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Abstract

Language change refers to the phenomenon of alterations in the linguistic struc-
tures of the language used by a community over time, which may subsequently
give rise to one or more languages or dialects. Phonological change is a special
type of language change that involves alteration in the pronunciation patterns.
The aim of this thesis is to develop computational models for cases of phonolog-
ical changes that have been observed for real languages and validate the same
against real data.

Several theories have been proposed to explain the cause and nature of
phonological change, which, nevertheless, cannot be validated and established
firmly due to the lack of sufficient linguistic data and scope of experimentation.
Computational models not only provide a formal description of the linguistic
theories, but also serve as excellent virtual laboratories. The inherent complex-
ities of our cognitive and social structures, however, make it hard or impossible
to replicate reality within a computational framework. Consequently, most of
the present computational models are developed for toy languages and are rarely
compared with real linguistic data – an obvious weakness that has attracted
criticisms from linguists and computer scientists alike.

In this thesis, we present computational models pertaining to the different
explanations of phonological change for two cases of real world language change:
schwa deletion in Hindi (SDH) and change affecting the verb inflections of the
dialects of Bengali. Hindi and Bengali are two major languages of the Indo-
Aryan family that are spoken in the Indian sub-continent. The models are
developed in an incremental manner, where the findings of a more detailed, but
computationally intensive model are used to abstract out the details in the sub-
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sequent phases of the modeling. This, in turn, leads to extensive models that
are not as detailed as their precursors, but computationally more tractable and
linguistically equally plausible. This, which we call the hierarchical abstraction
methodology, is the prime contribution of the thesis, apart from the novel for-
malisms, analysis techniques and the applications that have been developed in
the context of the two specific problems tackled.

The models proposed in this work include: a constrained-optimization model
for SDH that has been solved analytically to show that the pattern of SDH is
optimal under certain assumptions; two multi-agent simulation models for SDH,
where it has been shown that under suitable circumstances the pattern of SDH
automatically emerges in these systems without any explicit optimization or
global control; a multi-objective genetic algorithm based optimization model
to explain the morpho-phonological change of Bengali verb inflections and the
dialect diversity arising as a consequence of the same. While the optimiza-
tion models put forward functional explanations of phonological change, the
multi-agent simulation models provide an emergent explanation grounded in
the principles of phonetically-based phonology and evolutionary phonology.

To summarize, this thesis shows that through the concept of hierarchical
abstraction methodology, it is indeed possible to build computational models
of real world language change. Thus, we believe that in future, computational
techniques will serve as an important and inevitable tool for research in di-
achronic linguistics.
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Chapter 1

Introduction

As you are reading these words, millions of neurons are triggered in your brain;
through a mysterious coordination and combination of electrical signals, they
paint the meaning of the sentence on the canvas of the mind. Despite such a
complex underlying mechanism, we utter and understand new sentences quite
effortlessly. Indeed, human language is one of the greatest natural wonders of
the universe, whose structure, function, evolution and dynamics are as elusive
to modern science as these were to its earliest forefathers.

Language is a unique cognitive ability of the human species that facili-
tates storage, expression and sharing of unlimited ideas and information - the
building blocks of our social, cultural and scientific endeavors. Animals do
communicate with alarm calls, pheromones, and other types of signals, but
their communication medium lacks the recursive syntax and compositional se-
mantics (see Hauser (1997) and Hauser et al. (2002) for reviews). These two
unique properties of human language allow the creation and comprehension of
virtually an infinite number of sentences, an advantage clearly bereft in animal
communication.

Like recursive syntax and compositional semantics, there are several other
features, collectively termed as language universals (Greenberg 1963; Hawkins
1983), that are common to all human languages. Nevertheless, languages dis-
play a wide range of variation in not only the set of words or sounds they use,

1
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but also in the way sounds are combined to form words, words are combined
to form sentences and so on. Even within a linguistic system (i.e. a language),
one can observe a wide range of variation at different levels: variation among
individuals (idiolects), variation among different communities (dialects), and
variation over time. The first two kinds are examples of synchronic variation,
whereas the third one is known as diachronic variation or language change.

As we shall see, in spite of a long, fruitful and incessant history of over two
centuries of research, diachronic linguistics has given rise to far more controver-
sies than universally accepted facts and theories. The reason, presumably, lies
in the methodological difficulties associated with the field due to the paucity
of data and impossibility of experimental validation. Like many other fields
pertaining to social and natural sciences, diachronic linguistics has of late seen
a rise in the use of computational techniques for exploring, evaluating and en-
hancing the existing theories. Nevertheless, modeling a case of a real world
language change turns out to be an extremely difficult problem; this is due to
the complexities associated with our physiological, cognitive and social struc-
tures – all of which are equally instrumental in shaping the course of language
change.

What are the methodological difficulties associated with theorizing and val-
idation in diachronic linguistics? Can computational techniques be of any help
in this regard? How can one construct linguistically plausible, yet computa-
tionally tractable, models of language change? What kind of inferences can
be drawn from such models about the problems being modeled, and language
change, in general? The present work is an attempt to answer these fundamen-
tal questions regarding the usefulness and feasibility of computational modeling
in diachronic linguistics.

