case of center-embedded structures (see Figure 2.3 in chapter 2, for more details on the

latter).

It is, however, not clear that humans have such an infinite capacity for i-recursion.

Indeed, it appears (from a literature search and communication with colleagues) that

human performance on i-recursive structures have not been studied explicitly. That is,

the purported human ability to deal with an unlimited length of i-recursion has, to my

knowledge, never been demonstrated in an experimental context. In fact, evidence ex-

ists pointing in the opposite direction and, in part, corroborating the simulation results

on subject relative clauses as illustrated in Figure 4.10. When comparing sentences

containing multiple center-embeddings with sentences consisting of multiple subject

relative clauses, Blaubergs & Braine (1974) found that the comprehension of the lat-

ter also decreased (almost) proportionally with the increase in i-recursive complexity

(contrasted with the more dramatic decrease in the performance on center-embedded

sentences). This is indirectly comparable with the simulation results presented on the

processing of multiple subject relative clauses. If this connection between network per-

formance and human performance on i-recursive structures is genuine, then we may

expect human performance on multiple instances of both prenominal genitives and

prepositional modifications of NPs to follow the same kind of degradation relative to

sentence complexity. Intuitively, this seems to be the case, but it remains to be tested

experimentally.

This still leaves the perfect network performance on the multiple sentential comple-

ments, as depicted in Figure 4.9, to be explained. Two explanations, at least, comes

to mind. It could be the case that this kind of i-recursive structure is easier for the
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nets to process because the two grammars allow fewer prediction choices during the

processing of these sentences. For example, only ‘that’ can follow a clausal verb, and

only nouns are permitted after this complementizer. In contrast, at most points in the

processing of the other three i-recursive structures, more than one category is allowed.

Human performance on sentential complements might thus be worse than what the nets

exhibited because in English ‘that’ can indicate either the start of a relative clause (as

in ‘I saw the house that you grew up in’) or the beginning of a sentential complement

(as it is used in the sentence in Figure 4.9). Alternatively, the simulation results could

be taken to suggest that we may find a qualitative difference in human performance

on sentences with multiple sentential complements compared with sentences involving

numerous instances of the other three kinds of i-recursion discussed here. The bottom-

line is that the simulation results from the processing of i-recursive structures make

certain predictions which can be tested experimentally13.

4.3 Generalization in Connectionist Networks

The simulation results reported above have suggested that simple recurrent networks

are viable models of language processing. It remains to be seen whether they afford

the kind of generalization abilities that we would expect from models of language.

Recently, Hadley (1994a) has attacked connectionist models of language learning for not

achieving a sufficient degree of generalization. He rightly points out that generalization

in much connectionist research has not been viewed in a sophisticated fashion. Testing

is typically performed by recording network output given a test set consisting of items

not occurring in the original training set (as it, admittedly, was the case in experiment

2 in chapter 3). Hadley, in effect, criticizes connectionists for not going beyond using

training and test sets which have been put together according to convenience. He

therefore challenges connectionists to adopt a more methodological training and testing

regime. I have already addressed this challenge elsewhere (in Christiansen & Chater,

1994—but see also the reply by Niklasson & van Gelder, 1994, and Hadley, 1994b, for

a response to both replies), and I report and extend those results here14.

13Importantly, the kind of performance degradation reported here was found to be a general trend
throughout my exploratory simulations using nets of varying sizes and different configurations (such
as, the auto-associative simple recurrent network of Maskara & Noetzel, 1992, 1993).

14The discussion of of Hadley’s (1994a) notion of syntactic position and the formalization thereof
is based on Christiansen & Chater (1994). The simulation results presented here are new and differ
somewhat from the ones reported in the latter paper.
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4.3.1 Degrees of Systematicity

In an effort to operationalize Fodor & Pylyshyn’s (1988) abstract criticism of connec-

tionism, Hadley (1994a) has defined different degrees to which a language learning

system can generalize from experience, what he calls different degrees of systematic-

ity. In his paper, he focuses on syntactic generalization, presenting notions of weak,

quasi- and strong systematicity as benchmarks for connectionist models (‘c-nets’ in

Hadley’s terminology). As we shall see below, these definitions are rather vague inso-

far as more complex grammatical structure is concerned—as, e.g., in the simulations

reported above. Despite Christiansen & Chater’s (1994) criticism of this fact, and

Hadley’s (personal communication) acknowledgement of it, these definitions are re-

iterated in Hadley (1994b). Before we turn to Christiansen & Chater’s discussion, and

subsequent formalization, of Hadley’s notions of syntactic systematicity, a brief look at

his definitions are in order.

According to Hadley (1994a) “a c-net exhibits at least weak systematicity if it is

capable of successfully processing (by recognizing or interpreting) novel test sentences,

once the c-net has been trained on a corpus of sentences which are representative” (p.

6). A training corpus is ‘representative’ if “every word (noun, verb, etc.) that occurs in

some sentence of the corpus also occurs (at some point) in every permissible syntactic

position” (p. 6). Quasi-systematicity can be ascribed to a system if “(a) the system can

exhibit at least weak systematicity, (b) the system successfully processes novel sentences

containing embedded sentences, such that both the larger containing sentence and the

embedded sentence are (respectively) structurally isomorphic to various sentences in

the training corpus, (c) for each successfully processed novel sentence containing a

word in an embedded sentence (e.g., ‘Bob knows that Mary saw Tom’) there exists

some simple sentence in the training corpus which contains that same word in the

same syntactic position as it occurs within the embedded sentence (e.g., ‘Jane saw

Tom’)” (p. 6–7). Finally, a system will exhibit strong systematicity if “(i) it can exhibit

weak systematicity, (ii) it can correctly process a variety of novel simple sentences and

novel embedded sentences containing previously learned words in positions where they

do not appear in the training corpus (i.e. the word within the novel sentence does not

appear in that same syntactic position within any simple or embedded sentence in the

training corpus)” (p. 7).

Central to each definition is the notion of ‘syntactic position’, which may or may

not be shared between items in the training and test sets. Since syntactic position is

not a standard term in linguistics, and since it is not discussed in either of Hadley’s

(1994a, 1994) papers, it is necessary to examine his examples to discover what meaning
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is intended. These are concerned with the relationship between verbs and their argu-

ments. The various argument positions of a verb (subject, direct object and indirect

object) are taken to count as distinct syntactic positions. Also, the active and passive

forms of a verb are taken to occupy different syntactic positions.

If these examples are taken at face value, difficulties emerge. For example, a lexical

item is the subject with respect to some verb whether or not it occurs within an

embedded sentence, a simple sentence, or the main clause of a sentence which contains

an embedded sentence (and similarly with the other examples). This means that,

for Hadley, ‘John’ has the same syntactic position in ‘John loves Mary’ as in ‘Bill

thinks that John loves Mary’—indeed, this is explicit in point (c) of the definition of

quasi-systematicity. Nonetheless, it would appear that, according to Hadley, a learning

system which generalizes from either of these sentence to the other only requires weak

systematicity (since no item occurs in a novel syntactic position). Yet, this seems

to be exactly the kind of case which is supposed to distinguish quasi-systematicity

from weak systematicity in Hadley’s definitions. But, as we see, it appears that weak

systematicity already deals with such cases, if syntactic position is defined in terms of

grammatical role, since grammatical role abstracts away from embedding. Quasi- and

weak systematicity therefore appear to be equivalent.

Presumably, either weak or quasi-systematicity is intended to have an additional

condition, which is not explicit in Hadley’s definition. The suggestion is made below

that quasi-systematicity is only exhibited when the test and training sets contain em-

bedded sentences. An alternative interpretation would be that Hadley is implicitly

making use of a more global notion of syntactic context, which distinguishes the syn-

tactic position of a subject in a sentence which contains an embedded clause, and one

that does not, for example15.

In order to extend the account beyond the cases of subject and object, a more

general account of syntactic position is needed. Christiansen & Chater (1994) have

suggested a possible definition which is presented below. This definition, in turn,

allows them to define what they call three levels of generalization, which are intended

to be close to the spirit of Hadley’s original definitions of systematicity.

15Hadley (personal communication) seems to lean towards the latter interpretation in a recent revi-
sion of his definition of weak systematicity: “the training corpus used to establish weak systematicity
must present every word in every syntactic position and must do so at all levels of embedding found
in the training and test corpus. In contrast, a quasi-systematic system does not have to meet the
condition in the second conjunct, but does satisfy the first conjunct”. Notice that this revision sug-
gests that Elman’s (1989, 1991a) net might be quasi-systematic after all (pace Hadley, 1994a, p. 17).
Interestingly, in Hadley (1994b) the definition of quasi-systematicity is left out.
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4.3.2 Syntactic Context

The syntactic position of a word is defined in terms of the phrase structure tree assigned

to the sentence in which it occurs. Christiansen & Chater use phrase structure trees

since they are linguistically standard and can be used in a precise and general way. No

theoretical commitment to phrase structure based approaches to linguistic theory are

intended there, nor is it here. This account could be given equally well in alternative

linguistic frameworks.

John loves Mary

NPN

N

S

NP VP

V

N

Bill thinks John loves Mary

NPN

N

S

NP VP

V

S

NP VP

V

(a) (b)

Figure 4.12. Phrase structure trees for (a) the simple sentence ‘John loves Mary’ and (b)

the complex sentence ‘Bill thinks John loves Mary’.

The syntactic position of a word is defined to be the tree subtended by the imme-

diately dominating S or VP node, annotated by the position of the target word within

that tree. This tree will be bounded below either by terminal nodes (Det, Proper Noun,

etc.), or another S or VP-node (i.e., the syntactic structure of embedded sentences or

verb phrases is not expanded). For example, consider the phrase structure trees for

the simple sentence ‘John loves Mary’ and the complex sentence ‘Bill thinks John loves

Mary’ as shown in Figure 4.12. In a simple sentence like (a), the subject is defined by

its relation to the dominating S-node. The object and the verb are defined in relation

to the verb phrase. This captures the distinction between subject and object noun

positions. Figure 4.13(a) and (b) depict this distinction, illustrating, respectively, the

syntactic positions of ‘John’ and ‘Mary’.
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Figure 4.13. The syntactic position of (a) the subject noun and (b) the object noun in the

sentence ‘John loves Mary’.

Also according to this definition, verbs with different argument structure are con-

sidered to have different syntactic contexts. For example, intransitive, transitive and

ditransitive occurrences of verbs will be viewed as inhabiting different contexts. Fur-

thermore, verb argument structure is relevant to the syntactic context of the object(s)

of that verb, but not of its subject. In a complex sentence like 4.12(b), there will be dif-

ferent local trees for items in the main clause or in any embedded clauses. For example,

‘thinks’, which occurs in the main clause of 4.12(b), has a syntactic position defined

with respect to the verb phrase pictured in Figure 4.14(a), whereas for ‘loves’ in the

embedded clause, the syntactic position is defined with respect to the structure of the

embedded sentence shown in 4.14(b). The two trees in Figure 4.14 are thus examples

of how the verb argument structure affects syntactic position. Notice that this means

that the syntactic position within an embedded clause is affected only by its local con-

text, and not by the rest of the sentence. Thus the notion of syntactic position applies

independently of the depth of embedding at which a sentence is located. Furthermore,

according to this definition, the syntactic context of a word in a particular clause in

not affected by the structure of a subordinate clause; and the syntactic context of a

word in an subordinate clause is not affected by the structure of the main clause.

S

VP

V NP

VP

V

(a) (b)

Figure 4.14. The syntactic position of (a) the main verb and (b) the subordinate verb in

the sentence ‘Bill thinks John loves Mary’.
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4.3.3 Degrees of Generalization

Using this definition of syntactic position, Christiansen & Chater recast Hadley’s defi-

nitions to give three levels of generalization for language learning systems16.

i. Weak Generalization: A learning mechanism weakly generalizes if it can general-

ize to novel sentences in which no word occurs in a novel syntactic position (i.e.,

a syntactic position in which it does not occur during training)17.

ii. Quasi-Generalization: A learning mechanism is capable of quasi-generalization if

it can generalize to novel sentences as in (1), with the additional constraint that

embedding must occur in the grammar.

iii. Strong Generalization: A learning mechanism strongly generalizes if it can gen-

eralize to novel sentences, that is, to sentences in which some (sufficiently many)

words occur in novel syntactic positions. It is furthermore required that em-

bedding occurs in the grammar, and that the learning mechanism can strongly

generalize to both simple and embedded sentences18.

Given this definition of strong generalization, consider the following two test sen-

tences:

John thinks Bill loves Mary.

Bill loves Mary.

If ‘Mary’ does not occur in the object position in the training set (in either embedded or

main clauses), the syntactic position of ‘Mary’ in both these sentences is novel. Thus,

for a net to be ascribed strong generalization, it is necessary that it be able to process

both sentences. On the other hand, if ‘Mary’ did occur in object position even just once

in the training set, then in neither of the two sentences is the syntactic position novel

(and the net can therefore, at most, be characterized as capturing quasi-generalization).

Thus, the above definitions are meant to capture the spirit of Hadley’s (1994) proposals

16Note that further formalization may perhaps be needed to capture the full complexity of natural
language. However, this would presumably have to take place within a given linguistic framework at
the cost of the inter-theoretical compatibility sought for in Christiansen & Chater (1994).

17Note that Hadley’s revised definition of weak systematicity (as mentioned in a previous footnote)
differs from this notion of weak generalization.

18The requirement concerning simple and embedded sentences has been added to the definition
found in Christiansen & Chater (1994) following worries expressed in Hadley (1994b). He criticized
the definition of strong generalization for being easier to meet than his notion of strong systematicity,
since the latter definition requires that the net be able to process both simple and embedded novel
sentences. As it were, the example of strong generalization presented in Christiansen & Chater does
meet the requirements of this new definition.
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in a reasonably precise and general way. Next, I present some simulation results which

aim to test how readily these definitions can be met by a simple recurrent network.

4.3.4 Generalization Results

As a first step towards meeting the strong generalization criterion described above, I

report additional results from the simulation involving the cross-dependency grammar

depicted in Figure 4.2. Results from the net trained on the center-embedding grammar

illustrated in Figure 4.1 were presented in Christiansen & Chater (1994) and will not

be treated in detail here. As mentioned earlier, both simulations build on and extend

Elman’s (1988, 1989, 1990, 1991a, 1991b, 1992, 1993) work on training simple recurrent

networks to learn grammatical structure. However, Hadley (1994a) rightly notes that

the training regime adopted by Elman does not afford strong systematicity (nor does

it support the notion of strong generalization) since the net by the end of training

will have seen all words in all possible syntactic positions. To address the issue of

generalization, I therefore imposed an extra constraint on two of the nouns from Figure

4.3 (in both their singular and plural form). Thus, I ensured that ‘girl’ and ‘girls’ never

occurred in a genitive context (e.g., neither ‘girl’s cats’ nor ‘Mary’s girls’ were allowed

in the training set), and that ‘boy’ and ‘boys’ never occurred in the context of a noun

phrase conjunction (e.g., both ‘boys and men’ and ‘John and boy’ were disallowed in

the training corpus). Given these constraints I was able to test the net on known words

in novel syntactic positions as required by the definition of strong generalization and

by Hadley’s notion of strong systematicity19.

Strong Generalization in Genitive Context

Recall that neither ‘girl’ nor ‘girls’ has occurred in a genitive context in any of the train-

ing sets. Figure 4.15 illustrates the behavior of the net when processing the sentence

‘Mary’s girls run’ in which the known word ‘girls’ occupies the novel syntactic position

constituted by the genitive context (and the control sentence ‘Mary’s cats run’)20.

We have already seen evidence of net processing up to the point of ‘Mary’s . . . ’

in Figure 4.8(a) and (b)21. Here, in Figure 4.15(a), the behavior of the network is

19Hadley (personal communication) has acknowledged both test cases as possible single instances of
strong systematicity; though these instances might not be sufficient to warrant the general ascription
of strong systematicity to the net as a whole.

20The labels are the same as in Figure 4.8.
21It should be noted that the net was not able to predict neither ‘girl’ nor ‘girls’ after the genitive

marker in ‘Mary’s . . . ’ (Figure 4.8(b)). At first, this would seem to preclude the ascription of strong
generalization altogether, a point Hadley (1994b) has stressed. Christiansen & Chater (1994) treat
this as a partial error, but I will argue below that it is an unimportant one and may, perhaps, even be



CHAPTER 4. CONNECTIONIST LEARNING OF LINGUISTIC STRUCTURE109

0

0.2

0.4

0.6

0.8

1

s-N p-N s-V p-V s-g p-g eos misc

A
c
t
i
v
a
t
i
o
n

Mary’s girls ...

(a)

0

0.2

0.4

0.6

0.8

1

s-N p-N s-V p-V s-g p-g eos misc

A
c
t
i
v
a
t
i
o
n

Mary’s girls run ...

(b)

Figure 4.15. Network predictions after the last part of the test sentence ‘Mary’s girls run.’

(boxes) and in the control sentence ‘Mary’s cats run.’ (small squares).

shown after having received ‘girls’ as input. The net was able to correctly activate

the plural genitive marker in the test case even though it had never seen a genitive

marker following ‘girls’. This indicates that the net is able to strongly generalize by

predicting a known lexical item, the genitive marker, in a novel syntactic position, i.e.,

following ‘girls’. The activation of the plural genitive marker is not as high as the

control, but it is nevertheless significant. Notice also that the prediction of a plural

verb is stronger in the test case than in the control. Given the plural verb ‘run’ in (b),

the net is fully confident in its expectation of a end of sentence marker (both test and

control). Importantly, strong generalization was also found in embedded sentences,

such as, ‘Mary’s boys’ girls run, thus fulfilling the requirement of generalization to

novel syntactic positions in both simple and embedded sentences. This positive finding

becomes even more important, since Christiansen & Chater (1994) failed to obtain

strong generalization in genitive contexts (although a minor activation of the plural

genitive marker following ‘girls’ did indicate that progress was possible).

Strong Generalization in NP Conjunctions

In contrast to Christiansen & Chater’s problems in the genitive context, they reported a

successful outcome of their testing of noun phrase conjunctions. This is also replicated

below—albeit the results here evince a slightly higher degree of error than found in

Christiansen & Chater. Figure 4.16 illustrates network behavior during the processing

warranted.
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of the sentence ‘Mary says that John and boy from town see’ in which ‘boy’ occurs in

the novel syntactic context of a noun phrase conjunction (contrasted with the control

sentence ‘Mary says that John and man from town see’)22.

The patterns of activation produced by the first four words have been depicted

earlier. Given the context ‘Mary says that John . . . ’, the net predicts that the subse-

quent word must be either a singular verb, or a modification of ‘John’ starting with a

preposition, a conjunction, a singular genitive marker, or ‘who’ (the latter in the misc

group). The net also minimally activates the nouns which are not permitted here. In

(b), the net is rightly confident that only a noun can come next23. Already in (c),

we see the net’s ability to strongly generalize in the NP conjunction case when it ac-

tivates the plural verbs to match the conjoined NP ‘John and boy’. Recall that the

net has only seen a singular verb following after ‘boy’. This means that the net has to

‘overwrite’ the statistical correlation between ‘boy’ and single verbs in order to make

the correct generalization that the NP conjunction takes a plural verb. Admittedly,

the activation of the plural verbs are not as high as in the control sentence, but is

still significant. Notice that despite the plural verb prediction, the net still expects

that a singular genitive marker might be next (or, a preposition or ‘who’). The net

exhibits a minor error by activating the singular verbs slightly (and does not reach the

level of activation of ‘and’ found in the control sentence). Since the input in (d) is

the preposition ‘from’, the net predicts that the next word must be one of the nouns

used with the prepositions. In (e) it is possible to detect two small errors in the net’s

predictions concerning the singular verbs and the end of sentence marker. This error is

slightly more pronounced here than in the results presented in Christiansen & Chater.

Nonetheless, the net still gets the plural verb agreement right across the prepositional

phrase. As pointed out in Christiansen & Chater (1994), this is a considerable feat,

since the net thus is able to strongly generalize across several words. In particular, it

shows that the net is not simply predicting plural verbs on the basis of having seen an

‘and’ two items before, but has learned the grammatical regularities subserving noun

phrase conjunctions. Lastly, (f) demonstrates that not only is the net able to predict

a correct end of sentence after ‘Mary says that John and boy from town see . . . ’, but

it is also capable of predicting that ‘see’ might take an optional direct object. As

the net is also able to strongly generalize given NP conjunctions in simple sentences,

such as, ‘John and boy run’, the net therefore fulfill the additional requirements for the

ascription of strong generalization defined above.

22In Figure 4.16, misc contains only ‘that’ and ‘who’.
23Again, it should be noted that neither ‘boy’ nor ‘boys’ receive anything but very minimal activation

compared with the other nouns. I explain below why this should not be considered problematic.
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Figure 4.16. Network predictions after each word in the test sentence ‘Mary says that John

and boy from town see.’ (boxes) and in the control sentence ‘Mary says that John and man

from town eat.’ (small squares).
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While describing network behavior during the processing of the test sentences I

noted that it was not able to predict ‘girl’ and ‘girls’ following a genitive marker and

‘boy’ and ‘boys’ following a conjunction. Hadley (1994b) raises doubts about whether

the nets therefore can be said to exhibit genuine strong generalization. He suggests

that they fail to do so: “it is difficult to see why the network’s ability to predict only

previously encountered nouns, at the crucial novel position, should in any way count as

a success (at that position), given that we are testing for the network’s generalization

of other nouns into that position” (p. 13). Now, adults, and presumably children too,

are able to predict subsequent words given a particular context (Grosjean, 1980). If

Hadley’s criticism is taken at face value, we would expect children to be able to predict

newly learned words in novel syntactic positions. This seems highly unlikely. For

example, if a child had never heard the word ‘boy’ in a NP conjunction context, then

she would arguably never predict ‘boy’ in this position either (if somehow tested)—

unless she had semantic or contextual information to tell her otherwise. This is exactly

what is the case in the language learning studies that Hadley (1994a) refers to (e.g.,

Gropen, Pinker, Hollander, Goldberg & Wilson, 1989; Pinker, Lebeaux & Frost, 1987).

In these studies children are taught nonsense words, such as, ‘pilk’, and primed to apply

them in a novel syntactic context. It seems clear from the elaborate set-up in these

experiments that this kind of generalization can only be obtained under conditions

of strong semantic and contextual priming. These studies furthermore acknowledge

that children generally appear to be rather conservative language learners. Of course,

Hadley (1994b) is right to say that “children are capable of spontaneously producing

sentences containing words in novel positions” (p. 13), but such occurrences are rare

and, I submit, cued by semantic and/or contextual information. However, the networks

used in Christiansen & Chater (1994) and here do not have such information available.

The nets can therefore hardly be blamed for not predicting nouns in novel syntactic

positions when no child, relying solely on syntactic information, is likely to be able to

perform this task either.

Given these considerations, the ascription of strong generalization seems warranted

in the test cases presented here. Whether these two instances of strong generalization

are sufficient to endow the system with Hadley’s notion of strong systematicity depends

on whether four nouns out of a total number of ten nouns count as a “significant

fraction of the vocabulary” (Hadley, 1994a, p. 7). Independent of the answer to this

question, we may agree with Hadley that human language learners presumably are able

to strongly generalize in a number of different syntactic contexts, more than reported

here. Yet the net’s ability to strongly generalize in both genitive and conjoined NP

contexts suggests that this more widespread, human-like (strong) generalization may
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not be beyond simple recurrent networks.

4.4 Discussion

In the current chapter, I have reported a number of simulation results extending those

presented in chapter 3. In particular, the results here show that simple recurrent net-

works appear to have sufficient computational power to induce quite complex grammars

involving both i-recursive structures and ni-recursive structures (the latter instantiated

as either center-embedding or cross-dependency). Importantly, the nets exhibit the

same kinds of limitations observed (or predicted to be found) in human performance

on both ni- and i-recursive sentence constructions. Moreover, the nets also acquired

an ability for strong generalization (at least, in the two test cases discussed above)

comparable to what we may expect from human language learners. Simple recurrent

networks therefore seem to be viable candidates as models of certain important aspects

of human language acquisition.

One limitation of the simulations put forward in both this and the previous chapter

is that they do not incorporate semantic or other non-syntactic information. Whether

such a separation is warranted has been the matter of some controversy. Some re-

searchers (e.g., Ferreira & Clifton, 1986; Perfetti, 1990; Rayner, Carlson & Frazier,

1983) have suggested that syntactic processing is autonomous from other kinds of lan-

guage processing. Others again (e.g., Altmannn & Steedman, 1988; Crain & Steedman,

1985; Taraban & McClelland, 1990) have argued that semantic and contextual informa-

tion indeed does affect syntactic processing. Although the debate is undecided, recent

experimental evidence reported in, for example, Spivey-Knowlton & Tanenhaus (1994)

does point towards the latter position. What is important in the present context is that

we should, at least, be able to envisage how non-syntactic information may be incorpo-

rated in the currently purely syntactic account of language acquisition and processing.

Fortunately, a simulation experiment conducted by Weckerly & Elman (1992) shows

some indication of how this might be done. They trained a simple recurrent network

on sentences with certain constraints on subject noun/verb combination. More specif-

ically, certain animate verbs would only occur with animate subject nouns, whereas

other varied freely between animate and inanimate subjects. When testing the net on

center-embedded structures, a difference was observed in net performance depending on

whether the verbs in the those sentences were biased towards the animacy/inanimacy

of their subject nouns or neutral. As also reported in studies of human subjects tested

on semantically biased and neutral center-embedded sentences (e.g., King & Just, 1991;

Stolz, 1967), such bias clearly facilitates processing. Of course, the word co-occurrence
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bias in the Weckerly & Elman’s training set does not correspond to semantics proper.

However, it does suggest that children may initially use statistical contingencies in lan-

guage to bootstrap their further development of semantics (in a linguistic context—see

also Finch & Chater, 1993, for a similar statistically motivated view). Pointers in the

direction of implementing something closer to contextual processing may be found in

St. John & McClelland’s (1990) recurrent network model of the learning and appli-

cation of contextual constraints in sentence processing which incorporates incremental

interpretation. Although extending the simulation results presented in here, and in

chapter 3, is not trivial, the results reported in Weckerly & Elman (1992) and St. John

& McClelland (1990) indicate, at least, that such an extension is not impossible in

principle.

Another possible limitation concerns the simulation results on strong generalization

presented in the latter part of this chapter. It is often noted that connectionist and

other bottom-up statistical models of language learning will not be able to scale up to

solve human language acquisition because of arguments pertaining to the purported

poverty of the stimulus. I address these arguments at length in the next chapter.

Here it suffices to say that there are some evidence that models employing simple

statistical analysis may be able to attain strong generalization. Christiansen & Chater

(1994) mention that when Redington, Chater & Finch (1993) applied a method of

distributional statistics (see also Finch & Chater, 1992, 1993) to a corpus of child

directed speech (the CHILDES corpus collected by MacWhinney & Snow, 1985), they

found that the syntactic category of a nonsense word could be derived from a single

occurrence of that word in the training corpus. This indicates that strong generalization

may be learnable through bottom-up statistical analysis—even on a scale comparable

with that of a child learning her first language. In this context, it is also important

to note that achieving strong generalization is not only a problem for connectionist

models of the learning of linguistic structure. As pointed out by Christiansen & Chater

(1994), most symbolic models cannot be ascribed strong generalization since they in

most case are spoon-fed the lexical categories of words via syntactic tagging. The

question of strong generalization is therefore just as pressing for symbolic approaches

as for connectionist approaches to language acquisition. The results presented in this

chapter suggest that connectionist models may be closer to solving this problem than

their symbolic counterparts.

Up until now, I have focused on establishing that connectionist models have suffi-

cient computational power and generalization capability to serve as models for natural

language learning and processing. Next, in chapter 5, I outline a theory of how our
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language ability may have evolved to its present state (as modeled, in part, here and

in the previous chapter). Learning plays an important role in this account of the origin

and evolution of language, and the observations made in the present chapter regarding

the incremental memory training regime provide partial support for an explanation of

how children may overcome the apparent poverty of the stimulus.



Chapter 5

The Evolution and Acquisition of

Language

When studying natural language one cannot help being filled with awe over its intricate,

yet highly regularized, complexity. Moreover, the speed at which children acquire this

formidable means of communication must strike even the most casual observer with

amazement. How do children accomplish this enormous feat? Do they learn to speak

their native tongue? Or, does their language ability gradually unfold according to a

genetic blueprint (in much the same way that a chicken grows a wing)? Thus, the

question is whether there is sufficient environmental information available to the child

to make language learnable (given general non-linguistic constraints on learning), or,

is it necessary to presuppose the existence of specific linguistic constraints in order to

account for language acquisition?

For a child to acquire language it is clear that whatever mechanisms participate in

this task, they would have to be biased in some way towards the learning of language—

or, at least, towards the learning of sequential and hierarchical structure. Otherwise, we

would be able to teach computers to speak simply by talking to them whilst they record

our speech. In other words, that there must be internal constraints on the acquisition

of language is hardly controversial, but the nature and extent of these constraints is

the focus of much debate. For a period spanning three decades Chomsky (1965, 1972,

1975, 1976, 1977, 1980, 1986, 1988, 1993) has argued forcefully that a substantial innate

endowment of language specific knowledge is necessary in order to provide sufficient

constraints on language acquisition. These constraints form a ‘Universal Grammar’

(UG); that is, an innate database consisting of a collection of universal grammatical

principles that hold across all human languages. In this framework, all that language

‘learning’ amounts to is the setting of a number of parameters in UG according to

116
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the specifics of the particular language being learned. The staunchest proponents of

this view even go as far as to claim that “doubting that there are language-specific,

innate computational capacities today is a bit like being still dubious about the very

existence of molecules, in spite of the awesome progress of molecular biology” (Piattelli-

Palmarini, 1994: p. 335).

Given this view of language acquisition, a question naturally arises concerning the

evolution of such an elaborate and highly specialized innate structure. It is often noted

that humans appear to be the only species in which nature has bestowed language

(at least, in its present complexity). But how did the human language ability come

about in the first place? What kind of phylogenetic explanation might be found for

this uniquely human capacity? The proponents of UG are generally divided into two

camps when addressing the issue of language evolution. One camp (e.g., Chomsky,

1988; Piattelli-Palmarini, 1989) has suggested that natural selection only played a

minor role in the emergence of language in humans. On this account, UG is a product

of exaptation; that is, it is hypothesized that it might have arisen as a by-product of

increased brain size following evolutionary pressures driven by other functions than

language, or, perhaps, as a consequence of random mutations. The other camp (e.g.,

Bloom, 1994; Corballis, 1992, 1994; Greenfield, 1991; Hurford, 1991; Pinker, 1994;

Pinker & Bloom, 1990) emphasizes a gradual evolution of the human language faculty

through natural selection. In this picture, it is assumed that having a language confers

added reproductive fitness on humans and that this, in turn, leads to a selective pressure

towards increasingly more complex grammars.

Both accounts of the evolution of language do not leave much room for learning.

The proponents of neo-Darwinian evolution do, however, leave a little elbow room

for learning inasmuch as evolution through natural selection—being essentially a hill-

climbing process (Hinton & Nowlan, 1987; Maynard-Smith, 1987; Pinker & Bloom,

1990)—can be construed as a kind of (non-Larmarckian) learning process in which a

particular species searches the evolutionary problem space for good genotypes (albeit

that the species has no ‘memory’ of its previous searchpath since individuals with

poorly adapted genotypes tend not to live to tell the tale). The exaptationists seek

to abolish the term “learning” altogether, suggesting “that we would gain in clarity

if the scientific use of the term were simply discontinued” (Piattelli-Palmarini, 1989:

p. 2; see also Chomsky, 1980, for a similar view). Given that learning generally plays

a fundamental role in most connectionist theories, and in the work presented in the

previous chapters in particular, such eschewal of the concept of (non-trivial) learning
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within cognitive science would have a devastating impact on connectionist research1.

In this chapter, I therefore sketch a theory in which considerations regarding learning

and processing, rather than innate linguistic knowledge, provide the explanation of

language development and evolution. This involves a reappraisal of the poverty of

the stimulus arguments typically presented in favor of an innate UG, suggesting an

alternative account of the psycholinguistic data based on a dynamic perspective on

the co-evolution of language and the human mechanism underlying both learning and

processing of linguistic structure. If this account is correct, then it is a mistake to

bury a scientific term which is still very much alive and kicking. Indeed, I predict that

the concept of learning is destined to play an important part in future research into

language and other parts of cognition.

The content of this chapter is as follows: First I examine the main exaptationist and

adaptationist perspectives on the evolution of language. An alternative view is proposed

in which language is treated as an organism that is forced to adapt to the idiosyncrasies

of its human hosts. To exemplify the kind of explanation of linguistic phenomena that

this approach may offer, I discuss subjacency as a classic example of an arbitrary

language universal. Next, in section 2, I address the issues concerning the origin of

language. It is argued that sequential learning is the basis of our language ability. The

latter is hypothesized as having started as a manual language which gradually evolved

into a predominately vocal language following bipedalism and changes in the human

vocal tract. I furthermore contend that such a learning based language capability

could not have become innate following subsequent evolution. An account of linguistic

change is then put forward, pointing to increases in vocabulary size as the key factor

in bringing about morphological and syntactic change. The emphasis on learning in

the evolutionary scenario is continued in section 3 which discusses the acquisition of

language. Innate, but not language-specific, maturational constraints are advocated

to determine the acquisition process, providing a plausible explanation of the critical

period of language learning. The argument from the poverty of the stimulus is re-

appraised, and it is argued that language may be learnable without the help of the

massive endowment of innate linguistic knowledge presupposed by the proponents of

UG. Finally, two possible objections to the present theory are debated.

1It should be noted that connectionism, in principle, might be compatible with some kinds of na-
tivism (cf. e.g., Clark, 1993; Ramsey & Stich, 1991), but it seems clear that the spirit of connectionism
is incompatible with the strong innateness hypothesis espoused by, for example, Crain (1991), Chomsky
(1980, 1986, 1993) and Piattelli-Palmarini (1989, 1994).
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Figure 5.1. Schematic representation of four positions concerning explanations of the acquisi-

tion (domain-general vs. domain-specific) and evolution (natural selection vs. non-Darwinian)

of language.

5.1 Language: Organ, Instinct, or Nonobligate Symbiant?

Ultimately, language has to be tied to the phylogeny and ontogeny of human biol-

ogy. In an attempt to characterize the biological underpinnings of language, Chomsky

(1965, 1986, 1988) has advocated that language should be viewed as one amongst many

‘mental organs’ which “develop in specific ways each in accordance with the genetic

program, much as bodily organs develop; and that multipurpose learning strategies are

no more likely to exist than general principles of ‘growth of organs’ that account for

the shape, structure, and function of the kidney, the liver, the heart, the visual system,

and so forth” (Chomsky, 1980: P. 245). More recently, Pinker (1994) has argued that

language is better construed as an instinct because “it conveys the idea that people

know how to talk in more or less the sense that spiders know how to spin webs” (p. 18).

Both terms carry much the same nativist commitments on their sleeves, indicating that

only highly domain-specific ‘trigger’ learning can take place. Yet, the two positions di-

verge substantially on what role natural selection is meant to play in the evolution of

UG.

The general relationship between the two perspectives is illustrated in Figure 5.1,

where the ‘exaptationist UG’ 2 position is taken by Chomsky (1972, 1982, 1988, 1993)

2It should be noted that I here follow Piattelli-Palmarini (1989) in using ‘exaptation’ as an umbrella
term for recent nonadaptationist mechanisms for evolution, such as, genetic hitch-hiking (Maynard-
Smith, 1978), that is, a mechanism by which non-selected genes might “catch a ride” with another
gene that was selected for, if they are in close proximity to the selected gene along a chromosome;
spandrels (Gould & Lewontin, 1979), i.e., architectural by-products with no previous function, but
which come to serve some novel function (by analogy to the mosaics on the triangular spaces formed at
the intersection of the arches of the dome in the San Marco basilica in Venice); and, exaptation proper
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and Piattelli-Palmarini (1989, 1994) whereas the (seemingly more popular) ‘adapta-

tionist UG’ view counts Bloom (1994), Corballis (1992, 1994), Hurford (1991), Pinker

(1994), Pinker & Bloom (1990) amongst its proponents. A third perspective empha-

sizing both natural selection and genuine (domain-general) learning in the phylogeny

and ontogeny of language—here named ‘adaptationist learning’—is held by, e.g., Bates,

Thal & Marchman (1989), Bates & Elman (1993) and Elman (1993). The logical struc-

ture of Figure 5.1 suggests a fourth way of looking at the issues involved in the evolution

and acquisition of language: the ‘exaptationist learning’ viewpoint3. To my knowledge

only one person comes close to having this point of view. In arguing for his view of

language as a spandrel, Gould (1993) acknowledges that he “can’t prove that language

was not the selected basis of increasing brain size, but the universals of language are so

different from anything else in nature, and so quirky in their structure, that origin as

a side consequence of the brain’s enhanced capacity, rather than as simple advance in

continuity from ancestral grunts and gestures, seems indicated” (p. 321). Elsewhere,

Gould (1979) has made comments which could be interpreted (as they have, indeed, by

Pinker & Bloom, 1990) as suggesting that the increased brain size produced a multipur-

pose learning device that can acquire not only language, but also many other cognitive

abilities.