In this chapter, we introduce the central problems and concepts in diachronic
linguistics and enumerate the methodological difficulties associated with the
field (Sec. 1.1). This is followed by a brief overview of the computational
techniques used in diachronic linguistics, and their advantages and limitations
(Sec. 1.2). A detailed survey of the same will follow in Chapter 3. The objec-
tives of the thesis are presented in Sec. 1.3 and Sec. 1.4 summarizes the salient
contributions of the work. The organization of the thesis is described in Sec. 1.5.
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1.1 Diachronic Linguistics: An Overview

The issue of “the origin and past history of an individual’s ability to speak a
language” can be studied from three different perspectives (Parisi and Cangelosi
2002):

• Language Acquisition: The process of learning a language by an indi-
vidual based on the linguistic inputs from the environment is termed as
language development or language acquisition. The developmental his-
tory of an individual over a few decades determines the characteristics of
the idiolect – the individual’s language usage.

• Language Change: The linguistic inputs available to an individual that
shape the idiolect, are a collection of utterances of the members of a social
group, to which the individual belongs. The nature of these utterances,
collectively called a dialect, is an outcome of the linguistic and socio-
cultural history of the group spanning a few centuries. This phenomenon
of transformation of dialects at the level of social groups is referred to as
language change.

• Language Evolution: The cognitive faculty of language as well as the
allied articulatory and perceptual mechanisms, which are essential for an
individual to acquire a language, are the results of the biological evolution
of our species over hundreds of thousands of years. This process has been
termed as language evolution.

These three processes - acquisition, change and evolution, are active at three
widely different time scales (Hurford 1991b; Wang 1991). Nevertheless, they
are greatly interdependent, and as depicted in Figure 1.1, cannot be studied in
isolation (see Parisi and Cangelosi (2002), Christiansen and Kirby (2003a) for
further discussion on this).

The phenomenon of language change is formally studied under diachronic
linguistics (also known as historical linguistics). Apart from the questions of
the causes, effects and the course of language change, diachronic linguistics also
studies the languages of the past. Synchronic linguistics on the other hand
studies languages as they are/were at a particular point of time.
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Figure 1.1: Language arises from the interactions of three adaptive systems:
individual learning, cultural transmission, and biological evolution. Any com-
prehensive theory of language evolution is expected to explain the interaction
of these systems on three different timescales: the lifetime of the individual
(tens of years), the language (thousands of years), and the species (hundreds of
thousands of years). Adapted from (Christiansen and Kirby 2003).

1.1.1 Different Perspectives on Language Change

The theories of language and its dynamics can be broadly classified into the
nativist and functionalist paradigms (Hurford 1991b) (also see Perfors (2002)
for a review on the theories of language evolution).

According to the nativist position, popularized by Noam Chomsky (Chom-
sky and Halle 1968; Chomsky 1981; Chomsky 1995), every individual has an
internalized model or grammar of the language, called the I-language. The ex-
ternalized language or E-language, which is the collection of utterances, is the
realization of the I-language under specific conditions. The I-language is con-
sidered to be “an instantiation of the initial state of the cognitive system of the
language faculty with options specified” (Chomsky and Halle 1968; Chomsky
1981; Chomsky 1995). The cognitive system of the language faculty is defined
in terms of a fixed set of principles, the so-called Universal Grammar (UG), and
each I-language is just a particular instantiation of these principles to certain
parameters.
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Thus, the nativists claim that language is an innate property of the humans,
which is an outcome of the biological evolution. The linguistic universals are
principles, i.e., the UG, whereas the variation is a consequence of difference
in parameter values. In this framework, language acquisition is the process
of setting the right parameters after observing a set of triggers, i.e. linguistic
inputs; similarly, language change is the process of variation in the parameter
values over time (Roberts 2001).

The functionalist perspective of language posit the brain as a general-purpose
reasoning device; the properties of the languages, both universal and variable,
are then explained in terms of language usage, rather than appealing to the
structure of the language processing device. Although there is no unambigu-
ous definition of the term “functionalism”, we can consider all anti-nativist
accounts of language as “functional” ones1. As an example, functionalists have
argued that the structural properties of languages are explainable in terms
of the diachronic processes (Sampson 1970; Bybee 1985; Bybee 1988; Bybee
2001; Blevins 2004). Also, see (Comrie 1981; Tomasello 2002; Tomasello 2003;
Boersma 1998; Boersma 1997b) for other examples.

Since in the functionalist paradigm, language is not innate, the structure
and dynamics of language are emergent properties of a linguistic system. Thus,
language is viewed as a complex adaptive system (Steels 2000), whose dynamics
is governed by the structure and the interactions of the language users. The
process of language change is the evolutionary dynamics, or equivalently, the
process of self-organization of the linguistic system. Several computational
models of language evolution and change are built upon this idea, which will
be discussed in Chapter 3.

There are also suggestions to combine the nativist and functionalist views in
the same framework by positing, for example, the functional evolution of the UG
through natural selection (Pinker and Bloom 1990; Pinker 1994; Pinker 2000),
or the emergence of language universals through language usage, subjected to
the constraints imposed by UG (Kirby 1999).

1In Chapter 2, in the context of phonology, we shall provide a more specific definition of

“functional explanations”.
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1.1.2 The Paradox of Language Change

One of the holy grails of diachronic linguistics is to resolve the “paradox of lan-
guage change”(Lightfoot 1991; Lightfoot 1999; Clark and Roberts 1993; Niyogi
and Berwick 1998). Languages are stable over large period of time. Children ac-
quire their parents’ (target) grammars without any error. The transmission of a
particular language from one generation to another, thus takes place with hardly
any imperfection. Given these facts, how can one explain the observation that
languages change spontaneously, often without any external influences? For
example, if we compare the syntax of Japanese and English, we find that the
former has hardly changed over the past five hundred years, while the latter has
undergone several significant changes; the English verb do, for instance, devel-
oped into an auxiliary from one of its main verb senses at some point in Middle
English without any known exogenous cause (Kroch 2001; Ellegard 1953).