5.1.1 The Exaptationist View

The other exaptationist viewpoint—though certainly not the most popular account

of language development and evolution—has its prominent advocates. For instance,

Chomsky (1972, 1982, 1988) has for more than two decades expressed strong doubts

about neo-Darwinian explanations of language evolution and has recently been joined

by Piattelli-Palmarini (1989). This skepticism does not merely concern adaptationist

accounts of language origin, but the selectionist theory of evolution as a whole:

What Darwin achieved is of extraordinary importance, but there’s virtually
nothing of a theory there . . . when you try to account for why particular
organs develop, or species, and so on, all you can do is wave your hand
. . . To move to more far reaching explanation, you’re going to have to find

(Gould & Vrba, 1982), that is, when something that was originally adapted to serve a particular
function is put to use to serve a novel function.

3I would like to stress that I do not intend the four positions represented in Figure 5.1 to exhaust all
possible perspectives on the evolution and development of language. Indeed, my own view, as we shall
see, falls outside this schematization. I have included this figure in order to provide a clear schematic
representation of the relations between the three viewpoints most often found in the recent literature
focusing on the issues at hand. The possibility of the exaptationist learning position follows logically
from the figure, but does not seem to have much support.
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something about the space of physical possibility within which selection op-
erates. That space might be extremely narrow. For example, it might be so
narrow that under the particular conditions of human evolution, there’s one
possibility for something with 1011 neurons packed into something the size
of a basketball: namely, a brain that has these computational properties.
(Chomsky, 1993: p. 83)

Chomsky is careful to add that he is not proposing such an evolutionary picture. In-

deed, he does not commit himself to any particular view of evolution4. Chomsky does,

however, show a strong inclination towards an exaptationist framework, rather than

an adaptationist one (also cf. Pinker & Bloom, 1990). Piattelli-Palmarini (1989), on

the other hand, demonstrates an even stronger commitment to exaptationism, finding

adaptationist explanations much too weak: “Adaptive constraints are typically insuf-

ficient to discriminate between real cases and an infinity of alternative, incompatible

mechanisms and traits which, although abstractly compatible with the survival of a

given species, are demonstrably absent” (p. 19).

The exaptationist positions from Figure 5.1 both rely on the complexity and in-

tricacy of the putative UG as the premise for their arguments against adaptationist

explanations of language evolution. UG appears to be so unique in terms of structure

and properties, that it is unlikely that it could be a product of a process of natu-

ral selection amongst random mutations, or so the argument goes. Instead, Chomsky

(1988) has suggested that, perhaps, the property of ‘discrete infinity’ (recursion) arose

as a consequence of a mutation in some protohuman being, making language possible.

Elsewhere, Chomsky (1972, 1982, 1993) proposes that the language organ might be a

by-product of having a brain of a particular size and structural complexity following

certain (yet unknown) properties of physical mechanisms. This view of language as

spandrel has received further support from Gould (1993). Moreover, in reference to

the arbitrariness of the specific set of principles and parameters that characterizes UG,

Piattelli-Palmarini (1989) has noted that “adaptationism cannot even begin to explain

why the natural languages that we can acquire and use possess these central features

and not very different ones” (p. 24).

5.1.2 The Adaptationist Perspective

Recently, Pinker & Bloom (1990) have forcefully defended the adaptationist perspective

on language from the exaptationist attacks (briefly summarized above). They, too,

adopt UG as a premise for their arguments (thus, espousing the adaptationist UG

4Elsewhere, for instance, Chomsky says in an often quoted passage that “language must surely
confer enormous selective advantages” (1980, p. 239).
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position in Figure 5.1). But in contrast to Chomsky, Gould and Piattelli-Palmarini,

Pinker & Bloom find that the complex and intricate structure of UG bears evidence

of design, indicating its adaptation as an efficient means of communication. More

generally, they argue that “natural selection is the only scientific explanation of adaptive

complexity. ‘Adaptive complexity’ describes any system composed of many interacting

parts where the details of the parts’ structure and arrangement suggest design to fulfill

some function” (p. 709; their emphasis). As another example of adaptive complexity,

they refer to the vertebrate visual system. This system consists of many parts that

have to work together to create vision; starting with the refracting cornea and the

illumination sensitive pupil (regulating the amount of incoming light), which allow light

to impinge on the retina through a variable focus lens. The image is then transmitted

via the optical nerves to the visual cortex where specialized neural structures respond to

various parts of the input patterns, such as, edges, color, motion, and so on. Moreover,

the eyes are equipped with muscles that ensure coordination between the two eyes as

well as visual stability (for instance, to maintain fixation on a given point in visual

space when the head is moving). Pinker & Bloom argue that such an arrangement of

matter has an extremely low probability of occurring by chance because of the complex

interactions amongst its highly specialized parts. Consequently, they find that it would

amount to something close to miracle for the vertebrate visual system to emerge as

a product of random mutation (e.g., via genetic hitch-hiking), some (yet unknown)

laws concerning the possible biological arrangements of matter, recycling of a structure

adapted for another function (exaptation proper), or as the byproduct of architectural

constraints of other unrelated structures (a spandrel).

Given that language couched in terms of UG appears to show a degree of complexity

equal to that of the vertebrate visual system, Pinker & Bloom conclude that it is

highly improbable that language is the product of some nonadaptationist process. In

particular, they contend (pace Chomsky, Gould and Piattelli-Palmarini) that language

cannot be an unmodified spandrel. Although unmodified spandrels appear to exist (e.g.,

as when wading birds use their wings primarily to block out the reflections of the sun

while fishing), each such exaptation is merely one amongst many crude solutions to a

simple engineering task, and is therefore not likely to play a dominant role in evolution

of more complex capacities. On the other hand, modified spandrels—that is, cases where

spandrels are redesigned to serve new functions—play a much more important role in

evolution because they provide starting points for adaptive complexity. As an example,

Pinker & Bloom mention the evolution of insect wings which involved the redesigning
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of structures that were originally evolved for the purpose of thermal exchange5. Thus,

exaptationist processes appear to provide the raw material for natural selection, which

in turn, never has a clean slate to start with, but must always work as tinkerer with

whatever building materials are at hand. Importantly, it is adaptation that shapes and

finetunes the structures underlying complex functions.

Pinker & Bloom acknowledge that language might be a modified spandrel that

evolved from general cognitive processes not specific to language. In particular, they

speculate that “the multiplicity of human languages is in part a consequence of learning

mechanisms existing prior to (or at least independent of) the mechanisms specifically

dedicated to language” (1990: p. 723). Such learning mechanisms subserving early lan-

guage would then have been shaped by natural selection into our presentday language

ability via natural selection. On this view, what originally had to be learned gradually

became innate following the ‘Baldwin effect’ (Baldwin, 1896; Hinton & Nowlan, 1987;

Maynard-Smith, 1987), thus creating the UG that Pinker & Bloom take to underlie

human language. The basic idea behind the Baldwin effect is that when a species

is faced with the learning of an adaptive task, certain initial settings of the learning

mechanism are better than others. Individuals endowed with good starting configura-

tions are likely to learn faster, which, in turn, confers added reproductive fitness onto

them. These individuals should therefore proliferate, creating offspring with equally

good starting points for learning (genetic drift aside). This process repeats itself, pro-

ducing better and better initial settings for learning, until the task becomes more or

less innately specified. At this point learning might merely consist in the triggering of a

few switches in an otherwise innate database. The Baldwin effect thus provides a way

in which learning can guide evolution in a nonLamarkian way, and is used by Pinker &

Bloom to explain how the innate UG might have evolved from language independent

learning mechanisms (for a criticism of this view, see section 5.2.3).

The Arbitrariness of Linguistic Universals

Having thus defended the adaptationist UG position against the onslaught of the exap-

tationists, Pinker & Bloom still have to explain why the principles of UG are essentially

arbitrary (as pointed out by Piattelli-Palmarini, 1989). They address this issue by sug-

gesting that the constraints imposed by UG function as communicative protocols. As

such, the specific nature of these standards does not matter as long as everyone (within

5It is amusing to note that if the Disney character “Dumbo” was a real living organism, then it
would seem to have followed the same path to flight as the insects; that is, a transformation of its ears
(as heat exchangers) into structures subserving flight. However, this is not to say that there might not
be laws of nature that generally prevent elephants from ever becoming airborne by their own power.
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a given speech community) adopts the same set of standards. The arbitrariness of

the principles of UG can therefore be seen to parallel the arbitrariness of technical

communication protocols, such as, those used in communication between computers.

When using a modem it is important to use the right protocol; for instance, odd parity,

handshake on, 7 bit, etc. There is no particular reason for having a protocol with ex-

actly these settings, other combinations would be just as effective. What is important,

however, is that the two computers that are to communicate with each other adopt

the same protocol—otherwise, communication will not be possible at all. So, when it

comes to the specifics of UG, Pinker & Bloom suggest that “in the evolution of the

language faculty, many ‘arbitrary’ constraints may have been selected simply because

they defined parts of a standardized communicative code in the brains of some critical

mass of speakers” (1990: p. 718)6.

Pinker & Bloom’s (1990) elaborate account of the evolution of language still leaves

some questions to be answered; an important one being: How did language get to have

the structure that it has? The adaptationist UG view leaves the origin of language

structure mostly unexplained, characterized as a collection of arbitrary communication

standards. For example, Pinker & Bloom write that

. . .many aspects of grammar cannot be reduced to being the optimal solu-
tion to a communicative problem; rather, human grammar has a universal
idiosyncratic logic of its own . . . Evolution has had a wide variety of equiv-
alent communicative standards to choose from; there is no reason for it to
have favored the class of languages that includes Apache and Yiddish, but
not Old High Martian or Early Vulcan . . . Whatever rationales may have
influenced these choices are buried in history.(p.719)

Pinker & Bloom further suggest that these idiosyncrasies are in part culturally deter-

mined, but this suggestion just pushes the question back one level: How did they evolve

in the cultural domain? Thus, it seems to be something of a mystery that we only learn

the human languages (with their arbitrary idiosyncrasies) given that they comprise a

mere fraction of the total set of theoretically possible languages.

5.1.3 Language as an Organism

If we, however, invert the perspective on language evolution—recognizing that language

has evolved to fit the human learning and processing mechanism—then the mystery

6In addition, Pinker & Bloom (1990) point out that it is often the case that natural selection
has several (equally adaptive) alternatives to choose from to carry out a given function (for example,
both the invertebrate and the vertebrate eye support vision despite having significant architectural
differences.
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can be unraveled; and we might, furthermore, understand how language got to have

its apparently “idiosyncratic” structure. Instead of saying that humans can only learn

a small subset of a huge set of possible languages, we must refocus by observing that

natural languages exist only because humans can produce, learn and process them.

In this connection, it is useful to construe language as an organism, adapted through

natural selection to fit a particular ecological niche: the human brain. Darwin (1900)

was one of the first to recognize this as is evident from the following quote:

The formation of different languages and of distinct species, and the proofs
that both have been developed through a gradual process, are curiously
parallel . . .We find in distinct languages striking homologies due to com-
munity of descent, and analogies due to a similar process of formation. The
manner in which certain letters or sounds change when other change is very
like correlated growth . . . Languages, like organic beings, can be classed in
groups under groups; and they can be classed either naturally, according
to descent, or artificially by other characters. Dominant languages and di-
alects spread widely, and lead to the gradual extinction of other tongues. A
language, like a species, when once extinct, never . . . reappears . . . A strug-
gle for life is constantly going on among the words and grammatical forms
in each language. The better, the shorter, the easier forms are constantly
gaining the upper hand . . . The survival and preservation of certain favored
words in the struggle for existence is natural selection. (p. 106)

In this sense, natural language is akin to an organism whose evolution has been

constrained by the properties of human learning and processing mechanisms. It is

therefore not surprising that we, after all, are so good at acquiring language. Language

is closely tailored for human learning, rather than the other way round (as suggested

by Pinker & Bloom, 1990: p. 712). In addition, it is also worth noting that the

human language learning mechanism is not static (as we shall see in section 5.3). It

undergoes significant changes during the period of (optimal) language acquisition. In

the present picture, language evolution and development are tied strongly together

(pace e.g., Chomsky, 1988, 1993; Piattelli-Palmarini, 1989; Pinker & Bloom, 1990;

Pinker, 1994). Only by studying both in unison can we begin to understand how

natural language came to be the way we experience it today.

Presentday natural language is not due to exaptation (of almost magical propor-

tions) as suggested by Piattelli-Palmarini (1989), nor is its many universal features

essentially arbitrary as implied by Pinker & Bloom’s (1990) account. Rather, I con-

tend that language is the product of an evolutionary process in which language had

to adapt to the human learning mechanism (with all its developmental idiosyncrasies)
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in order to ‘survive’7. This is not to say that having a language does not confer

selective advantage onto humans. It is clear that humans with a superior language

ability are likely to have a selective advantage over other humans (and other organ-

isms) with lesser communication powers. This is an uncontroversial point, forming the

basic premise of many evolutionary theories of language origin (save Chomsky, 1988;

Gould, 1993; Piattelli-Palmarini, 1989, 1994).

What is often not appreciated is that the selective forces working on language to

fit humans is significantly stronger than the selective pressure on humans to be able to

use language. In the case of the former, a language can only survive if it is learnable

and processable by humans. On the other hand, adaptation towards language use is

merely one out of many selective pressures working on humans (such as, for example,

being able to avoid predators and find food). Whereas humans can survive without

language, the opposite is not the case (at least, not as far as human languages—the focus

of linguistics—is concerned). Thus, language is more likely to have adapted itself to its

human hosts than the other way round. Languages that are hard for humans to learn

simply die out, or, more likely, do not come into existence at all. Following Darwin, I

propose to view natural language as a kind of a beneficial parasite—i.e., a nonobligate

symbiant—that confers some selective advantage onto its human hosts without whom

it cannot survive. Consequently, the rate of linguistic change is far greater than the

rate of biological change. Whereas it takes about 10,000 years for a language to change

into a completely different “species” of language (e.g., from protolanguage to presentday

language, Kiparsky, 1976), it took our remote ancestors something in the neighborhood

of 250,000 years to evolve from the archaic form of Homo sapiens into the anatomically

modern form we have today, Homo sapiens sapiens (cf. data in Corballis, 1992). The

fact that children are so successful at language learning is therefore more appropriately

explained as a product of natural selection of linguistic structures, rather than natural

selection of biological structures, such as UG.

Returning to the universal principles of UG and their supposedly arbitrary nature,

it is clear that they are arbitrary from a linguistic point of view. That is, given a

7In this connection, it is interesting to note that a group of linguists recently also adopted the view
of language as a kind of organism (although I presume that they would not agree with the conclusions
that I draw here from this perspective). In a collection of papers Hale et al (1992) express their worries
about the rapidly increasing number of endangered languages; that is, languages that have disappeared,
or are about to disappear, from the face of the earth. In one of the papers, Michael Kraus suggests that
“language endangerment is significantly comparable to—and related to—endangerment of biological
species in the natural world” (p. 4). He goes on to warn us that “the coming century will see either the
death or doom of 90% of mankind’s languages” (p. 7). This kind of language extinction is, however, not
a product of natural selection (with respect to the human brain), but a product of a general pressure
towards cultural homogeneity (cf. Kraus).
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strictly linguistic perspective on language these constraints would appear to be arbi-

trary, since we can imagine a multitude of alternative, and equally adaptive, constraints

on linguistic form. For instance, Piattelli-Palmarini’s (1989) contends that there are no

(linguistic) reasons not to form yes-no questions by reversing the word order of a sen-

tence instead of the normal inversion of subject and auxiliary. However, on the present

account linguistic universals are no longer arbitrary. Rather, they are determined by

the properties of the human learning and processing mechanisms that underlie our lan-

guage capacity. This is why we do not reverse the word order to form yes-no questions;

it would put too heavy a load on memory to store a whole sentence in order to be able

to reverse it8. In effect, language universals are by-products of processing and learn-

ing under certain limitations on memory, attention, etc. (and this, as we shall see in

section 5.3, surprisingly makes language easier to learn). Consequently, there are good

reasons why we are able to speak Apache and Yiddish, but not Old High Martian or

Early Vulcan (pace Pinker & Bloom, 1990): the latter, non-human languages did not

evolve because they simply do not fit the human learning and processing mechanisms.

However, if we imagine that these brain mechanisms had followed a different evolu-

tionary path, then we might have both Old High Martian and Early Vulcan amongst

presentday human languages, but not Apache and Yiddish. Whereas the make-up of

the human language machinery is arbitrary (it is, at least, conceivable that it could

have been different), the structure of the human languages are not, since they are evo-

lutionarily customized to fit human learning and processing capabilities. In short, my

view amounts to the claim that most—if not all—linguistic universals will turn out to

be terminological artifacts referring to mere side-effects of the processing and learning

of language in humans9.

Subjacency: A Classic Example of Arbitrariness

Since the subjacency principle, according to Pinker & Bloom (1990: p. 717), “is a

classic example of an arbitrary constraint”, it is well-suited as a demonstration of what

8Besides, this also presupposes that transformations must underlie the construction of yes-no
questions—a point which is not an established truth (as we shall see later).