Apparently, we are faced with a logical paradox; if we say that the process
of language acquisition is not perfect, then how can we explain the stability of a
language like Japanese over several generations; and if we claim that language
acquisition is perfect, then what triggers the language change as observed in the
case of a language like English? This problem of why change occurs, when and
where it does, has been termed as the actuation problem by Weinreich, Labov
and Herzog (1968).

There have been several attempts to explain this paradox. One of the ma-
jor approaches has been to deny the very possibility of endogenous language
change by attributing all cases of change to some socio-cultural and/or other
exogenous causes. See, for example, (Labov 1972; Milroy 1993; Chambers 1995;
Nettle 1999) for social accounts of language change, and (Santorini 1989; Kroch
and Taylor 1997a) for explanations based on language contact. Endogenous
change at the phonological level is a well accepted fact, and changes at the
higher strata of linguistic structure, like the morphology and syntax, have of-
ten been attributed to some underlying phonological change prior to the higher
level change (Kroch 2001). The proponents of endogenous change have tried
to explain the paradox by postulating functional forces of low perceptual com-
plexity and ease of articulation (Vincent 1976; Slobin 1979; Kiparsky 1996),
non-deterministic learning process coupled with the co-existence of multiple
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compatible grammars for a set of linguistic inputs (Andersen 1973a), drifts in
the usage frequencies of the various types of linguistic structures (Lightfoot
1991; Lightfoot 1999), etc. Kroch (2001) provides a comprehensive and in-
depth account of these theories and their criticisms analyzed in the light of real
language change data.

1.1.3 Causal Forces in Language Change

“Language change is explained when its causal forces are identified and their
interactions are made clear” (Yang 2000). To represent the various possible
causes discussed above, that might trigger and/or govern the course of lan-
guage change, we propose a schematic of a linguistic system shown in Fig. 1.2.
The bubbles denote the I-language of the speakers, using which they generate
linguistic expressions or the E-language. Language is said to change, when the
grammar Gn+1 acquired by the learners is different from the grammar Gn of
the teachers. However, we do not have a direct access to the internal grammars
i.e. I-language of the speakers and we can hypothesize an event of language
change by analyzing the E-language over a period of time. This leaves suf-
ficient room for several conflicting explanations to co-exist that may explain
the same historical data, but are hard to validate in general. We explain the
different possibilities through Fig. 1.2.

In the figure, the vertical arrows represent learning and the horizontal
(T-shaped) arrows represent communication between speakers through the E-
language. The thick black colored arrows represent language acquisition by
the children. It is possible that this process is imperfect, leading to a different
Gn+1 (Andersen 1973a). However, language change can be explained even if
the process of language acquisition is assumed to be robust and perfect. The
E-language (i.e. the trigger), from which the (n + 1)th generation learns the
language, can be different from the E-language from which the nth generation
learnt the language. Such a change in the E-language can be an outcome of
any of the following cases.

1. The speakers of the nth generation produce an E-language that is slightly
different from their I-language as far as the statistical distribution is con-
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Figure 1.2: Language transmission in an open linguistic system. One or combi-
nation of several factors (shown by arrows in the diagram) can trigger an event
of change – a case where the grammar Gn+1 is different from Gn. The thick
black and gray arrows represent learning in children and adults respectively.
The thick white arrows represent communication between the speakers within
a linguistic community, whereas the dashed black arrow represents communi-
cation between the speakers from two different language communities.

cerned (Lightfoot 1991); this means the thick white arrows initiate the
process of change.

2. There is a contact with speakers of some other language (the dashed
arrow) and the E-language observed by the children is a mixture of the
outputs from both the grammars Gn and G′

n. This is known as change
due to language contact (Santorini 1989; Kroch and Taylor 1997a; Kroch
and Taylor 1997b).

3. Adults themselves learn from the new E-language, which can be an out-
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come of language contact or some other socio-cultural event (Labov 1972)
and therefore, produces a different E-language. This is represented in the
diagram by gray arrows.

Thus, corresponding to the four different types of arrows in the diagram,
we get four basic possible causes of language change. In reality, the situation
is often much more complex, where several different causes interact at different
levels of linguistic structures. Facts like children learn from other children and
languages are associated with caste, pride and social hierarchies add further
complexities (see Labov (1972) for an account of social theories of language
change). It should be noted that although in Figure 1.2 the individuals of the
same generation are shown to have the same I-language, synchronic variation
is present in all linguistic systems (Ohala 1989).

1.1.4 Methodological Difficulties

Thus, we have seen that several theories have been proposed to explain the cause
and the nature of language change (see e.g., Kroch (2001) and references therein
for an overview of explanations of grammar change, Chapter 3 in Blevins (2004)
for explanations of phonological change). However, various practical factors,
such as those listed below, restrict us from accepting one of these numerous
explanations as “the theory of language change” (Kroch 1989a).

• Problem of evidence: Languages do not fossilize. We do not have
recorded speech of the past and the small amounts of written data that
we have, hardly reflect the spoken form of the language or its dialects in
the past. Therefore, in the absence of enough historical data, most of the
theories remain untested. See Meillet (1967) for kinds of linguistic data,
and the first chapters of Andersen (1973b) and Bhat (2001) for the pitfalls
associated with different types of evidence used in historical linguistics.

• Problem of validation: Like other social sciences and unlike most of the
natural sciences, it is not possible to experimentally verify the theories of
language change. We cannot see languages changing in our laboratories,
and have to embark on nature for providing the data.
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• Problem of theorizing: In the absence of any comprehensive theory of
human cognition and learning processes, we cannot predict the exact na-
ture of the grammar and its representation in the brain. Consequently, our
observations and postulations regarding language and language change are
limited to the external language (speech and text data) only (Hauser et al.
2002).

The first two problems are the most severe methodological difficulties en-
countered in diachronic linguistics, due to which various assumptions become
inevitable while inferencing from the little historical data that is available to a
researcher (Labov 1975a; Labov 1975b). In the next section, we shall see how
computational techniques can help us circumvent some of these problems.

1.2 Computational modeling techniques

In recent times, there has been a revival of interest in computational models of
diachronic explanations, presumably due to the successful application of such
techniques in the related field of language evolution. See (Steels 1997b; Perfors
2002; Christiansen and Dale 2003; Wagner et al. 2003; Wang et al. 2005; de Boer
2006) for surveys on these models. Computers can serve as excellent virtual
laboratories for linguistic experiments, which are otherwise impossible. Thus,
computational modeling can be used for evaluating, exploring and enhancing
the theories in diachronic linguistics.

As described below, computational models can be classified into two broad
categories: analytical and synthetic.

1.2.1 Analytical Models

In the analytical approach, the explanation for language change is encoded in
a formal framework and solved analytically and/or computationally for obtain-
ing the values of the model parameters. The parameters in turn reflect the
necessary and sufficient conditions under which a particular or general case of
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language change might have taken place. Analytical techniques include mod-
els based on statistical physics (Itoh and Ueda 2004; Kosmidis et al. 2005;
Kosmidis et al. 2006b), complex networks (Ferrer-i-Cancho 2003; Sole et al.
2005; Dall’Asta et al. 2006a; Ke and Yao 2006), dynamical systems (Niyogi and
Berwick 1997c; Komarova et al. 2001; Niyogi 2002; Komarova and Nowak 2003;
Abrams and Strogatz 2003; Niyogi 2006; Mira and Paredes 2005), constrained
optimization (Liljencrants and Lindlom 1972; Ke et al. 2003) etc. These mod-
els have been successfully applied to explain various phenomena, such as the
change in word ordering rules (Itoh and Ueda 2004), the interdependence of
language change and language acquisition (Komarova et al. 2001; Komarova
and Nowak 2003; Niyogi 2002; Niyogi 2006), and language competition and
death (Abrams and Strogatz 2003; Mira and Paredes 2005).

1.2.2 Synthetic Models

In the synthetic approach, the linguistic system is usually modeled from the per-
spective of the language-users and it is simulated using a computer, whereby
the system is closely observed. If several runs of the simulation under differ-
ent parameter settings show the emergence of certain common characteristics,
then one can conclude, with sufficient confidence, that the model is a plausi-
ble explanation for those observed characteristics. Thus, simulations, in this
case, are analogous to virtual experiments. Multi-agent simulation (MAS) is
the most popular computational approach to language evolution and change,
and has been popularized by the works of Steels and his co-researchers (Steels
1996; Steels 1998; Steels and Kaplan 1998; Steels 2001; Belpaeme 2002) rather
recently, even though the earliest examples date back to the 60s (Klein 1966;
Klein et al. 1969).

The key issues in designing a MAS model for language change involve
agent modeling (i.e., learning and other cognitive processes), agent interac-
tion (usually modeled through language games) and language representation.
MAS models have been constructed to explain the emergence of Turkic vowel
harmony (Dras et al. 2003), change in word ordering rules (Minett et al. 2006),
lexicon change (Steels and Kaplan 1998), and homophony and borrowing (Ke



12 Introduction

2004). Other than MAS, connectionist models, such as artificial neural net-
works have also been used for synthetic explanations of language change (see,
for example, Smith (2002) and Sugita and Tani (2005)).

Thus, if not completely, computational methods can help us overcome at least
some of the methodological difficulties in diachronic linguistics (Cangelosi and
Parisi 2002). For example, computer simulations can facilitate designing of
virtual experiments for validation of linguistic theories of change. Similarly,
mathematical models of diachronic variation can provide further insights into
the necessary and sufficient conditions that lead to a particular type of change.

Nevertheless, due to the inherent complexities of our linguistic and social
structures, modeling of real language change turns out to be extremely hard.
Consequently, with the exception of a few (Klein 1966; Klein et al. 1969; Klein
1974; Hare and Elman 1995; Harrison et al. 2002; Dras et al. 2003; Ke 2004), all
the mathematical and computational models developed for explaining language
change are built for artificial toy languages. This has led several researchers
to cast a doubt on the validity of the current computational models as well
as the general applicability of computational techniques in diachronic explana-
tions (Hauser et al. 2002; Poibeau 2006).

1.3 Objectives

The primary objective of this thesis is to develop computational models per-
taining to the different explanations of phonological change for certain cases of
“real language change”, and thereby demonstrate the usability and effective-
ness of computational techniques in diachronic explanations. We shall restrict
ourselves to models of phonological changes because – (1) phonological changes
are regular in nature (Bhat 2001), (2) in most of the cases, they are explainable
in terms of endogenous causes only, (3) the nature of phonological change is
functionally similar to other types of linguistic change and therefore, models
developed for phonological change are also applicable to other cases of change.

There are several challenges in modeling real languages. The first problem
is to identify instances of historical changes, for which we have enough historical
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data for validation. Furthermore, the cases chosen must be simple enough to
facilitate tractable modeling and must be explainable in terms of a few causal
forces.

Since it is not possible to model all the characteristics of the human articu-
latory, perceptual and learning processes, and the linguistic interaction patterns
in the society, another major difficulty in modeling real changes turns out to
be the determination of the appropriate abstraction level.