9Recently, Chomsky (1993) has expressed a somewhat similar view when outlining his new ‘min-
imalist’ program: “Grammatical constructions such as relative clause, passive, verbal phrase, and so
on, appear to be taxonomic artifacts, like ‘terrestrial mammal’ or ‘household pet’; the array of phe-
nomena derive from the interaction of principles of much greater generality . . . these principles may
themselves be epiphenomenal, their consequences reducing to more general and abstract properties of
the computational system, properties that have a kind of ‘least effort’ flavor” (p. 51). However, it is
clear that Chomsky takes a rather different position on most other issues involved in the evolution and
development of language.
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my position implies10. The grammatical theory underlying Chomskyan UG (that is,

Government and Binding (GB), e.g., Chomsky, 1981) involves an essential distinction

between S-structures and D-structures (formerly, e.g., Chomsky, 1965, called “surface

structures” and “deep structures”, respectively), where the former is derived trans-

formationally from the latter via “move-α”, a general procedure for the movement of

constituents. In order to restrict this powerful movement procedure, so that the trans-

formed sentence structures correspond to what is acceptable to a normal speaker, a

number of constraints are imposed on such transformations—subjacency being one of

these. Thus, the subjacency principle involves certain general restrictions on the move-

ments of constituents during transformation (the exact details are irrelevant here).

Consider the following:

(1) Who does Anita believe Betty bit (gap)?

(2) [
S1

comp1 Anita believes [
S2

comp2 Betty bit who]]

In GB, the gap at the end of the S-structure in (1) is a result of two consecutive

movements of ‘who’ from its position at the end of the D-structure in (2). These

movements are shown in the syntactic tree in Figure 5.2. Now, consider the following

ungrammatical (S-structure) sentence (3) and its underlying D-structure (4):

(3) *Who does Anita believe the story that Betty bit (gap)?

(4) [
S1

comp1 Anita believes [NP the story [
S2

comp2 Betty bit who]]]

As before, the gap in (3) is due to the movement of ‘who’ from it tail position in (4).

In order to explain the ungrammaticality of (3) compared with (1) the subjacency

principle—formalized in Figure 5.3—is invoked. By comparing Figure 5.2 and 5.4

in the light of 5.3, we can now see why (1) is rendered grammatical within the GB

framework and (3) is not. Figure 5.4 shows that the second movement of ‘who’ in

(3) is illegal because it results in a movement across two bounding nodes (NP and

S2). This is prohibited by the subjacency principle. As such, the subjacency principle

seems to lend itself easily to an explanation in terms of memory limitations (also

cf. Elman, 1992). Indeed, Berwick & Weinberg (1984) have provided a functional

explanation of subjacency. In their framework, the subjacency principle emerges from

10I have included this somewhat elaborate example to provide some linguistic ‘weight’ to the present
theory and to make the discussion of linguistic universals more concrete. The example is furthermore
presented as a preliminary template for the explanation of other linguistic universals as well as indi-
cating how it may cut across the particulars of different linguistic frameworks (hence the GPSG part
of the example).
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S1

comp1

S2

comp2

(gap)bitBettybelieveAnitawho

S

NP comp VP

V

NP

S

NP VP

V NP

Figure 5.2. A Chomskyan (GB) transformational derivation of of the S-structure ‘Who does

Anita believe Betty bit’ from the D-structure ‘Anita believes Betty bit who’ with the arrows

illustrating the cyclic movements of ‘who’.

βα. . . X . . .[   . . . [  . . .Y. . .  ] . . .  ] . . . X . . .

Figure 5.3. A formalization of the subjacency principle: no transformation may move a

constituent from position Y to either of the X positions; that is, no single movement is allowed

across more than one boundary node (where α, β—i.e., the bounding nodes—are either NP or

S).
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NP comp

NP comp

S

NP VP

V NP

S1

comp1

comp2

S2

S

VP

V NP

det N

N

(gap)bitthatthe storyAnitawho Bettybelieve

NP

Figure 5.4. A Chomskyan (GB) derivation of of the ungrammatical S-structure ‘Who does

Anita believe the story that Betty bit’ from the D-structure ‘Anita believes the story that Betty

bit who’ with the plain arrow showing the first, legal movement of ‘who’ and the dashed arrow

the second, illegal movement across two bounding nodes (NP and S2).

the limitations on stack depth, when a GB grammar is implemented in a deterministic

parsing system. Since we therefore reasonably can construe subjacency simply as a

constraint on processing (or performance cf. chapter 2), it can no longer be considered

to be an arbitrary linguistic phenomenon (as suggested by Pinker & Bloom, 1990), but

must instead be conceived as a nonarbitrary byproduct of limited human processing

abilities.

At this point it is furthermore illuminating to recall that the putative principles

of UG are not established, scientific facts (even though Piattelli-Palmarini, 1994, and

others would have us believe so). The GB framework underlying UG (as expounded by,

e.g., Chomsky, 1957, 1965, 1976, 1981, 1986; Crain, 1991) is merely one amongst many

linguistic theories—albeit perhaps the most dominant one. Many alternative theories

exist in the realm of linguistics, such as, for example, Categorial Grammar (Steedman,

1987), Cognitive Grammar (Langacker, 1987), Dependency Grammar (Hudson, 1990),

Lexical Functional Grammar (Kaplan & Bresnan, 1982), and Generalized Phrase Struc-

ture Grammar (GPSG: Gazdar, Klein, Pullum & Sag, 1985). Hence, it is possible to
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V

N V/ N

N V/ N

V/ N

N V/ N

V/ N

N / N

(gap)

V

bitBettybelieveAnitadoeswho

V

V

Figure 5.5. A syntactic tree derived via GPSG for the grammatical sentence ‘Who does Anita

believe Betty bit’ with the arrows showing how the gap (i.e., that a N is needed) is percolated

up the tree and discharged at the root.

adopt a number of different analyses of the linguistic data, some of which do not in-

volve transformations, and therefore explain the ungrammaticality of sentences, such

as (3), without reference to subjacency. For example, in GPSG (1) would result in

the syntactic tree displayed in Figure 5.5. The gap (that is, the missing N) is simply

percolated up the tree until it can can be discharged at the root. Notice that in GPSG

syntactic trees are basically a collection of local trees of depth one (the exact nature of

GPSG is irrelevant for the purpose of the present comparison with GB). A grammatical

principle, such as subjacency, applies to larger tree structures and can therefore not

be implemented directly in GPSG. Instead, we might explain the ungrammaticality of

(3) in terms of a local filter proposed by Horrocks (1987). Figure 5.6 depicts this local

filter which prohibits a gap from passing through V when the latter is the complement

of a lexical head noun. This filter will prevent the gap from being discharged in (3), as

can be seen from Figure 5.7., thus making (3) ungrammatical. Consequently, as also

pointed out by Harris (1991), Slobin (1991), and Wasow (1991), it might be the case

that many of the universal principles of UG are mere theoretical artifacts of a particu-

lar (Chomskyan) perspective on language. This, in turn, suggests that other linguistic

frameworks might lead to significantly different language universals. Nevertheless, what

has to be kept in mind concerning the present perspective is that linguistic facts, such

as, e.g., the unacceptability of (3) compared with acceptability of (1), may be explained
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N V/ X

N / X

Figure 5.6. A local grammaticality filter preventing gaps (the SLASH feature in GPSG

terminology) from passing through V when the latter is the complement of a lexical head noun

(Horrocks, 1987)

V

N V/ N

N V/ N

V/ N

N / N

V/ N

N / N

N

N V/ N

V/ N

N / N

V

V

det

[+ that]

comp
[+ that]

thatstorythebelieveAnitadoeswho (gap)

V

bitBetty

Figure 5.7. A syntactic tree derived via GPSG for the ungrammatical sentence ‘Who does

Anita believe the story that Betty bit’. The plain arrows illustrate the upwards percolation of

the gap to the point where it is stopped by the ungrammaticality filter of Figure 5.6 (the dashed

arrow), preventing the gap from being discharged.
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in terms of constraints arising from processing and learning independently of any par-

ticular linguistic framework. If one adopts the linguistic perspective of GB, subjacency

can be explained as a processing constraint (as we saw earlier). Even though no one

yet, to my knowledge, has tried to demonstrate this for GPSG based parsing, local

grammaticality filters, such as Figure 5.6, might plausibly follow from a GPSG parser,

given the right processing limitations restricting the upwards percolation of gaps.

In closing this section, we might ask whether language is an organ as suggested

by Chomsky (1965, 1980, 1986, 1988). I would say ‘no’. Rather, we should construe

language as an organism with its own evolutionary history (first suggested by Darwin,

1900). This will provide a better understanding of why language looks the way it does

today. Nonetheless, it might be objected that Pinker (1994) also invoked Darwin as

support for his notion of language as an instinct. Darwin characterized language as

a ‘wonderful engine’ of great importance to human evolution: “A great stride in the

development of the intellect will have followed, as soon as the half-art and half-instinct

of language came into use; for continued use of language will have reacted on the brain

and produced an inherited effect; and this again will have reacted on the improvement

of language” (1900: p. 634; my emphasis). Elsewhere, he emphasized that “it certainly

is not a true instinct, for every language has to be learned” (Darwin, 1900: p. 101). So,

as Pinker (1994: p. 20) also seems to acknowledge, Darwin suggested that evolution

endowed us with an instinct to learn language, rather than a language instinct per se.

Thus, I submit that it is most fruitful to construe language as a nonobligate symbiant

(and not as an organ nor as an instinct). Next, we shall see that this perspective helps

us understand how language—as an organism—might have evolved in close relationship

with the evolution of its human hosts.

5.2 The Origin of Language

As indicated in chapter 1, the origin of language has been a controversial topic for some

time—a topic that still incites much debate (e.g., Bloom, 1994; Corballis, 1992, 1994;

Greenfield, 1991; Hurford, 1991; Kiparsky, 1976; Lieberman, 1973, 1976; Piattelli-

Palmarini, 1989; Pinker, 1994; Pinker & Bloom, 1990). In this section, I outline a

picture concerning the origin and evolution of language. All research on this topic

will necessarily be somewhat speculative since language did not leave any fossils to

study. Nevertheless, I believe that my sketch receives credibility from being based on

theories and data from a variety of fields including historical linguistics, anthropology,

implicit learning theory, evolutionary theory (and artificial life simulations thereof),

speech perception and production, neuroscience, and connectionist modeling.
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Cognitive behavior—human and non-human—can conveniently be divided into two

basic kinds of processes: 1) processes dealing with sequential/temporal information in

the input11; and 2) processes dealing with the categorization and identification of input

(or parts of it). In organisms with stereoscopic vision, for example, visual processing

is divided into processes dealing with motion detection (that is, sequential changes in

the visual array) and processes dealing with object recognition (Bruce & Green, 1985).

Motion detection needs to be fast (so that, say, approaching predators can be detected

quickly) and therefore only deals with a very reduced part of the visual array. To

recognize objects, on the other hand, more detailed information is necessary, leading

to slightly slower processing following the heavier information load. Moreover, the two

kinds of processes are not completely isolated from each other. They, at least, interact

at some level, as when we move our head sideways (thereby varying the angle of the

visual input) in order to determine the depth of an object. At other times, we are not

able to even detect something (and therefore identify it) before it moves as in the case

of a well-camouflaged animal lying still. The distinction also has close analogues in,

e.g., the neuropsychological literature (Kolbe & Whishaw, 1990 ) with its distinction

between declarative and procedural types of memory corresponding, respectively, to

categorial and sequential processing.

The processes involved in vision are presumably to a large extent hardwired into

the brain in order to maximize processing speed at the cost of flexibility in primary

visual processing. This trade-off is possible given that the fundamental structure of

visual world (i.e., the existence of lines, edges, etc.) does not change dramatically over

phylogenetic time, but follow natural laws. In other parts of cognition, flexibility is of

the greatest importance. For example, when Homo erectus spread from Africa to much

of the Old World, it needed to be flexible enough to classify a vast range of new animals

in terms of categories, such as predator, food, etc. Today, we can also find this kind

of flexibility in many other parts of cognition, but here I will concentrate on language

and speech processing. Liberman & Mattingly (1989), for instance, have demonstrated

that the processes underlying the perception of consonants and vowels are distinct from

those processes that pinpoint the source of the sound and its auditory qualities. The

former processes rely on sequential properties of the input to uncover the appropriate

phonological information, whereas the latter categorizes parts of the input stream, in

terms of pitch, loudness and timbre, mostly independently of sequential information.

Importantly, they stress that the extraction of phonetic information from sequential

11Note that input can come either from the environment external to the organism via its sensory
apparatus, or from within the organism itself in terms of, for instance, intermediate processing results
or feedback from internal organs.
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input (i.e., the detection of changes in vocal tract resonances—formants—caused by

a speaker’s shifting configurations of articulators) has to be learned. So, although all

humans are born with the same set of phonetic units, covering the sounds found in

all human languages, infants rapidly (within 6 months) acquire a special sensitivity to

their native tongue (Kuhl, Williams, Lacerda, Stevens & Lindblom, 1992—more about

this later).

More generally, language processing involves the extraction of information occur-

ring in temporal sequences. If learning is involved in language acquisition (a point I will

return to, and argue for, at length below), it is most likely that the former will consist

in some kind of encoding of sequential structure. Since language acquisition further-

more occurs largely without much conscious effort, it seems reasonable to assume that

such learning is implicit in the sense of being “an inductive process whereby knowledge

of a complex environment is acquired and used largely independently of awareness of

either the process of acquisition or the nature of that which has been learned” (Reber,

1992: p. 33). As such, this process may yield abstract information about underlying

statistical regularities in the input. Notice, however, that simple co-occurrence may

not be sufficient to establish learning (although co-occurrence between stimuli might

be recorded in ways which cannot be detected in the behavior of the organism). In-

stead, it seems necessary that “organisms key on the covariations between events and,

hence, learn to take advantage of the cuing function that emerges when one event is

contingently associated with other events. So long as some stimuli in the environment

are arranged so that their occurrences cue the occurrences of other stimuli, they will

acquire statistical predictive power” (Reber, 1992: p. 45; my emphasis). It is my con-

tention that language learning may be construed in terms of such implicit processing—a

point also made by Reber (1992) and Durkin (1989). The simulations presented in the

previous two chapters appear to corroborate this view (which the work by Cleeremans,

1993, on connectionist models of sequence processing hints at too).

If the learning and processing of sequential information constitutes some of the most

basic elements of cognition—as I have suggested—then we might expect them to have

a long phylogenetic past. Indeed, this idea has been advanced recently by Reber (1990,

1992), suggesting that implicit learning processes are evolutionary ancient. Evidence

for this suggestion can be found in the fact that these kind of processes are found in

organisms from all over the animal kingdom. Sequential learning has been observed

not only in other primates (e.g., cf. results reported in Greenfield, 1991, on chim-

panzees solving hierarchical tasks involving deliberately sequenced behaviors), but also

in rats (demonstrating that they are able to encode the sequential structure following

successive trials in maze, Capaldi & Miller, 1988). Another indication of the purported
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primary status in cognitive behavior can be found in the robustness of sequence pro-

cessing in the face of disorders. For example, Abrams & Reber (1988) demonstrated

that a group of brain-damaged psychiatric patients performed significantly worse than

a group of college students on an explicit learning task (memorizing simple letter-to-

number rules), whereas both groups had the same level of performance on an artificial

grammar learning task. Finally, the obvious fact that children are able to rapidly and

effortlessly acquire a vast variety of (implicit) information (linguistic, cultural, social,

and otherwise) during their first years of living despite their shortcomings in explicit

learning tasks, such as conscious memorization, suggests that implicit learning is largely

age-independent (this is further supported by data listed in Reber, 1992). The bottom-

line, following these properties of the implicit learning of sequential information, seems

to be that such processes possibly evolved very early in phylogenetic history in order

to become so prevalent in human and animal cognition.

From the present viewpoint of language learning we might ask: if this kind of learn-

ing is so ubiquitous in nature, why is it the case that no other organism appears to

have developed a communication system comparable with human language in its com-

plexity? The answer is related to the larger, more intricate brain of humans compared

with all other animals:

with increasing neurological sophistication, organisms become capable of
detecting more and more tenuous covariations. Organisms as primitive as
Aplysia [a marine mollusk which responds to conditioning] require unam-
biguous and non-varying pairing of stimuli for learning; humans are capable
of the detection of much more subtle statistical covariations involving many
stimulus elements and environmental properties. Or, if one prefers other
terminology, humans are capable of learning ‘rules’. (Reber, 1992: p. 45;
my comment)

Now, Reber seems to suggest that the sequential learning mechanisms found in differ-

ent species are homologues; that is, they all date back to a vital adaptation in a very

early ancestor of all subsequent organisms capable of sequence processing. However,

it is, at least, conceivable that in some species this kind of processing ability arose

independently—as analogues—simply because these organisms were submitted to es-

sentially the same environmentally pressures, leading to the same solutions (but per-

haps implemented in different ways). It does not matter for the purpose of the present

argument whether the capacity for sequential learning is subserved by phylogenetically

homologue or analogue structures. What is important, however, is that selectional

pressures have forced the evolution of sequential learning mechanisms in a multitude

of different organisms. This will set the stage—in terms of learning mechanisms—for

my account of the origin and evolution of language.
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5.2.1 The Birth of Language

The first step towards language in humans might have been, as we shall see, a byproduct

of bipedalism12. When the hominids split from the apes somewhere between 4 and 8

million years before present, the defining characteristics of the first known hominid,

Australopithecus afarensis was bipedalism (although it probably often still used its

hands in locomotion). Notice that bipedalism not only minimized energy loss during

the hottest hours of the day (because less body surface is exposed to the sun when

walking upright), but it also freed the hands and arms from participation in locomotion.

This hominid later evolved into two distinct lineages known as robust and gracile. The

former lineage eventually became extinct, whereas it is believed that the latter evolved

into the Homo lineage about 2 million years before present. Homo habilis is the earliest

known Homo, appearing between 2.2 and 1.6 million years ago in Africa. Following

this hominid we find the larger H. erectus—which spread out of Africa to most of the

Old World—and appears to have evolved into archaic H. sapiens. Between 200,000

and 150,000 years ago, the anatomically modern form of humans, H. sapiens sapiens

emerged in Africa. These early humans migrated to the Old World about 100,000

before present, where they gradually replaced the hominids that had migrated earlier.

Some 35,000 years before present the last of the early migrants, the Neanderthals,

disappeared, leaving H. sapiens sapiens behind as the only living hominid.

But when did language evolve? It is likely that the evolution of language started

with (or, at least, did not ‘take off’ until) the emergence of the Homo lineage. Endocasts

of H. habilis seem to indicate the presence of brain structures homologous to purported

language areas in modern day human brains, such as Broca’s area. This is important

since it has recently been suggested that an area located within the left ventral frontal

region of the cortex subserves hierarchically organized sequential behavior. Greenfield

(1991) argues that “during the first two years of life a common neural substrate (roughly

Broca’s area) underlies the hierarchical organization of elements in the development

of speech as well as the capacity to combine objects manually, including tool use”

(p. 531). She presents experimental data from early language learning and from a

task involving the hierarchical nesting of cups to support her position. Summing up

the results from these experiments, she writes: “from about 9 to 20 months of age,

children pass through parallel and quite synchronous stages of hierarchical complexity

12The following paragraph briefly outlining the descent of humans from the apes is based largely on
Corballis (1992). Notice that these matters are the subject of some debate and should therefore not be
regarded as definitive. Still, any changes that the future might bring are not likely to be problematic for
my account of language origin, since the latter does not rely directly on these, admittedly, controversial
historical data.



CHAPTER 5. THE EVOLUTION AND ACQUISITION OF LANGUAGE 138

in forming spoken words and combining objects” (1991: p. 539).

This account receives further support from a reported study of adult aphasics; that

is, individuals with acquired language disorders following lesions in and often closely

around Broca’s area. A large number of such Broca’s aphasics suffer from agramma-

tism. Their speech lacks the hierarchical organization we associate with syntactic trees,

and instead appears to be a collection of single words or simple word combinations.

Interestingly, Grossman (1980) found that Broca’s aphasics, besides their noticeable

agrammatism, also had an additional deficit in reconstructing hierarchical tree struc-

ture models from memory. He took this as suggesting that Broca’s area subserves not

only syntactic speech production, but also functions as a locus for supramodal process-

ing of hierarchically structured behavior. It is, however, possible that the supramodal

deficit following lesions to Broca’s area might be a result of damage to two distinct

sets of cortical pathways, emanating in close proximity from this area of the brain.

Indeed, Greenfield (1991) has hypothesized (based on neurobiological and behavioral

data) that starting at the age of two a cortical differentiation of Broca’s area begins,

leading to distinct capacities for linguistic processing and more complex object combi-

nation. Whether this hypothesis is true is a matter of some debate (see the comments

to Greenfield, 1991, for instance, Jacobs, 1991), but it suffices for the present account

that Broca’s area appears to be “a multifunction organ adapted to the regulation of

sequential activity in several different domains” (Lieberman, 1991: p. 567).

Returning to H. habilis, and the first indication of the existence of Broca’s area

in hominids, we can plausibly endow this hominid with the prerequisites for some

kind of language, based on an ability to deal with sequential information13. Language

might therefore have originated with this hominid as a kind of systematic set of man-

ual gestures (hence the importance of the freeing of the hands following bipedalism

cf. Corballis, 1992). However, I contend that this kind of manual language is closer

related to presentday sign language than to the gestures we sometimes still use when

communicating. The reason for this is that the neurological seat of the production of

these early hominid gestures are likely to have been Broca’s area in the left hemisphere

of the brain (following the discussion above). Moreover, neurological studies of congen-

itally deaf people have shown that their production of sign language—as in the case of

speech in hearing people—can be located to Broca’s area, whereas gesturing generally

13At this point, it is worth noting that purported homologues to Broca’s area have been found in
macaque and squirrel monkeys, but that lesioning that area does not significantly impair the monkeys’
vocal utterances (cf. Hauser, 1991). Thus, even though these monkeys appear to have homologues to
Broca’s area they do not seem to use it for vocalization. As Pinker (1994) adds, this could also have
been the case for the early hominids, such as H. habilis . However, this point only effects the timing of
language’s first appearance, not the chronological order of its evolution.
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is located in the right hemisphere (Neville, 1993). I therefore propose that the function

of Broca’s area in this early period of hominid evolution was biased towards relatively

simple, sequential manual combination (perhaps only slightly more complex than the

sequential behavior observed in presentday chimps by, e.g., Matsuzawa, 1991).

As a means of communication, the early hominid manual language had some ob-

vious limitations. For communication to take place at all, the hominids would have

had to face each other; for example, making it difficult to communicate during the

locomotion of a hunt. Instruction in various manual tasks would also have been diffi-

cult. Consequently, it seems plausible to assume that over evolutionary time, besides

increasing in complexity, gestural language eventually became augmented with verbal

sounds. This was partly subserved by a significant increase in brain size (in fact, a

doubling of the brain size took place in the time between H. habilis and late specimens

of H. sapiens, cf. Corballis, 1992). However, the configuration of the vocal apparatus in

most of the Homo lineage might have constituted an obstacle for the further evolution

of language towards its present (predominately) vocal form.

A gradual change of the supralaryngeal vocal tract started some 250,000 years be-

fore present—eventually leading to the unique vocal tract of modern humans—with

the Broken Hill fossil skulls of H. sapiens sapiens dating from 150,000 years ago in-

dicating an intermediate form (Lieberman, 1973). During this period of change, the

larynx descended into the pharynx, creating an upside-down L-shaped tract in which

the tongue moved backwards in the oral cavity. This permitted modern humans to

generate a variety of vocal tract configurations, some of which produced a number of

new sounds, such as, vowels like [a], [i], and [u] as well as velar consonants like [g] and

[k]. The novel vowels, in particular, have been shown to be extremely valuable in verbal

communication since “a normal human speaker can produce the acoustic signals that

specify these sounds without being very precise as he maneuvers his tongue” (Lieber-

man, 1976: p. 668). As a result of the evolution of the supralaryngeal vocal tract,

H. sapiens sapiens was not only likely to have had a larger phonetic vocabulary than

previous hominids, but its vocal utterances also had a much higher degree of acoustic

stability, which, in turn, allowed more intelligible speech14. Together, these properties

of the modern human vocal tract may have paved the way for the transition from a

14H. sapiens neanderthalensis provides an interesting example of a Homo lineage who did not evolve
the modern human vocal tract. In fact, their vocal tract is very similar to that of presentday chim-
panzees (and of newborn human infants up to an age of about 6 months). Computer simulations re-
ported in Lieberman (1973) suggest that both Neanderthals and chimps would not be able to produce
the vowels [a], [i], and [u]. Nevertheless, the former presumably had some kind of vocal language—
albeit a language with phonetic deficits relative to that of H. sapiens sapiens—perhaps still combined
with extensive use of manual gestures.
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language system primarily relying on manual gestures to one predominately based on

vocal utterances15.

5.2.2 The Baldwin Effect Revisited

So far, I have argued that language may originate early in the Homo lineage, arguably

subserved by neurological structures (in the vicinity of Broca’s area) adapted to the

learning and processing of sequential information. As argued in the start of the present

section, these processes are likely to be evolutionary ancient, but have evolved to deal

with highly complex hierarchically organized input (such as, natural languages) through

human evolution. At this point, it might be possible to (more or less) accept the above

evolutionary scenario concerning the origin of language, but then argue that further

evolution has worked to make language innate as hypothesized by the theory of UG.

For example, although Pinker & Bloom (1990) acknowledge that some kind of learning

mechanism not specific to language may have been underlying the origin of language,

the (earlier mentioned) Baldwin effect (Baldwin, 1896) would gradually have caused

the language acquisition process to become entirely language specific.

To support this contention, Pinker & Bloom rely on a simulation reported by Hin-

ton & Nowlan (1987) and discussed in Maynard-Smith (1987). Recall that the idea

of the Baldwin effect is to allow phenotypical learning to influence the genotype (in a

nonLamarkian way) and thereby accelerate evolution. In their simulation of the Bald-

win effect, Hinton & Nowlan (1987) investigate the evolution of a very simple organism

consisting of a neural net with 20 possible connections. A 20 bit vector designates the

organism’s genotype in which each bit corresponds to a gene containing one of three

different alleles: 1, 0, or ? (the first, specifying the presence of a connection; the next,

the absence of one; and the last, an open/close switch to be set via learning). For the

organism to increase its adaptive fitness, all connections must be set correctly. Hence,

it is no more advantageous to have 19 correctly set connections than just 1. The geno-

types of the first 1,000 organisms, which made up the initial population, had on average

10 alleles specifying learnable switches (?) and 5 of each of the two remaining alleles for,

respectively, the presence (1) or absence (0) of connections. Each organism is allowed

1,000 learning trials (each a random setting of the switches) in its lifetime. When an

organism hits on a switch combination, which, together with the right settings of the

genetically specified connections, is identical with the unique adaptive configuration,

15Incidentally, Corballis (1992) has suggested that this ‘second freeing of the hands’ lead to the
explosion of cultural artifacts about 35,000 years ago. “That is, manufacture and language would no
longer be competing for the same medium, and both could then develop without mutual interference”
(p. 214).
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learning stops. Notice that only if the all genetically specified genes have the correct

alleles, is it possible for an organism to increase its fitness through a correct setting

of the switches. Procreation involves 1,000 (crossover) matings between two parents,

each selected according to their Darwinian fitness (which is determined as a probability

proportional to the number of learning trials (n) remaining after the right configuration

has been attained: 1 + 19n/1000). In this way, the sooner an organism reaches the

adaptive configuration, the more likely it is to be chosen as a parent (i.e., the better

reproductive fitness).

During the first 10 generations, selection did not seem to have much impact, but

this changed within the next 10 generations. After 20 generations, the incorrect alleles

have all but disappeared from the genotype, leaving all genetically specified alleles as

being correct. Hence, it can therefore be said that learning has guided the evolution of

this organism (just as the Baldwin effect suggests). Unfortunately, Hinton & Nowlan

make a too strong remark regarding the amount of genetic hardwiring obtained in the

simulation: “there is very little selective pressure in favor of genetically specifying the

last few potential connections, because a few learning trials is almost always sufficient

to learn the correct settings of just a few switches” (1987: p. 497; my emphasis). In

fact, the last ‘few’ connections that needs to be learned amount to about 45% of the

total number of alleles, whereas the remaining 55% of these are specified genetically (an

absolute difference of 2 alleles). It is clear that the approximately 25% incorrect alleles

that an organism starts out with, disappear; and that the number of correct alleles, on

the other hand, more than double from about 25% to 55%. It seems to be the case that

when an organism has a certain learning capacity, the latter might allow the former to

change maladapted parts of the genotype towards a better evolutionary fit, while still

maintaining much of the original learning ability. This point is corroborated by recent

simulations by French & Messinger (1994), showing that if the phenotypical plasticity

of a given trait is high (i.e., most individuals are able to acquire it), then it is less likely

to become innate (via the Baldwin effect).

Now, what the simulations by Hinton & Nowlan (1987) and French & Messinger

(1994) suggest is that when an organism brings powerful learning mechanisms to bear

on the acquisition of a particular task, the Baldwin effect might, perhaps, lead to some-

what more biased learning mechanisms, but not to the high degree of task specificity

associated with innately specified acquisition processes. From its origin, as we have seen

earlier, language has been subserved by sequential learning mechanisms of considerable

power, suggesting that the Baldwin effect might be an unlikely explanation of how the

purported UG became innate. An additional argument in support of this suggestion

can be found by looking closer at one of the assumptions underlying the Baldwin effect:
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“In a fixed environment, when the best thing to learn remains constant, this can lead to

the genetic determination of a character that, in earlier generations, had to be acquired

afresh each generation (Maynard-Smith, 1987: p. 761; my emphasis). But given the

present perspective on language as a nonobligate symbiant, whose rate of evolutionary

change is much higher than that of its hominid hosts, it is clear that ‘best thing to

learn’ does not remain constant. That is, the hominid learning mechanisms involved in

language learning are ‘chasing’ a continuously moving target. Of course, it is possible

to object that some properties of language will be stable across linguistic change, and

that these properties could eventually become innate via the Baldwin effect. However,

if the present account of language evolution is correct, then whatever stable (or uni-

versal) properties we might find, they are going to be—first and foremost—byproducts

of the learning and processing of language. As such, language has adapted to the id-

iosyncrasies of the hominid learning and processing mechanisms subserving language.

The subsequent universal properties have therefore been a ‘part’ of, or rather, artifacts

of the hominid genotype from the very beginning of language evolution. The upshot

seems to be that the Baldwin effect cannot do the job of producing the massive innate

language endowment assumed by UG (pace Pinker & Bloom, 1990), leaving much room

for genuine language learning in modern humans (a case for which I present additional

developmental arguments in section 5.3).16

5.2.3 Linguistic Change

Having provided an evolutionary account of the development of the ecological niche

within which language has evolved—its hominid hosts—we can now turn to the evolu-

tion of language itself as evidenced through linguistic change. In unison with Corballis

(1992), I contend that early vocal language started out in a very primitive form, perhaps

involving only a single vowel. The changes in the supralaryngeal vocal tract follow-

ing the emergence of H. sapiens sapiens some 150,000-200,000 years before present,

allowed the development of more sophisticated forms, with vowel differentiation and

better articulation of consonants. I propose that some very rudimentary syntax might

have been the next evolutionary step, permitting the description of actions involving

a subject and perhaps an object. This kind of early language presumably did not in-

volve a morphological system; rather, single and plural instances of a particular thing

16This leaves Pinker & Bloom (1990) and Pinker (1994) with a problem in their evolutionary expla-
nation of UG. Either they have to bite the bullet and admit that an innate, language specific system,
such as UG, could not have evolved through natural selection augmented by the Baldwin effect (and,
subsequently, that much learning still takes place in language acquisition); or, they would have to come
up with a different evolutionary story explaining how language eventually became innate.
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(or event) were simply referred to by different words (perhaps with some minor, but

unsystematic, phonological similarities).

Up until about 35,000 years before present, I hypothesize that the evolution of

language was quite slow, perhaps only involving the addition of relatively few vocab-

ulary items, but following the explosion of cultural artifacts from this point in human

evolutionary history, we would have seen a dramatic growth in the number of words

(referring to the multitude of new artifacts and other aspects of the rapidly evolv-

ing culture), and perhaps, a more complex syntax allowing for the expression of more

complex situations and events. The key to understanding the subsequent evolution

of language, I submit, is vocabulary growth within a system of limited learning and

processing capacity. To accommodate the spurt in vocabulary growth, language had

to develop morphological systems in order not to exceed the learning and processing

capacities of its human hosts17. At first, these early morphological systems would have

been quite complex, but later developments would have simplified them gradually, so

as to incorporate an ever growing vocabulary within the limits of human memory. It

is likely that syntax would have become more complex as the morphology became sim-

pler. Wang (1976), in a discussion of a study of relative clause formation in English

over the past 1,000 years, writes that “the simplification of morphology . . . although it

makes the language easier to learn, has the adverse effect of leaving too many sentences

unmarked at their clause boundaries. In order to reduce ambiguities for the listener,

relative clauses become better and better marked” (p. 65). This explains the appear-

ance of generally stronger restrictions on relative clause markers and the disappearance

of inflections first in nouns and, subsequently, in verbs18.

The proposed effects of human learning and processing constraints on linguistic

change is further substantiated by recent simulations by Hare & Elman (1994), investi-

gating the changes in English verb inflection over the last 1,100 years. The morpholog-

ical system of Old English (ca. 870) was quite complex involving at least 10 different

classes of verb inflection (with a minimum of six of these being ‘strong’). The simula-

tions involved several ‘generations’ of neural networks, each of which received as input

the output generated by a trained net from the previous generation. The first net was

17This development is somewhat similar to the shift from rote-learning to system building evidenced
in the acquisition of vocabulary items in early childhood and, importantly, also observed in a connec-
tionist model of this acquisition process (Plunkett & Marchman, 1993).

18Here it should be noted that—as pointed out by Kiparsky, 1976—there appears to be cases where
a language has changed towards a more complex morphology (presumably with no significant change
in syntax). Such changes often occurs in relatively isolated cultures where the influx of new words is
low and overall vocabulary growth may be rather slow. These cases therefore do not pose a problem
for my account, since it focuses on vocabulary growth, but also can allow for the possibility that lack
of vocabulary growth can lead to an increase in morphological complexity over time.
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trained on data representative of the verb classes from Old English. However, training

was stopped before learning had reached optimal performance. This is meant to reflect

a difficulty in learning the inflected forms to perfection. In the present framework, we

can construe this difficulty as a consequence of a vocabulary whose requirements, in

terms of memory processing, is close to the limits of its human hosts. The imperfect

output of the first net is used as input for a second generation net, for which training

is also halted before learning reaches asymptote. Output from the second net is then

given as input to a third net, and so on, until a total of seven generations has been

trained. This training regime leads to a gradual change in the morphological system

being learned; a change following imperfect learning of the inflection of verbs that either

have a low frequency of occurrence in the training set, or have little internal phonologi-

cal consistency (i.e., verbs placed far in phonological space from any prototype). Their

results show that “verbs which either belong to small classes, lack consistent defining

characteristics, or are low in frequency should change most rapidly; change in other

verbs will depend on the precise extent to which they possess the characteristics which

make them resistant to assimilation” (Hare & Elman, 1994: p. 31). The change taking

place in the verb inflection system being transferred between generations closely re-

sembles, in considerable detail, the historical change in English verb inflection leading

from the highly complex past tense system of Old English to the modern English incor-

porating one dominating class of ‘regular’ inflected verbs and a small set of ‘irregular’

verbs.

In this section, I have provided an account of the origin and evolution of language,

pointing to sequential learning processes as possible mechanisms for language learn-

ing and their possible underlying neurological substrate; presenting arguments against

language becoming innate via the Baldwin effect; and, briefly outlining a scenario

describing the emergence and subsequent linguistic evolution of vocal language (from

manual language). Notice that both the exaptationist (e.g., Chomsky, 1972, 1982, 1988,

1993; Piattelli-Palmarini, 1989) and the adaptationist (Pinker, 1994; Pinker & Bloom,

1990) UG positions (mentioned in the previous section) seem to be hard pressed when

it comes to explanations of language change, whereas the present account of language

evolution, as we have seen, lends itself easily to such explanations (perhaps, but not

necessarily, couched within a connectionists framework). For example, Pinker (1991)

has put forward a dual-route model of modern English noun/verb morphology, sug-

gesting that irregular forms are stored in a neural net-like fashion, whereas regular

inflection is produced via a rule component adding the prefix ‘-ed’. However, this kind

of model is faced with the problem of providing an account “for the qualitative shift

from a system with many verb classes of roughly equal status to one with a single
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rule and scattered exceptions, in order to explain how the current regular/irregular

system developed” (Hare & Elman, 1994: p. 34–35). The model furthermore suffers

from an ontogenetic version of this problem which has to do with the explanation of

how the rule component develops in early language acquisition. On the other hand,

Plunkett & Marchman (1993) have presented a connectionist account in which a single

mechanism explains the qualitative shift from rote-learning to system building in the

early acquisition of vocabulary items. On this developmental note, I will now turn

to the ontogenetic development of language as reflected by the above account of its

phylogenetic history.