An equally important objective of this work is to compare the different
explanations of language change, especially phonological change, in the light
of computational modeling. Specifically, we would like to develop models for
the various explanations of phonological change and compare their linguistic
plausibility as well as computational tractability.

Besides the aforementioned generic objectives, this work also aims at making
specific predictions regarding the real changes that have been modeled. Some
of the typical questions that we would like to answer are - how these changes
were actuated, what exactly was the course of the change, why did the different
dialects emerge, and how to explain the exceptions, if any? Our aim here is
to provide plausible answers to these questions through computational models
and vis-á-vis investigate their linguistic possibility independent of the models.

Another objective of the work is to demonstrate the applicability of the
diachronic models in practical systems such as text-to-speech synthesizer and
natural language generator (see Jurfsky and Martin (2000) for an overview of
these systems). We show that the insights gained from the diachronic models
can be appropriately used for developing NLP systems, especially those catering
to a multilingual or multi-dialectal environment.

1.4 Contributions

In this work, we have developed three models for the phenomenon of schwa
deletion in Hindi and one model for explaining the phonological change affecting
the verb inflections in Bengali. The models entail different explanations of
phonological change and are built upon appropriate computational techniques.
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Schwa deletion is a phonological phenomenon, in which schwas in unstressed
syllables are deleted during speech, even though the morphological and et-
ymological evidence assert the presence of the vowel in that particular con-
text (Ohala 1983b). Schwa Deletion in Hindi (SDH) is a diachronic pro-
cess (Mishra 1967; Ohala 1983b) and can be functionally explained in terms
of syllable minimization2. The computational models developed for SDH dur-
ing this work and the basic observations made from them are described below.

Constrained Optimization Model

We formulate SDH as a syllable minimization problem, subject to certain con-
straints that are representative of factors such as perceptual contrast and phono-
tactics, and theoretically prove that the optimal schwa deletion pattern under
this formulation is equivalent to that observed for Hindi. An algorithm for SDH
is proposed on the basis of this finding, which is used to develop a grapheme-to-
phoneme converter for a Hindi text-to-speech system. Nevertheless, the model
cannot explain the process, by which such an optimization might have taken
place, despite the lack of any conscious effort on the part of the speakers.

MAS Model I

MAS Model I entails a phonetically-based explanation3 of SDH, where the lan-
guage users are modeled as linguistic agents that interact with each other
through language games and learn from the outcome of the games. We ob-
serve that under suitable circumstances, the emergent schwa deletion pattern
closely resembles that of Hindi. However, the emergent pattern is sensitive to
the lexicon, and the high time complexity of the model does not allow us to run
simulation experiments with a real lexicon.

2Functional explanations of phonological change state that the process of change tries to

optimize the communicative function of a phonological structure by, for example, reducing

the effort of articulation. See Sec. 2.2.1 for details.
3In phonetically-based explanations, a phonological change is attributed to the phonetic

factors such as articulatory and perceptual errors. See Sec. 2.2.2 for details.
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MAS Model II

In order to curtail the time complexity of MAS Model I, we make several as-
sumptions, such as phonological rule generalization over words, and incorporate
various sophisticated computational techniques to exploit those assumptions.
The resulting model – MAS Model II – facilitates experimentation with real
Hindi lexicon. Here also we observe that the emergent rule for schwa deletion
is similar to its real world counterpart.

Phonological Change of Bengali Verb Inflections

Since SDH is a simple case of phonological change, we also choose to model a
more complex incident of phonological change – Phonological Change of Ben-
gali Verb Inflections – where many simpler phonological changes (similar to
SDH) have taken place in sequence. We assume that the individual instances of
simple or atomic phonological changes can be explained in terms of MAS-based
models, and therefore, take them for granted. We develop a multi-objective
genetic algorithm (MOGA) based model to explain the emergence of the verb
inflections in the modern dialects of Bengali from their Classical Bengali coun-
terparts (Chatterji 1926). Since the objectives and the constraints in the MOGA
Model reflect the functional forces, the model offers a functional explanation
for the phenomenon of change.

Hierarchical Abstraction Methodology

Modeling and validation of real language change are extremely hard. To render
the problem tractable, one has to integrate appropriate assumptions at different
levels, the assumptions being justifiable independently. We solve this problem
through a hierarchical abstraction methodology, which can be stated as follows.

The findings of a more general, but computationally intensive model
are used to abstract out the details in the subsequent phases of mod-
eling. This, in turn, leads to models that are not as general as
their precursors, but computationally more tractable and linguisti-
cally equally plausible.
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The Constrained Optimization Model provides us the insight that the schwa
deletion pattern of Hindi can be explained in terms of syllable minimization.
This fact has guided us in designing the signal representation scheme as well as
the perception and articulatory processes in MAS Model I at the right level of
abstraction. Nevertheless, the MAS Model I could not deal with a large lexicon.
The results of MAS Model I enabled further simplifications of the articulatory
and perceptual processes without the loss of generality, and consequently helped
in overcoming the lexicon-size constraint in MAS Model II. These three models
together established the fact that a simple phonological change like vowel dele-
tion can be explained in terms of phonetic and evolutionary factors. Therefore,
in the MOGA Model for Bengali verb inflections, we assume that similar ex-
planations exist for the phonological phenomena of deletion, assimilation and
metathesis, and treat them as atomic operations. This facilitates modeling of
complex phonological changes involving a sequence of simpler atomic changes.

Some of the other significant observations made during this work are enu-
merated below.