5.3 Language Learning, Maturation, and Innateness

As should be clear, the account of the origin and evolution of language presented in

the previous sections favors a learning based view of language acquisition—a view-

point which is significantly different from present UG inspired perspectives. However,

it would seem that such an account would be impossible given the apparent poverty of

the stimulus (for instance, cf. Chomsky, 1986, 1993; Crain, 1991; Piattelli-Palmarini,

1989, 1994; Pinker, 1994; Pinker & Bloom, 1990). The primary linguistic input, which

is available to a child acquiring language, appear to be so noisy and provide such a

poor generalization basis that learning seems almost inconceivable. This leads to the

following language learning paradox: On the one hand, learning a language involves de-

riving a complex model of language structure, given noisy and partial input, apparently

without the benefit of usable feedback from others, making this an extraordinarily hard

task. Children, on the other hand, are capable of acquiring language rapidly and rou-

tinely at a time when their remaining cognitive abilities are quite limited. A possible

solution to this paradox, is to suggest that “in certain fundamental respects we do not

really learn language; rather, language grows in mind” where ‘learning’ is understood

as being processes of “association, induction, conditioning, hypothesis-formation and

confirmation, abstraction and generalization, and so on” (Chomsky, 1980: p. 134–135).

In this section, I will present an processing based account of language learning in which

a reappraisal of the poverty of the stimulus argument will pave the way for a solution

to the language learning paradox.

Based on evidence from studies of both first and second language learners, New-

port (1990) has proposed a “Less is More” hypothesis which suggests “paradoxically,

that the more limited abilities of children may provide an advantage for tasks (like

language learning) which involve componential analysis” (p. 24). Maturationally im-

posed limitations in perception and memory forces children to focus on certain parts
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of language, depending on their stage of development. Interestingly, it turns out that

these limitations make the learning task easier because they help the children acquire

the building blocks necessary for further language learning. In contrast, the superior

processing abilities of adults prevent them from picking up the building blocks directly;

rather, they have to be found using complex computations, making language learning

more difficult (hence, the notion of a crucial period in language learning, a point we

shall return to). This means that “because of age differences in perceptual and memo-

rial [sic] abilities, young children and adults exposed to similar linguistic environments

may nevertheless have very different internal data bases on which to perform linguistic

analysis” (Newport, 1990: p. 26).

In relation to morphology, Newport discusses whether a learner necessarily needs a

priori knowledge akin to UG in order to segment language into the right units corre-

sponding to morphemes. She finds that this is not the case; rather, segmentation may,

indeed, be possible “even without advance knowledge of the morphology, if the units

of perceptual segmentation are (at least sometimes) the morphemes which natural lan-

guage have developed” (1990: p. 25). More recently, Goldowsky & Newport (1993)

have corroborated this point via a computer simulation of the acquisition of a simple

artificial system of morphology. When comparing a system receiving unrestricted in-

put with a system equipped with a restrictive input filter—whose constraints on the

input was gradually loosened over time (to simulate maturation)—they found that the

former fails to learn an efficient representation of the data, whereas the latter is able

to acquire an optimal solution to the morphological mapping task. These simulation

results therefore lend further support to Newport’s (1990) less-is-more hypothesis.

The less-is-more hypothesis has a natural interpretation within the present frame-

work. As mentioned earlier, language—being a nonobligate symbiant—confers selective

advantage onto its hominid hosts through its function as a means of communication.

To reap the full advantage of language, it is important for the hominids to acquire lan-

guage as early as possible in their life time (so as to have the increased fitness for the

longest time possible). This means that for language to be the most useful to its hosts

it must adapt itself in such a way that it is learnable by children despite their limited

memory and perception capacities. Importantly, this imposes strong constraints on

what language can look like, since languages that are not learnable by children will

disappear. That is, languages have evolved to be learnable primarily by children which

explains why acquiring a language as an adult can be quite difficult. The critical period

can therefore be viewed as a spandrel with no particular adaptive properties, emerging

as a by-product of language adapting to the learning and processing capacities of infant

hominids.
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5.3.1 The Critical Period

Hurford (1991) also finds the critical period to be a spandrel; albeit, he arrives at this

conclusion coming from a significantly different direction. In a computer simulation

of some complexity, Hurford demonstrated that natural selection in a period of 1,000

generations would push a population of individuals from having no knowledge of lan-

guage at all to one with an ability for the acquisition language early in life. Notice that

in this framework, the critical period implies the ability to acquire language ceases

to be an advantage at later life stages. Hurford suggests that “thinking at the end

of the critical period as ‘switching off’, like the deliberate switching off of a light, is

less appropriate than thinking of it as a point where the ‘energy’ in the system, the

selection pressure in favor of positive alleles, is dissipated, and the ‘light’ goes out for

lack of pressure to keep it ‘on’ ” (1991: p. 193). However, it is worth noting that each

gene in the simulation can have either an allele which inhibits language acquisition, or

one which facilitates it. Regarding the former, Hurford argues that the inhibitive genes

serves as a kind of trade-off cost, simulating that adaptation for a particular trait might

inhibit other traits, such as, for example, when a sea turtle’s adaptation for swimming

inhibits its locomotion on land. It is clear that some trade-offs have been made in the

evolution of language. This appears to be the case with the earlier mentioned change

of the supralaryngeal vocal tract which, in its modern adult form, significantly inhibits

respiration, decreases our sense of smell, and increases the possibility of choking on

food (Lieberman, 1973, 1991). Nevertheless, I question Hurford’s particular implemen-

tation of this evolutionary principle insofar as this is arguably the dominating factor

leading to the apparent evolutionary disadvantage of language acquisition in later life

stages. It is not clear that the language acquisition ‘light would go out’ if trade-off was

implemented in a different (perhaps more realistic) fashion.

More recently, Pinker (1994) has picked up on Hurford’s simulation results, suggest-

ing to conceive maturational changes in terms of “a machine shop in a thrifty theater

company to which props and sets and materials periodically returns to be dismantled

and reassembled for the next production” (p. 294). Consequently, this picture suggests

that once language has been acquired the language acquisition machinery should be

sent back to the machine shop for recycling (since the maintenance of neural tissue is

very resource demanding). Although as an evolutionary point this is perhaps conceiv-

able, the theater machine shop metaphor does not make much sense in terms of brain

maturation. What would the recycling of large areas of neural tissue amount to in the

development of the brain? Granted the brain has a high degree of plasticity (see, e.g.,
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Ramachandran, 1993; Recanzone & Merzenich, 1993), but it is unlikely that it is ca-

pable of the kind of restructuring required by the Pinker’s scenario. Furthermore, the

metaphor relies, I think mistakenly, on the existence of a language acquisition device

functionally separate from whatever machinery is involved in the processing of lan-

guage. Such functional separation of the learning and processing of language might be

a historical left-over from Chomsky’s (1965) idealization of instantaneous acquisition of

language, suggesting that the adult language competence can be studied independently

of how it it is acquired. In any event, if this separation is valid, we would expect to

be able to obtain evidence indicating some kind of dissociation between the ability to

acquire and process language; and, to my knowledge, no such data have been reported.

Connectionist models, on the other hand, do (as pointed out in chapter 2) not re-

quire a separation of learning and processing. Indeed, they seem to suggest that both

must be subserved by the same underlying mechanisms. Now, it is clear that New-

port’s (1990; Goldowsky & Newport, 1993) research only addresses the acquisition of

morphology, but it is clear that on my present account the same kind of explanations

would also apply to the acquisition of syntax. Indeed, my view implies that the most—

if not all—of the purported universal syntactic principles of UG may not need to be

postulated as chunks of innate domain-specific knowledge, but are instead proposed to

be mere artifacts of a learning mechanism undergoing maturational development. Such

maturational changes are, of course, still innately specified, but, importantly, in a pre-

dominately domain-general fashion. Evidence that maturational limitations on memory

might facilitate the acquisition of syntax can be found in the simulations presented in

chapter 4, extending earlier work by Elman (1991b, 1993). Recall that these simula-

tions showed that when a network was undergoing (simulated) maturational changes

(in the form of a gradually loosening constraint on memory, as originally proposed by

Elman), it was possible for it to learn to respond appropriately to sentences derived

from a small phrase structure grammar of considerable linguistic complexity. However,

without this maturational constraint the nets would fail to learn the task (displaying

a behavior which might be somewhat comparable with that of late learners). These

simulation results support the idea that maturational constraints (of some sorts) on

a learning mechanism may allow it to acquire relatively complex linguistic structure

without presupposing the existence of innate language specific knowledge19. I find that

19. Still, it might be objected that these connectionist simulations only deal with small artificially
generated corpora and will therefore not be able to scale up to noisy real world data. This might be
true, but recent research in statistical language learning suggests otherwise. The earlier mentioned
results obtained by Finch & Chater (1993) demonstrated that simple statistics—similar to what the
above networks are sensitive to—can filter out noise and induce lexical categories and constituent
phrases from a 40 million word corpus extracted from INTERNET newsgroups.
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such a maturationally constrained learning mechanism may provide a partial solution

to the language learning paradox, but the question still remains of how to overcome

the apparent poverty of stimulus.

5.3.2 The Poverty of the Stimulus Reconsidered

The roots of the poverty of stimulus argument goes back about thirty years to Chomsky

(1965), but has been elaborated considerably since (e.g., amongst others, by Chomsky,

1986). This argument against language learning, in fact, consists of a several inter-

related sub-arguments:

• Arbitrary universals: A number of the universal linguistic principles that children

appear to acquire are essentially arbitrary and have no direct reflection in the

input. For example, a child knows that the earlier mentioned sentence ‘Who

does Anita believe the story that Betty bit’ is ungrammatical without ever having

received information that this is so.

• Noisy input: The linguistic information available to a child is considerably noisy,

consisting of both grammatical and ungrammatical sentences, but with no addi-

tional information about which is which.

• Infinite generalization: Children receiving significantly different sets of input are

nontheless capable of converging on the same underlying grammatical regularities

(if you wish, grammar), serving as the finite basis from which an infinite number

of utterances can be produced.

• Early emergence: Children are capable of applying a number of complex linguistic

principles so early in their language development that it seems unlikely that

sufficient time have elapsed for learning to be feasible.

• Inadequacy of learning methods: The (empiricist) general-domain learning meth-

ods available in the explanation of language learning do not appear to be adequate

for the purpose of language acquisition.

Together, these sub-arguments militate—decisively, according to many researchers (e.g.,

Chomsky, 1986, 1993; Crain, 1991; Piattelli-Palmarini, 1989; 1994; Pinker, 1994)—

against learning based approaches to language acquisition, favoring a UG perspective

comprising a substantial innate database of linguistic principles and only little, lan-

guage specific learning. Nevertheless, as will become evident below, each of these sub-

arguments become less convincing vis-a-vis the present account of language evolution

and development.
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The purported arbitrariness of universal linguistic principles is an intrinsic part

of UG approaches to language (e.g., Crain, 1991; Piattelli-Palmarini, 1989; Pinker

& Bloom, 1990). However, if we adopt the perspective on language as a nonobligate

symbiant (as suggested in section 5.1) and the subsequent evolutionary picture (outlined

in the previous section), then it is not necessary for the child to learn the universal

principles. Rather, they come for ‘free’ given that they are natural side-effects of

sequential processing and learning in a system with certain memorial and perceptual

limitations (recall the earlier mentioned processing based explanation of the paradigm

case of an arbitrary linguistic principle: subjacency). Notice that on this account

the universal principles are not language specific chunks of knowledge which have been

stored innately (via the Baldwin effect), but by-products of the processing and learning

of language by mechanisms evolved for the more general task of dealing with sequential

structure in the environment. In other words, the apparent fact that the universal

linguistic principles appear to be essentially arbitrary, and, furthermore, cannot reliably

be induced from the primary linguistic input, does not warrant a dismissal of learning

based approaches to language acquisition, if these universals, as I have suggested, can

be shown to be mere by-products of learning and processing in a system with certain

resource limitations.

It is often noted that the primary linguistic data available to a child is inconsis-

tent and full of noise. This is clearly a problem for many classical models of language

learning, such as, for example, the parser proposed by Berwick & Weinberg, 1984. In

this model, language learning proceeds by attempting to parse input sentences; when

parsing fails a new rule is added to the grammar so that parsing can continue. It is not

hard to imagine the catastrophical consequences following the presentation of incon-

sistent input (such as, the ungrammatical sentence ‘Who does Anita believe the story

that Betty bit’). The model would add rules which would lead to ungrammatical sen-

tences. Interestingly, connectionists models do not typically suffer from this problem.

Indeed, as pointed out by Seidenberg (1994) “it is demonstrably true that networks can

learn to solve problems in the face of inconsistent training . . . analysis of these learning

systems suggests that at least some inconsistencies in feedback or network behavior

might actually facilitate finding the solution to a problem” (p. 392). Even though it is

presently uncertain whether such models can solve the problem of language acquisition

under conditions corresponding those facing a child, it is clear that the existence of

noise in the primary linguistic input cannot be used as an a priori argument against

connectionist models of language learning.
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The problem of infinite generalization given finite input has received considerable

attention in the language learning literature (e.g., Elman, 1993; Gold, 1967; MacWhin-

ney, 1992; Pinker, 1984, 1989), and is related to the previous problem of noisy input

data. In a now classic paper, Gold (1967) proved that not even regular languages can be

learned in finite time from a finite set of positive examples (i.e., grammatical sentences).

This proof combined with the lack of observed negative input found in the primary lin-

guistic data (that is, ungrammatical sentences do not come labeled as such, neither

do adults reliably correct a child’s ungrammatical utterances) leads to a predicament

regarding human language learning. Gold therefore suggested that his finding must

lead to at least one of the following three suppositions. Firstly, it is suggested that the

learning mechanism is equipped with information allowing it to constrain the search

space dramatically. In other words, innate knowledge will impose strong restrictions on

exactly what kind of grammars generate the proper projections from the input to (only)

human languages. This is the approach which goes under the name of UG. Secondly,

Gold proposes that children might receive negative input that we are simply not aware

of. This would allow the correct projection to only human languages. However, see

Pinker (1989) for an extensive discussion and subsequent dismissal of such a proposal

(though the prediction task, as applied in the simulations reported in chapter 3 and 4,

might be construed as a kind of weak negative feedback). Thirdly, it could be the case

that there are a priori restrictions on the way the training sequences are put together.

For instance, the statistical distribution of words and sentence structures in particular

language could convey information about which sentences are acceptable and which are

not (as suggested by, for instance, Finch & Chater, 1993). Regarding such an approach,

Gold notes that distributional models are not suitable for this purpose because they

lack sensitivity to the order of the training sequences.

So, it seems that prima facie UG is the only way to get a language acquisition off

the ground—even though learning has to take second place to innate domain-specific

knowledge. Nevertheless, given our earlier discussions it should be clear that this

conclusion is far from inevitable. The way out of Gold’s predicament without buying

into UG can best be fleshed out by taking a closer look at the two basic assumptions

which the proof is based on:

Given any language of the class and given any allowable training sequence
for this language, the language will be identified in the limit [i.e, it is learn-
able in finite time from a finite set of examples].” (Gold, 1967: p. 449; my
emphasis and comment).

First of all, Gold is considering all possible permutations from a finite alphabet

(of words) into possible languages constrained by a certain language formalism (e.g.,
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context-free or finite-state formalisms). Thus, he stresses that ”identifiability (learn-

ability) is a property of classes of languages, not of individual languages.” (Gold, 1967:

p.450). This imposes a rather stringent restriction on candidate learning mechanisms,

since they would have to able to learn the whole class of languages that can be derived

from the combination of an initial vocabulary and a given language formalism. Con-

sidering the above discussion of language as a nonobligate symbiant, this seems like

an unnecessarily strong requirement to impose on a candidate for the human language

learning mechanism. In particular, the set of human languages is much smaller than

the class of possible languages that can be derived given a certain language formalism.

So, all we need to require from a candidate learning mechanism is that it can learn all

(and only) human languages, not the whole class of possible languages derivable given

a certain language formalism.

Secondly, Gold’s proof presupposes that the finite set of examples from which the

grammatical knowledge is to be induced can be composed in an arbitrary way. How-

ever, if the learning mechanism is not fixed but is undergoing significant changes in

terms of what kind of data it will be sensitive to (as discussed above), then we have

a completely different scenario. Specifically, even though the order of the environmen-

tally presented input that a learning mechanism is exposed to might be arbitrary, the

composition of the effective training set is not. That is, maturational constraints on the

learning mechanism will essentially reconfigure the input in such a way that the train-

ing sequence always will end up having the same effective configuration (and this is,

in effect, comparable with Gold’s third suggestion). Importantly, this is done without

imposing any restrictions on the publically available language, i.e., the language that

the child is exposed to. This point is further corroborated by simulations presented

in chapter 4. There it was found that a network trained while undergoing matura-

tional changes was capable of dealing with sentences derived from a context-free phrase

structure grammar; and was furthermore able to produce (strong) generalizations.

Having thus ‘disarmed’ the apparent predicament following Gold’s learnability proof,

we now turn to the fourth sub-argument: the early emergence of linguistic competence.

Crain (1991) presents results from a number of psycholinguistic experiments involv-

ing children aged between 2 and 5 years, suggesting that they are capable of obeying

various complex linguistic constraints at early stages in their language acquisition. He

adds that “there has been a steady increase in recent years in the number of empirical

demonstrations of children’s mastery of syntactic facts for which they have little, if

any, corresponding experience” (p. 611). This is then taken as evidence for a scenario

in which children are guided through language acquisition predominately by innate,

language specific knowledge largely encoded as universal constraints. Nonetheless, the
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present learning and processing based account of language acquisition is fully compati-

ble with the same data. In particular, this approach would predict that some universals

would be observable quite early in life because they emerge as side-effects of learning

and processing; but it also promises to provide a chronological explanation of the dif-

ferences in the time of onset between the various universals. A closer understanding of

how maturational changes affect learning and processing capabilities is hypothesized

to provide the basis for such an explanation.