1. Explanatory power: Functional and phonetic explanations for phono-
logical change are often overlapping in nature, and a MAS based evo-
lutionary model indirectly captures the phonetic and functional forces
through agent modeling and language data. Nevertheless, evolutionary
models can explain more complex changes than what functional and pho-
netic forces alone can.

2. Predictability and convergence: It is a well known fact that even
though the direction of a sound change is predictable, its occurrence is
not (Bhat 2001). This unpredictability of phonological changes has been
observed in the MAS models, where the course and time of the change for
different runs of the same experiment are different, despite the similarity of
the globally emerging pattern. Since the time of a change is unpredictable,
one cannot provide an upper bound on the number of games, after which
a specific event of change will take place. Therefore, it is not possible to
define a notion of “convergence” for the simulation experiments.
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3. Applicability: Although the evolutionary model is more powerful than
the functional or phonetic models, the latter are more efficient computa-
tionally, and thus, can cater to practical applications.

To summarize the contributions of this thesis in a single sentence, we have
shown that through the concept of hierarchical abstraction methodology, it is in-
deed possible to build computational models of real world language change. Thus,
we believe that in future, computational techniques will serve as an important
and inevitable tool for research in diachronic linguistics.

1.5 Organization of the Thesis

The thesis is organized into eight chapters.

Chapter 2 provides the necessary linguistic background of the work by
describing the different properties and explanations of phonological change.
The two problems dealt with in the thesis, namely SDH and change in Bengali
verb inflections, are also discussed at length.

Chapter 3 presents a survey of the existing computational models of lan-
guage change. A taxonomy of the different models is proposed and the pros
and cons of the modeling techniques are discussed. A few models from the
domain of language evolution are also discussed at length due to their direct
relevance to language change. Finally, possible applications, explanatory gaps
and research possibilities are identified.

Chapter 4 is devoted to the constrained optimization model for schwa
deletion in Hindi. A general framework for modeling functional explanations
is introduced, and SDH is formulated as a constrained optimization problem
within this framework. Next, an analytical solution to the optimization prob-
lem is derived and its equivalence to Ohala’s rule is established. An algorithm
for schwa deletion, its evaluation and application in Hindi text-to-speech syn-
thesizer are also discussed.

Chapter 5 presents the design, experiments and inferences for the MAS
Model I. The agent model, the structure of the language games and the simula-
tion setup are outlined; simulation experiments and their results are presented;
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and finally, the interpretations of the results are provided in the light of pho-
netically based accounts of phonological change.

Chapter 6 is dedicated to MAS Model II. The improvements made over
MAS Model I (e.g. rule learning) and certain simplifications conceived as an
outcome of the results of previous experiments (e.g. binary deletion pattern)
are described, followed by an analysis and interpretation of the experimental
results.

Chapter 7 deals with the MOGA-based model for the phonological change
of Bengali verb inflections. The formulation of the problem as a MOGA and
the motivations behind the choice of phenotype, genotype and genetic opera-
tions are clearly spelt out. This is followed by the descriptions of the various
experiments and analysis of the results. A possible application of the model in
natural language generation is also described.

Chapter 8 concludes the thesis by summarizing the basic findings. This
chapter presents a comparative study of the role of different theories of phono-
logical change in explaining the two problems studied during this work. The
extents to which these theories can be computationally modeled and conse-
quently verified are discussed, and the usability of the different computational
techniques in modeling different types of explanations is analyzed. The chapter
also outlines the possibilities of future research.

An annotated list of publications from this work, as well as the complete list
of publications by the candidate are included at the end of the thesis. There are
also a few appendices to the thesis that provide various supplementary materials
related to the notational conventions and data from the experiments.

1.5.1 A Note on Notation

In this thesis, Indian language scripts are transcribed in Roman script following
the ITRANS convention (Chopde 2001). Appendix C provides the tables for
transcription of Hindi and Bengali graphemes. The graphemic forms are written
in italics. Both Hindi and Bengali uses a phonemic orthography, where the
letters usually correspond to a default sound, though some context-dependent
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variation is also observed. Therefore, we choose the same transcription scheme
to represent the phonetic forms as well, where the letters correspond to their
default pronunciations. Appendix C also lists the default sounds for each of
the letters in International Phonetic Alphabet. The phonetic transcriptions in
the text are also in italics and are usually presented within two slashes (//).
Gloss for the Indian language words, if provided, are within parentheses. Two
examples are shown below.

hindI (Hindi) is pronounced as /hindI/

bA.nlA (Bengali) is pronounced as /bA ∼ NlA/





Chapter 2

Background

This chapter provides the linguistic background necessary for understanding
and proper grounding of the work presented in the subsequent chapters. We
begin with the definition of phonological change, illustrated through examples,
followed by a brief overview of evidences used, properties documented and chal-
lenges in the study of diachronic phonology (Sec. 2.1). The different explana-
tions of phonological change present in the literature are surveyed in Sec. 2.2.
The two instances of real world phonological change, namely schwa deletion
in Hindi and phonological change of Bengali verb inflections, are discussed in
Sec. 2.3 and 2.4 respectively.

2.1 Phonological Change

Phonological change (also known as sound change1) is a special case of lan-
guage change, which refers to “a change in the pronunciation of sounds” (Bhat
2001). The change can be conditioned or unconditioned, but only phonological

1Strictly speaking, sound change and phonological change refer to different

things (Kiparsky 1988). While sound change is change in the pronunciation of a particu-

lar sound in a particular context, phonological change refers to a change in the phonological

representation. Thus, sound changes are governed by phonetic factors and can be thought

of as a source or cause of phonological change. However, many authors use the terms inter-

changeably, as we shall do here.