Piattelli-Palmarini (1989) has in a similar fashion contended the existence of an

innate UG: “The newborn (and even prematurely born) infant displays a highly so-

phisticated array of specific linguistic filters allowing for instant discrimination between

linguistic and non-linguistic sounds” (p. 27). A closer look at the evidence concerning

infant auditory perception, however, suggests that such linguistic filters are learned,

not innate. Cross-language experiments investigating infant auditory perception have

demonstrated that 6-month-old infants in the United States and Sweden display ‘per-

ceptual magnet effects’ specific to their native language: “Linguistic experience shrinks

the perceptual distance around a native-language prototype, in relation to a nonpro-

totype, causing the prototype to perceptually assimilate similar sounds” (Kuhl et al.,

1992: p. 608). This magnet effect facilitates speech processing by permitting less

salient instances of a phonetic category (characteristic of one’s native language) to be

perceived as a clear instance of that particular category, thus making speech percep-

tion more robust (i.e., less prone to phonetic misclassification). Earlier experiments

have shown that nonhuman animals (e.g., Rhesus monkeys) do not seem to acquire

perceptual magnets (Kuhl, 1991). Nevertheless, both nonhuman animals (e.g., chin-

chillas and macaques) and human infants have been found to start out with the same

innate ability to make a number of phonetic differentiations in auditory perception

(Kuhl, 1987). These differences appear to correspond exactly to the collection of pho-

netic units needed to perceive all the world’s different languages. Given the present

perspective on language evolution, this is not surprising: language must necessarily

keep itself within the boundaries of its ecological niche, part of which is made up by

the basic auditory perceptional capacities of hominids (and other animals). Thus, “in-

fants’ ability to hear the differences between phonetic units is innate and attributable

to general auditory processing mechanisms. Perceptual boundaries are not argued to

be due to special processing mechanisms that evolved for language in human beings”

(Kuhl, 1993: p. 48). That learning is fundamental in speech perception is further sup-

ported by experiments showing that 4-day-old infants are able to distinguish utterances

from their own native language from those of other languages—even when the speech

samples were passed through a (400 Hz) low-pass filter (Mehler, Jusczyk, Lambertz,
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Halsted, Bertoncini & Amiel-Tison, 1988). Pace Piattelli-Palmarini (1989: p. 28; note

19), this indicates that learning already starts in the womb (despite distortions brought

about by the amniotic fluid), allowing the infant to become sensitive to the prosody of

his or her native language.

Finally, we can turn to the last sub-argument concerning the general inadequacy

of (empiricist) learning. A version of this argument has been presented by Ramsey &

Stich (1991) as the ‘competent scientist gambit’. The idea of this thought experiment

is to replace the language learning mechanism(s) with the best empiricist scientist

around. Her task is to come up with the specific grammar underlying a collection of

utterances, making up the primary linguistic input from a language unknown to her.

She is allowed to use any empiricist technique available, but she is not permitted to

learn the language herself since that would allow her to use (her own) grammaticality

judgements to determine the grammar (information that is not available to a child

acquiring his or her first language). It should be apparent that specified in this way,

the task is certainly nontrivial, if not impossible. Given the data available there seems

to be no guarantee that she will end up with the right grammar (since there is no way

of proving that the final grammar will not overgeneralize). Ramsey & Stich show in a

number of refinements of this thought experiment that it appears to be necessary to

equip the scientist with information akin to an innate UG before we have a reliable

procedure for grammar ‘learning’. Arguments of this sort are therefore taken to show

that empiricist language learning is impossible even in principle.

I think this argument is misguided for, at least, three reasons. First, there seems

to be no reason to expect that whatever structure language might take in our heads

(so-to-speak) should be readily available to us by means of introspection. That is,

our language acquisition machinery cannot be likened to a homunculus (even if it has

the qualities of a competent scientist). Instead, if the present account is right, it is

going to be a statistically based learning device20. This leads to a second caveat con-

cerning the kind of learning devices the scientist may employ. For example, as argued

above, a maturationally constrained learning process might prevent overgeneralization

by ‘reordering’ its effective input. Of course, one could object that Chomsky (1956)

demonstrated that statistical approaches to language acquisition are inadequate. Here

it is, as Elman (1993) stresses, “important to distinguish between the use of statis-

tics as the driving force for learning, and statistics as the outcome of learning”(p. 87).

Chomsky’s proofs was only concerned the latter form of learning, whereas connectionist

20Indeed, the experimental results presented in Juliano & Tanenhaus (1993) point in this direction
(see also Seidenberg, 1994, for a similar view).
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models typically rely the former. The final lacuna in the competent scientist gambit

is the assumption that empiricist oriented learning cannot involve significant, but nev-

ertheless non-language specific, innate constraints (or biases) on the learning process.

The present account of language learning and evolution challenges that assumption

without becoming yet another version of UG. The bottom-line is that the competent

scientist gambit intuition pump appear to run out of steam when faced with a statis-

tically oriented language learning account constrained by processing and maturational

considerations.

5.3.3 The Objection from Creolization

In the remaining part of this chapter, I will briefly address a couple of possible ob-

jections that prima facie appear to be rather damaging to a learning based account.

The first of these is the creolization of pidgin languages (and other languages with a

similarly inconsistent structure). Originally, creolization was the name of a process in

which children made a pidgin language their own native tongue, creating a creole. A

pidgin is a language which lacks any significant grammatical structure and in which

communicative understanding therefore must rely mostly on constraints provided by

lexical semantics, and perhaps intonation. A creole, on the other hand, displays a

clear—albeit, from the standpoint of established languages, not perfect—grammatical

structure. Bickerton (1984) reports a case of creolization in a single generation. At the

end of the last century, workers from a variety of countries were brought together on

Hawaiian sugar plantations. The need for communication soon led to the development

of a pidgin. Many of the plantation workers’ children spent most of their time in sepa-

ration from their parents, overseen by a worker speaking pidgin. These children ended

up inventing Hawaiian Creole. Another example of (what may be) creolization was re-

ported by Singleton & Newport (1993) in a study of a 7 year old congenitally deaf boy.

Simon was born to deaf parents who started to learn American Sign Language (ASL)

at about 15 years of age. Simon’s only source of input was the ‘approximated ASL’ of

his late-learner parents. In tests comparing Simon’s performance on ASL morphology

with that of his parents, it was clear that his performance surpassed theirs. Moreover,

Simon’s performance was shown to be equal to that of children whose parents were

native speakers of ASL, despite receiving a more inconsistent set of linguistic input.

Simon was thus able to become a native speaker of ASL, something his parents never

achieved.

Pinker (1994) and Bickerton (1984) take such creolization as strong evidence for an

innate UG, permitting (or rather, forcing) children to impose structure on inconsistent



CHAPTER 5. THE EVOLUTION AND ACQUISITION OF LANGUAGE 156

input, as in Simon’s case, or on almost structure-less input, in the case of the children

on the Hawiian plantations. It is clear that the kind of ‘classical’ learning devices that

are presupposed in the competent scientist gambit will not be able to do the trick.

But does creolization therefore make language learning impossible? Some reason for

optimism can be found in Singleton & Newport’s (1993) suggestion that “many kinds

of devices, not necessarily restricted to language learning, will work like this: sharpen-

ing consistent mappings, and ignoring or losing inconsistent ones” (p. 49). One could

further hypothesize that if language acquisition is subserved by maturationally con-

strained learning mechanisms, acquiring sequentially organized hierarchical structure,

then such a process might itself impose structure where none is in the input, or where

the structure is plagued by inconsistency. Although this account is, admittedly, some-

what speculative, it does, at least, rule out the possibility of any in principle arguments

based on creolization against language learning (while pointing towards a possible sim-

ulation experiment which will be described in the section on future directions in the

final chapter).

5.3.4 The ‘Morphology Gene’ Objection

A second, possibly deleterious objection to the present account of language acquisition

(and evolution) could, perhaps, be based on Gopnik’s (1990a, 1990b) and Gopnik &

Crago’s (1991) work on individuals with ‘Specific Language Impairment’ (SLI)—also

called ‘dysphasics’—from a three-generation family. Her studies suggest that these

subjects suffer from a selective impairment of their morphological system, while other

parts of their language ability is left intact. The cause for this selective deficit is

hypothesized to be an abnormality in a dominant gene associated with the learning

of abstract morphology. This, in turn, implies the postulation of a separate grammar

component for the learning (and processing) of morphology along the lines suggested

in Pinker (1984). Some (e.g., notably Pinker 1991, 1994; Pinker & Bloom, 1990) take

Gopnik’s results to possibly confirm the existence of an innate UG. Indeed, if the above

hypothesis is true, language learning (as suggested above) would only be able to play

a minor role in the explanation of language acquisition.

But, other explanations of the impairment data are possible. First, there is con-

siderable controversy concerning the interpretation of Gopnik’s data and the proposed

extent of the deficit. Vargha-Khadem & Passingham (1991), who also are studying the

same family, stress that the impaired individuals in addition to their problems with

morphology, suffer from a severe developmental speech disorder, as well as having prob-

lems with both phonological repetition and aspects of lexical processing. Apart from
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the problems with morphology, “the affected members show deficits in understanding

many other types of syntactical structure, such as the reversible passive, postmodified

subject, relative clause and embedded forms” (p. 226). Moreover, a closer reflection on

the data presented in Gopnik & Crago (1991) points to an alternative, processing based

reason for the deficit. Gopnik notes that dysphasics generally appear to learn inflected

words as whole, unanalyzed lexical items, as if the latter had no internal morphological

structure. In addition, they are very late in developing language. Recall that the late

language learners of both second and first language (Newport, 1990) also appear to

learn words as unanalyzed wholes. So, the late onset of learning (for whatever reason)

might put these individuals in a similar position to normal late learners, preventing

them from ever acquiring a ‘native’ language ability. Of course, other factors, such as,

abnormal constraints on memory and processing, are likely to play a part, too. Recent

results obtained by Blackwell & Bates (1993) complement this picture. They were able

to induce an agrammatic profile of morphological errors in normal adults simply by in-

creasing the subjects’ processing load via a secondary task. The results “suggest that

this selective profile does not necessarily indicate the existence of a distinct sub-system

specialized for the implicated aspects of syntax, but rather may be due to the vulner-

ability of these forms in the face of global resource diminution” (p. 2). Hence, it seems

that a processing based explanation of Gopnik’s results (also hinted at by Fletcher,

1990) is possible, which, in turn, takes the sting out of this second objection21.

Having thus presented my account of language evolution and development, I have,

as it turns out, to a certain degree followed a recipe put forward by Tooby & Cosmides

(1990): “If one proposes that the ability to acquire a human language is a spandrel

of general purpose learning mechanisms, one must state exactly what those general

purpose mechanisms are, show that they exist, demonstrate that they are adaptations,

and then demonstrate that these general purpose mechanisms can, in fact, allow one

to learn language (through, for example, a learnability analysis . . . )” (p. 762). Ad-

mittedly, the theory outlined in this chapter does not fully meet this challenge. In

particular, I have not stated exactly what the general learning mechanisms might be.

Rather, I have presented a program for how the challenge might be addressed, propos-

ing to construe language as a nonobligate symbiant evolved through natural selection.

21Of course, data concerning other kinds of developmental language impairments (such as, the cases
of ‘linguistic savants’, Smith & Tsimpli, 1991) may serve as the basis for a similar kind of objections.
However, space does not allow me to address such possible objections here. I submit my response above
to Gopnik’s results as a possible template for future rebuttals of such objections.
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As such, language may be a spandrel from a hominid perspective, whereas the under-

lying learning mechanisms are not. The latter are likely to have evolved to permit the

extraction of complex sequential information from the environment. The mechanisms

subserving language acquisition may therefore not be language-specific, but neither are

they totally domain-general either. The present theory thus seems to be incompat-

ible with the four other positions presented in Figure 5.1, perhaps positioning itself

somewhere in between them. Of course, there are many details not yet accounted for

(as with any other theory). Whether the presented framework will be able to stand

the test of time, only future research can tell. The concluding chapter will therefore

present some suggestions for future work. Nonetheless, I hope to have shown here that

a learning and processing based theory of language is, at least, possible.



Chapter 6

Conclusion

To many, the theory of an innate UG provides the only viable explanation of the acqui-

sition of language in the face of the purported poverty of the stimulus (e.g., Chomsky,

1980, 1986; Crain, 1991; Piattelli-Palmarini, 1989, 1994; Pinker, 1994). Indeed, UG

is often characterized as the ‘only game in town’. The idealization of this substantial

endowment of language-specific knowledge as the basis of an infinite linguistic com-

petence, to be contrasted with the empirical shortcomings in language performance,

has further supported a nativist position. Together, the argument from the poverty

of stimulus and the competence/performance distinction have proved to be a major

stumbling block for learning and processing based approaches to language. Indeed, it

would appear that

the child’s language ‘grows in the mind’ as the visual system develops the
capacity for binocular vision, or as the child undergoes puberty at a certain
stage of maturation. Language acquisition is something that happens to a
child placed in a certain environment, not something that the child does.
(Chomsky, 1993: p. 29).

In this thesis, I challenge the nativist view of the acquisition and processing of

language. Language acquisition involves more than the gradual unfolding of a genetic

blue-print given minimal environmental stimuli—it involves learning (in a non-trivial

sense of the latter). I have shown that linguistic competence need not be separated

from observable language performance within a connectionist framework and that the

primary linguistic stimuli might not be as poor as it first appears. In short, UG is no

longer the only game in town. Connectionism has paved the way for an alternative

view which eschews the domain-specific nativism of UG, while leaving the door open

for innate constraints that are not specific to language.

159
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Chapter 2 showed that the competence/performance distinction is an artifact of

construing linguistic grammars as sets of recursive rules. Given the infinite nature of

such recursive grammars, a separation is necessary between the latter as an idealized

competence and a limited performance in order to account for observable language

behavior. Moreover, we saw that the existence of very limited non-iterative recur-

sion does not warrant this distinction. I therefore suggested that the distinction be

abandoned for methodological as well as empirical reasons. However, this requires

an alternative means of representing the grammatical regularities subserving our lan-

guage since couching the latter in terms of (recursive) rules is what created the need

for the distinction in the first place. It was my contention that we might find such a

representational vehicle within connectionism. The simulations reported in chapters 3

and 4 support this assertion, demonstrating that recurrent neural networks are able to

capture a limited amount of non-iterative recursion. The graceful degradation of net-

work performance appears to follow human behavior on similar non-iterative recursive

structures. In addition, these networks also appear to be capable of the kind of strong

generalization we would expect from models of human language learning.

Having shown that connectionist models seem to have sufficient computational

power to serve as models of human language behavior, the question still remains of

how to overcome the apparent poverty of the stimulus in its many guises. It is clear

that the linguistic information available to a child involves both grammatical and un-

grammatical utterances. Although this kind of noisy input generally is a problem for

classical models of language learning (e.g., Berwick & Weinberg, 1984)—as pointed

out in chapter 5—most neural networks models learn the best when faced with such

inconsistent input. Another problem addresses the issue of infinite generalization given

only finite (positive) input. This problem is solvable, I submit, by connectionist (or

other) models incorporating maturational changes (as in the simulations in chapter

4) implemented as decreasing constraints on processing/memory. In this way, early

learning may facilitate the acquisition of simple structures which, in turn, can scaffold

the subsequent learning of more complex structures. A third problem is the purported

inadequacy of empirical learning methods as presented in thought experiments such

as ‘the competent scientist gambit’ (Ramsey & Stich, 1991). This kind of criticism

seems targeted at traditional models of learning using induction, hypothesis generation

and testing, and so on. However, when it comes to learning driven by subtle statis-

tical contingencies as found in connectionist models, our intuitions fall short, and are

even further confused by the incorporation of changing maturational constraints in the

learning process. Finally, children very early in their language development appear to
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master a number of linguistic principles that are essentially arbitrary and have no di-

rect reflection in the input. It is likely that these particular universals are not learned.

Instead, I argue that they are by-products of the learning and processing of language

in human infants. As such, the universals are not innately specified chunks of linguis-

tic knowledge, but side-effects of mechanisms that have evolved to learn and process

sequential and hierarchical information in general.

This leads us to the topic of the origin and evolution of language, a topic which

was banned by the Société de Linguistique de Paris in 1866, but which I nevertheless

ventured to discuss in chapter 5. Many evolutionary accounts of language take UG

as the end goal of evolutionary processes (e.g., Chomsky, 1988, 1993; Corballis, 1992;

Greenfield, 1991; Hurford, 1991; Piattelli-Palmarini, 1989; Pinker, 1994; Pinker &

Bloom, 1990). The proponents of exaptationist theories of language evolution propose

that UG emerged as a product of genetic hitch-hiking, random mutations, or as a side-

effect of increases in the complexity and size of the human brain (following some, yet

unknown, natural laws). In contrast, adaptationist UG approaches typically suggest

that an increasingly complex language ability was selected for because it provides an

efficient means of communication. However, this position is not as easy to defend as

it first appears given the assumption of UG. The linguistic principles proposed by the

theory of UG manifest themselves as not serving any communicative functions. In fact,

they provide arbitrary, idiosyncratic restrictions on the amount of information that can

be exchanged. Thus, it seems that “survival criteria, the need to communicate and plan

concerted action, cannot account for our specific linguistic nature” (Piattelli-Palmarini,

1989: p. 25).

It is difficult to explain how language could have evolved through natural selection

to its present form given that its universals appear to have no functional explanation

in purely linguistic terms. How could more progressively complex grammars have

been selected for when the complex grammatical principles serve no communicative

function, but often rather impede it? Pinker & Bloom (1990) bravely take on the task of

defending the adaptationist UG position, arguing that the linguistic universals function

as part of a standardized communication protocol. It therefore does not matter what

the universals are qua standards as long as everybody in a particular speech community

adopts the same set of standards. Pinker & Bloom furthermore stress that language

shows evidence of design in much the same way as the vertebrate visual system does.

Although this points to an adaptationist explanation, there is an important disanalogy

between language and vision. When explaining the evolution of the vertebrate visual

system we can point to functional aspects of its parts as having adaptive value, such

as, for example, the selective advantage of having an illumination sensitive pupil that
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permits the detection of objects given variable light intensity (within certain limits).

The universal principles of UG, on the other hand, cannot be explained in the same

way since they serve no communicative function.