21



22 Background

features, such as stress, intonation, and neighboring phonemes, can constrain
its occurrence. Grammar (i.e. syntax), lexicon, meaning or function of a word
has no effect on the change. Nevertheless, the effects of sound change may be
altered at a later stage due to other types of changes that occur in the language
(e.g., borrowing or syntactic changes).

2.1.1 Instances of Sound Change

It has been observed that sound changes are the first to occur, in almost all the
cases of language change that have resulted in bifurcations in the phylogenetic
history of languages (Kroch 2001). This makes sound changes prevalent in
nature and one of the most well studied phenomena in diachronic linguistics
(see Bhat(2001) and Blevins (2004) for review and examples). It has been also
observed that, often, several phonological changes occur in sequence resulting
in the birth of an altogether new language(s). Such changes are referred to as
shifts.

Some of the most famous examples of sound changes and shifts include

• The Great Vowel Shift that affected the pronunciations of the modern
English vowels was accomplished during 14th to 16th century and resulted
in changes in the pronunciation of earlier long vowels (Baugh and Cable
1993). For instance, the long /u/ in middle English was diphthongized,
as in “mouse”.

• The High Germanic Consonant Shift took place between 3rd and 5th

centuries altering the pronunciations of consonants in the Germanic lan-
guages (Waterman 1966). This explains the difference in pronunciations
between English and German words such as “day” and “tag”, “father”
and “vater” (d→ t), and “ship” and “schiff” (p→ f).

• The Loss of Consonant Clusters in Hindi from their original forms in
Sanskrit has resulted in words such as /rAt/ from /rAtri/ (night), /Aga/
from /agni/ (fire) and /dUdh/ from /dugdha/ (milk). Note that there are
several other sound changes that took place during these transformations
and the change took affect quite early, in Prakrit and Pali, which are
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precursors of modern Indo-Aryan languages (see Bhat (2001) for more
examples of the same). Nevertheless, the Sanskrit word forms are also
present in modern Hindi, which were borrowed from Sanskrit at a much
later stage.

Sections 2.3 amd 2.4 discusses in detail two particular instances of phono-
logical change in the case of Hindi and Bengali.

2.1.2 Characteristics of Sound Change

There are several interesting properties of sound change, which have been ob-
served and documented in the literature. See Chapter 2 of Bhat (2001) for a
review. We summarize below some of the important characteristics.

• Regularity: Sound changes are regular in the sense that all the words
in the lexicon are affected by the change irrespective of their meaning,
function, or social status. Similarly, syntax has no effect on the process of
change and its context. Nevertheless, there are several exceptions to this
regularity hypothesis. Words borrowed from another language may not
reflect the effect of sound change. There are instances of sound change,
known as analogical change that are conditioned by non-phonological fac-
tors. Hypercorrection and sporadic changes are other examples of irregu-
larities.

• Directionality: Language change, in general, has a preferred direction.
In other words, if X changed to Y due to some natural linguistic change,
then it is unlikely that Y, in some other linguistic system, would change
to X. Although the hypothesis of directionality is neither devoid of excep-
tions, nor criticisms, several observations and linguistic principles suggest
that there are certain general tendencies of sound change. For instance,
a change resulting in raising of the height of a vowel (say, /E/ to /e/) in
the context of a high vowel (e.g., /i/ or /u/) is quite commonly observed,
for example in Bengali (Chatterji 1926), whereas the reverse of this has
never been reported. See Blevins (2004) for more examples of preferred
sound changes.
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• S-shaped dynamics: Several independent lines of research suggest that
almost all cases of language change, including sound change, proceed along
an S-shaped trajectory2, also known as the logistic curve (Weinreich et al.
1968; Bailey 1973). The interpretation of this S-shaped dynamics is as
follows. Initially, one of the linguistic forms is stable and a competing
form occurs rarely in the language. The frequency of occurrence of the
competing form increases slowly in the beginning of the process. Then an
exponential growth is observed over a period of a few generations, at the
end of which the older form is completely driven out by the new variant.
Fig. 2.1 shows the rise in the use of the auxiliary do in English over a
period of three centuries, which exhibits the S-shape pattern. The S-
shaped trajectory for language change has been independently confirmed
for several cases such as the shift of the words from one tone class to
another in the Chaozhou dialect of Chinese (Chen and Wang 1975), the
loss of verb-second syntax in English (Kroch 1989a), French (Fontaine
1985) and Spanish (Fontana 1985). See Kroch (2001) and Briscoe (2002)
for further discussions on this.

2.1.3 Evidence of Sound Change

Sound change is not directly observable and therefore, it must be inferred from
its effects visible on the sound patterns of a language or genetically related
languages. The data used for investigating and subsequently, establishing a
particular case of change can be broadly classified as diachronic and synchronic
evidence.

Diachronic evidence is derived from a comparison of two sets of records from
the same language belonging to two different periods. The temporal order of
the records provides us with a basis (called external criterion) for determination
of the direction of the sound change. Nevertheless, there are many possible pit-
falls associated with the diachronic evidence (see e.g., Meillet (1967)). Firstly,

2S-shaped dynamics is also seen in many other physical, social and biological phenomena,

and is considered to be a general property of evolution (Modis 2002). In physics, S-shaped

dynamics refer to a case of phase transition or bifurcation in the system (Landau and Lifshitz

1994; Ott 2002).
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Figure 2.1: The rise of periphrastic do. The horizontal axis denotes the date
(in year) and the vertical axis denotes the percentage of usage of the new
variant found in historical data. (Adapted from Ellegard (1953) as cited in
Kroch (Kroch 1989b))

written historical records may not reflect the spoken forms of the same period.
For instance, the verb forms used in the Bengali literature of the 19th and early
20th centuries were similar to the spoken language of the Middle Bengali period
(1200 – 1800 AD), which had been replaced by their modern counterparts by
the beginning of the 19th (Chatterji 1926). Thus, the possibility of shift in the
dialect used for writing purposes calls into question the reliability of diachronic
evidence. Secondly, gathering a good amount of historical data and assigning
proper dates to the records are extremely challenging tasks.