If UG is assumed to be the end goal of language evolution, then we are forced to

entertain either the, presently, rather unsubstantiated (‘hopeful monster’) position of

the exaptationists, or the adaptationist counterpart with its problematic explanation of

linguistic universals. But if UG is not an a priori assumption, then we might find a more

satisfying account of the origin and evolution of language. In chapter 5, I presented an

alternative evolutionary perspective on language without recourse to UG, construing

language as a non-obligate symbiant adapting to the idiosyncrasies of human learning

and processing mechanisms. In this picture, mechanisms for the learning and processing

of hierarchical, sequential information preceded language (as evidenced by the former’s

spread across a vast variety of species). Since one of the main characteristics of language

is its temporal and sequential nature, it is likely that language in its origin was subserved

by the evolutionarily more ancient sequential learning mechanisms. Language then

gradually evolved from being a somewhat limited manual language of gestures into

a predominately vocal language. Syntactic complexity presumably increased following

decreases in morphological complexity, the latter being a product of fitting of a growing

vocabulary within the memory capacities of finite minds.

An important remaining question is whether subsequent evolution may have caused

the acquisition of language to become largely innately driven. Pinker & Bloom (1990)

suggest that the Baldwin effect (Baldwin, 1896) perhaps allowed such a gradual trans-

formation from a largely learning based language ability to one determined by an

innate UG. I have argued that this scenario is not a plausible one given the very nature

of language acquisition. One of the premises of the Baldwin effect is that the trait,

which is to become innate, should remain constant. This is not true in the case of

language acquisition since the rate of linguistic change is considerably faster than the

rate of evolutionary change in humans, making language a ‘moving target’ vis-a-vis the

Baldwin effect. Recall also that on the present account, cross-linguistic universals are

by-products of learning and processing, and are therefore prevented from becoming in-

nate. Moreover, the simulation experiments by French & Messinger (1994) can be taken

to indicate that if most hominids were able to learn the early forms of language, then

only small changes would be seen in terms of innate specification of learning mech-

anisms; perhaps, towards faster processing of more complex, sequential information.

This, in turn, would permit language to become more complex, and therefore afford

better communication, producing a pressure on the hominids to be able to learn and

process even more complex structures, and so on.
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Summarizing, in this thesis I set out to explain how the ability for infinite languages

might fit within finite minds. I have demonstrated that certain kinds of finite-state

automata—i.e., recurrent neural networks—are likely to have sufficient computational

power and the necessary generalization capability to serve as models for the process-

ing and acquisition of language. An evolutionary picture was furthermore provided,

suggesting a learning and processing based explanation of the origin and subsequent

phylogenetic development of language. This paved the way for an account of language

acquisition, which relies on maturationally constrained learning processes, and chal-

lenges the poverty of the stimulus argument. Importantly, my theory of the human

language ability, as sketched in this thesis, cuts across both the dichotomy between

exaptationist and adaptationist accounts of language evolution and the dichotomy be-

tween domain-specific and domain-general language learning. Language has adapted

itself to sequential learning and processing mechanisms existing prior to the appearance

of language. These mechanisms presumably also underwent changes after the emer-

gence of language, but language was not the only evolutionary pressure causing this

change. Other kinds of hierarchical processing, such as, the need for increasingly com-

plex manual combination following tool sophistication, were also contributing to this

change. This means that although the mechanisms subserving language are products

of adaptation, they were not adapted solely for the purpose of language. Instead, they

are products of adaptations for the processing and learning of hierarchically organized

sequential information. Language learning in this picture is therefore neither domain-

specific with respect to language, nor is it fully domain-general, rather, it is oriented

towards the domain of sequential structure. As such, my theory of language processing,

acquisition, and evolution makes a number of predictions whose investigation might de-

termine whether the theory will stand the test of time and further scientific scrutiny. I

will therefore close this thesis by mentioning a few of these predictions and suggesting

ways to research them.

6.1 Future Directions

Language Universals: X-theory

One of the remaining and most pressing problems for the theory presented in this

thesis is to account for universal linguistic principles other than subjacency within a

learning and processing based framework. This is a nontrivial task which is further

complicated by the fact that different linguistic theories prescribe different universals.

Nonetheless, some universals appear to hold across different linguistic approaches, and



CHAPTER 6. CONCLUSION 164

thus provide suitable starting points for such investigations. For example, the X-theory

of phrase structure (Jackendoff, 1977) is used in both GB (e.g., Chomsky, 1981, 1986)

and GPSG (Gazdar et al., 1985). Since it is beyond the scope of this thesis to explain

all linguistic universals, I concentrate on the above example and suggest that this

preliminary explanation might serve as a template for the further investigation of other

universals.

There is a clear statistical tendency across all human languages to conform to a

format in which the head of a phrasal category consistently is placed in the same

position—either first or last—with respect to the remaining clause material1. English

is a head-first language; meaning that the head is always placed first in a phrase, as

when the verb is placed before the object NP in a transitive VP such as ‘eat licorice’.

In contrast, speakers of Hindi would say the equivalent of ‘licorice eat’, because Hindi is

a head-last language. More generally, the phrase structure regularities of any language

in most cases have the basic structure of either (1) or (2):

(1) [XP X . . . ] (e.g., [VP V . . . ], [NP N . . . ], [PP prep . . . ], etc.)

(2) [XP . . . X] (e.g., [VP . . . V], [NP . . . N], [PP . . . post], etc.)

In theory of UG, it is argued that knowledge of X-theory is innate (e.g., Chomsky,

1986) and all that remains for the child to learn is whether her language is head-first

or head-last.

However, I contend that the general tendency for languages to conform to these

ordering principles may be a by-product of certain constraints on language learning.

In particular, languages may need to have a certain consistency across their different

grammatical regularities in order for the former to be learnable by learning devices

with adapted sensitivity to sequential information. Languages that do not have this

kind of consistency in their grammatical structure are perhaps not learnable, and they

will, furthermore, be difficult to process (cf. Hawkins, 1990). A possible way of demon-

strating this point is to train a connectionist network on a language conforming to (1),

another on (2), and a third net on a language such as (3), which violates the ordering

principles of X-theory:

(3) [VP . . . V], [NP N . . . ], [NP . . . S N], [PP prep . . . ], etc.

We have already seen in chapter 4 that a language with the basic structure of (1)

appears to be learnable by recurrent neural networks (even when cross-dependency

1It should be noted, however, that pace Pinker(1994) all languages do not conform the ordering
conventions of X-theory. For example, Hawkins (1990) mentions that Mandarin Chinese has both VO
and OV word order as well as both prepositions and postpositions. This is an exception which Hawkins
attributes to processing.
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structures are present). It therefore seems very likely that a language structurally con-

forming to (2) would also be learnable. In contrast, I predict that a language with

the structure of (3) will not be learnable. Whether the results of such simulations will

support this prediction, and thus my view of X-theory as an artifact of learning and

processing constraints, cannot be determined a priori. Interestingly, the grounds for

some optimism regarding this project can be found in Hawkins’ (1990) parsing theory

of word order universals, which suggests that constraints on memory and processing

may play a considerable role in determining grammatical structure. Although, he still

leaves room for innate grammatical knowledge, Hawkins also proposes that “the parser

has shaped the grammars of the world’s languages, with the result that actual gram-

maticality distinctions, and not just acceptability intuitions, performance frequencies,

and psycholinguistic experimental results . . . , are ultimately explained by it” (p. 258).

And this is precisely what my theory would predict.

Simulating Creolization

In chapter 5, I hinted at another learning based solution to a problem which has been

taken by many (e.g., Bickerton, 1984; Pinker, 1994) to require an innate UG: the

creolization of language. Recall that this process allows children to overcome a consid-

erable amount of inconsistency in their linguistic input, as in the case of the creolization

of pidgins (Bickerton, 1984), and in Simon’s ability to surpass the performance of his

parents despite only getting their ‘approximated ASL’ as input (Singleton & Newport,

1993). Here I focus on the latter, since this study provides a qualitative and more de-

tailed description of the effects of creolization. One of the important questions raised

by this research is whether Simon’s impressive feat can be explained by processes of

learning without recourse to innate linguistic knowledge. Before answering that ques-

tion it is worthwhile looking closer at Singleton & Newport’s findings. They argue that

Simon is responding to the inconsistent input from his parents by way of ‘frequency

boosting’; that is, he is extracting the most frequent, consistently used forms from the

input provided by his parents and boosting the frequency of these forms in his own

output. In this process he is not relying entirely on absolute frequency information,

but only boosts those forms which show consistency in terms of correlation between

form and meaning. These forms, in turn, largely coincide with ASL forms, thus per-

mitting Simon to exhibit a signing behavior very close to the ASL of early learners

(with consistent input). In effect, he acquires a (near normal) systematic morphology

by statistically filtering out the noise from his parents output.

Returning to the question of how this might be explained in terms of learning, I
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in unison with Singleton & Newport suggest that maturationally constrained learn-

ing mechanisms underlie the process of creolization. The idea is that such learning

mechanisms change their own effective input (as mentioned in chapter 5), and may

therefore be able to filter out the noise that hide the grammatical structure. There

are a number of ways to pursue this idea in terms of simulation experiments. I men-

tion three here. First, a recurrent neural network undergoing maturational change,

similar to the nets used in chapter 4, could be trained on a corpus from a small ar-

tificial pidgin language (perhaps paired with some minimal contextual information).

The outcome of this training is predicted to be a creole which has more grammatical

structure than the pidgin. The second proposed simulation involves the learning of

morphological structure via a pairing of linguistic form with meaning, extending the

simulations reported in Goldowsky & Newport (1993). In the proposed experiment,

a maturationally constrained recurrent network is to be trained on artificial data cor-

responding in statistical structure to the input available to Simon; i.e., with roughly

70% consistent form-meaning pairings, leaving the remaining 30% to reflect the typical

inconsistency errors made by his parents. Again, the prediction is that the net may

creolize the input, and, in this case, perhaps exhibit frequency boosting similar to what

Simon evinced. The last simulation elaborates on the previous experiment by starting

with the training of a parent network. However, the parent net will not undergo matu-

rational changes, but has the adult memory capacity throughout its period of learning

in order to simulate late learning. This net should furthermore be trained on a fully

consistent corpus of form-meaning pairings, signaling the idealization that the parents

learned ASL from perfect input. Once that net is fully trained, its output will serve

as input for a child net. If the present ideas are right, the parent net may display a

typical late learner output—such as the input Simon received from his parents. These

proposed simulation experiments are admittedly somewhat speculative, but they re-

ceive some credibility from the results already reported here in chapter 4, in Elman

(1993), and in Goldowsky & Newport (1993). Moreover, Singleton & Newport (1993)

argue that learning mechanisms not specific to language may be able to account for

creolization as a statistical process of frequency boosting.

Testing Incremental Memory Learning Experimentally

The role that maturationally constrained learning processes are purported to play

in creolization and, more generally, in language acquisition also suggests a possible

psycholinguistic experiment. If a child’s learning mechanisms undergo maturational

changes resembling those simulated in chapter 4 (and in the work of Elman, 1991b,



CHAPTER 6. CONCLUSION 167

1993, and Goldowsky & Newport, 1993), we may expect to be able to induce the effects

of this kind of constrained learning in adults. The motivation is that if we can impose

gradually decreasing memory constraints on adult subjects in an artificial grammar

learning task, then these subjects may improve their performance on this task com-

pared with a control group learning the task without additional memory constraints.

That is, initial memory constraints may paradoxically facilitate learning by forcing the

subject to detect simple correlational structures which, in turn, can be used to scaffold

the acquisition of more complex statistical contingencies. In other words, we may be

able to induce the effects of Newport’s (1990) less-is-more hypothesis in adults.

To investigate this prediction, I propose to submit the subjects to an implicit learn-

ing task where they are to learn the regularities underlying a simple context-free gram-

mar involving center-embeddings. It is known that people are able to learn the iterative

recursive structure of regular grammars (for an overview, see Reber, 1989), but they do

not appear to be able to acquire non-iterative recursive constructs from a context-free

grammar (Poletiek, 1994). However, if my prediction is correct, then we may expect

a gradually decreasing memory constraint to facilitate the learning of the latter struc-

tures. Rather than operationalizing this memory constraint in the form of a secondary

distractor task (such as, keeping a set of numbers in memory), I intend to use a func-

tional operationalization of it. In the particular kind of implicit learning task that is

relevant here, the subjects are asked to memorize strings from a small artificial gram-

mar. The control group in the proposed experiment will be presented with context-free

strings, e.g., ‘NVcnNVv’. The subjects learning under the memory constraint condi-

tion will see the same strings as the control group, but this time divided into randomly

ordered chunks, such as ‘Vv cnN NV’. These chunks correspond functionally to

the effects of looking at the string with a 2-3 word memory window, and will gradually

increase in size until the subjects are exposed to a number of complete strings in the

last phase of learning. If the constrained memory condition facilitates learning, as pre-

dicted, then we have some additional empirical evidence for the less-is-more hypothesis,

and thus for the theory of language acquisition outlined in chapter 5.

Simulating the Evolution of Language

Moving to my evolutionary account of language, I argued there that the constancy

assumption underlying the Baldwin effect is not likely be met in the case of language,

because the latter constitutes a ‘moving target’. The Baldwin effect may therefore

be an implausible candidate mechanism by which a learning based language ability

becomes innate in the sense of UG. I would like to provide additional weight to this
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argument by way of simulated evolution. The idea is to simulate the evolution of a

learning mechanism which has to adapt itself towards becoming a better learner of an

ever changing language. A recent evolutionary simulation, reported in Batali (1994),

is a step in this direction. Batali trained a population of simple recurrent networks on

a language from a set of 36 languages with different (4 item) vocabularies, but with

the same inherent context-free structure (resembling the counting recursive languages

used in chapter 3). Networks from different generations faced languages with different

vocabularies. Over ‘evolutionary time’ the networks developed an initial set of weights

biased towards the learning of the whole group of languages, rather than a specific

language. In fact, the average performance after 150 generations was better than the

best performance found in a pool of 436 randomly initialized, and subsequently trained,

networks. At first glance, this result seems to suggest that the Baldwin effect may work

to make language learning innate. However, a closer analysis points in the opposite

direction. Importantly, the same amount of training is needed to reach asymptotic

performance for both the evolved and the randomly initialized nets. Thus, learning

plays the same important role in the acquisition of language in both cases. What the

evolutionary process here has endowed the networks with is learning biases, not the

kind of innate knowledge presupposed in UG2 (but notice that the set of languages used

in this experiment may have been too simple to require innate knowledge for optimal

acquisition).

Batali’s (1994) experiments do not simulate the evolutionary scenario I sketched in

chapter 5. Crucially, language itself did not undergo evolutionary change; instead, the

difference between the languages presented to the nets was merely a difference in the

function (or ‘meaning’) of a fixed set of vocabulary items, not in language structure

per se. I therefore propose to conduct simulations in which both learning mechanism

and language are subject to evolutionary change. Just as each initial configuration of

a learning mechanism will be determined by a genome (specifying the initial weights

in a simple recurrent network, size of network, and maturational changes), so will a

‘genome’ specify the layout of each language (in terms of properties such as, head posi-

tioning in phrases, the existence of center-embedding or cross-dependency, and degree

of morphological regularization). Allowing both learning mechanism and language to

evolve in a dynamical relationship—in which the learning mechanism constrains the

language more than vice versa—may show that the Baldwin effect cannot function

2In addition, if the present theory of language evolution is correct, then the same sequential learning
mechanisms that subserve language may also subserve hierarchical manual combination (as suggested
by Greenfield, 1991). This means that these learning mechanisms cannot adapt themselves specifically
for language, but must adapt to the more general requirements of sequence learning and processing.
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when it is ‘chasing’ a moving target (or, only causes very little of this learning process

to become innate). Other avenues for experimentation follow from this set-up; here

I mention but one. An evolutionary experiment could be run to test the prediction

that the accommodation of a growing vocabulary within a fixed sized network would

force an initially morphologically complex language towards a language with a highly

regularized morphology. The results obtained by Hare & Elman (1994) indicate that

when a net’s memory capacity is over-stretched, we may expect a shift towards a more

regularized morphology. Computational resources permitting, possible changes in syn-

tax following such morphological regularization could be studied to see if the latter

would lead to a more complex syntax in order to maintain ease of communication.

Further Psycholinguistic Experimentation

A number of other experiments and topics for further theoretical research come to mind

and which may provide the basis for further investigations of the theory of language

presented in this thesis; but time and space do not allow me to treat them in any

detail here. In chapter 2, we saw that empirical data suggested a marked difference

in performance on iterative and non-iterative recursive structures. This difference was

mirrored in the simulation results in chapter 4, however, the latter also suggested certain

limitations on the processing of iterative recursion. It would be interesting to study

human performance on these structures (perhaps in terms of recall, comprehension, or

grammaticality judgement) to see whether it corresponds to the predictions made from

network performance. Another prediction following the discussions in chapter 2, is

that it may be possible to train people to improve their performance on sentences that

are ungrammatical in the same systematic way, just as they via training can improve

their performance on center-embedded structures. If this prediction was borne out

experimentally, then the arguments against the competence/performance distinction

would be further strengthened. In addition to these experimental investigations, a

detailed study of acquired and developmental language disorders in the light of the

present theory might provide supplementary support for the latter (or, perhaps, suggest

areas in need of revision).

In this thesis, I have outlined a theory of the learning, processing, and evolution of

language, and suggested how connectionists networks might function as models of our

language ability. For reasons of practicality, I have concentrated on linguistic structure,

leaving other aspects of language aside, such as, semantics and pragmatics. In doing so,

I have made the idealization that syntax can be treated independently of these other



CHAPTER 6. CONCLUSION 170

aspects. However, I am not convinced that such a separation is warranted, or even

useful in the long run, and in invoking this separation I might have fallen in the incom-

mensurability trap. Still, I had to start somewhere, and linguistic structure seems to

be as good as place as any—especially, given the amount of empirical data that have

been elicited concerning syntactic processing. Moreover, the earlier mentioned simu-

lations by Weckerly & Elman (1992) did suggest that (minimal) semantic information

can readily be incorporated into this kind of model, a point which has been further

corroborated by St. John & McClelland’s (1990) model of the learning and applica-

tion of contextual constraints in sentence processing (though they use a slightly more

complex network configuration). So, despite the omission of semantic and contextual

considerations, I believe that the present theory permits yet another step towards a

learning and processing based explanation of the acquisition and evolution of language.

And this may, perhaps, lead us closer to solving the age old question of how finite

minds create infinite languages.
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