Synchronic evidence, on the other hand, analyzes synchronic data from one
or more languages to infer a case of sound change. The issue here, however, is to
ascertain the direction of the sound change, which must be done on the basis of
some internal criterion. Several plausible assumptions regarding phonological
changes are used to solve this problem. The most commonly used technique re-
lies on the fact that sound changes cannot introduce new phonological contrast.
For instance, the fact that Hindi has long vowels for words where Punjabi fea-
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Gloss Sanskrit Punjabi Hindi

work kArya kAj kAj

work karma kamm kAm

thread sUtra sUt sUt

son putra putt pUt

Table 2.1: Synchronic and diachronic evidence for a sound change: the elonga-
tion of the vowel in closed syllables in Hindi. Adapted from example 10, chapter
1, Bhat (2001)

tures both short and long forms (see Table 2.1) indicates a change that resulted
in elongation of vowel length in Hindi in the closed syllables. The analysis of the
corresponding Sanskrit forms (i.e., the older forms) provides further evidence
for the change. While the former evidence is synchronic in nature, the latter
forms a diachronic evidence for the same case of change.

Synchronic evidence can be descriptive (data taken from a single language
and grammatical factors used for reasoning) or comparative (data taken from
two languages) in nature. Nevertheless, for all types of synchronic evidence,
identification of the direction of a sound change is a controversial issue and is
based on numerous assumptions.

To summarize, one of the challenges in diachronic phonology is the paucity
of data, and this is primarily due to the facts that (1) languages do not fossilize,
and (2) it is impossible to conduct experiments to gather more historical data.
See Meillet (1967), Andersen (1973b), Labov (1975a; 1975b) and Bhat (2001)
for a review and criticisms of the different types of evdience used in diachronic
linguistics.

2.2 Explanations of Phonological Change

In the previous section, we have seen that phonological changes display a wide
range of interesting properties. It is natural to ask why sound changes are
regular, have a preferred direction or follow an S-shaped dynamics. Similarly,
the actuation problem (Sec. 1.1.2) takes an extra dimension in the case of sound
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change: while one needs to explain the cause of a sound change, the sound
change itself may serve as an explanation for more complex linguistic changes.
Thus, if we can solve the actuation problem for sound change, it can provide
us with further insights and facts to resolve the actuation problem for the more
general case of language change.

There have been several attempts to explain the aforementioned questions
by identifying the causes and dynamics of sound change. The explanations
can be broadly classified into three categories as described below (also see
Ohala (1987) and Chapter 3 of Blevins (2004) for reviews).

2.2.1 Functional Explanations

The functional principle in linguistics maintains that the primary function of
language is communication and this fact should be reflected in the structure of
the languages and the way it changes over time (see Boersma (1997a; 1997b;
1998) and references therein; also see Liljencrants and Lindblom (1972), Lind-
blom (1986) and Schwartz et al. (1997) for examples of functional explanations).
The basic functional principles are enumerated below (Boersma 1998):

1. The speaker will minimize her articulatory and organizational effort; i.e.,
she will try to minimize the number and complexity of her gestures.

2. The speaker will minimize the perceptual confusion between utterances
with different meanings.

3. The listener will minimize the effort needed for classification, i.e., she will
use as few perceptual categories as possible.

4. The listener will minimize the number of mistakes in recognition, i.e., she
will try to use the maximum amount of acoustic information.

5. The speaker and the listener will maximize the information flow.

Apart from the above, another functional principle, often referred to in the
literature is that of learnability (Roberts 2001; Brighton et al. 2005; Oudeyer
2005a).
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These principles are inherently conflicting; minimization of articulatory ef-
fort conflicts with minimization of perceptual contrast. Similarly, maximization
of information flow seems to be in conflict with the first four principles. The in-
herently conflicting nature of these forces, therefore, dismisses the possibility of
“the optimum language”. Stated differently, a language can be always changed
in a way to optimize one of the criteria, say articulatory ease, but at the ex-
pense of another, such as perceptual contrast. Therefore, lack of “the optimum
language” gives rise to a situation where several (possibly an infinite number
of) languages co-exist that achieve different trade offs between the functional
forces. The languages continuously evolve in order to improve their functional-
ity, but only to reach a different sub-optimal state. This leads to the possibility
of circular changes (Boersma 1997b).

Criticisms

Functional explanations of phonology have been strongly criticized by several
researchers for their goal-directedness (see for example, Ohala (1983a; 1990b)
and Lass (1980; 1997)). Sound changes are the end results of gradual, minute
and random changes in articulation, and therefore, are non-optimizing. The
speakers and listeners never make a conscious effort to make the language opti-
mized in terms of its functional benefits. There are several instances of phono-
logical changes which are not explainable in terms of functional forces. For
example, metathesis or swapping of adjacent phonemes is a commonly observed
phenomenon. Nevertheless, the resultant form of a metathesis is neither easier
to pronounce nor more distinctive. The advocates of functional principles argue
that functional explanations are non-teleological, because phonological change
does not lead towards a globally optimal goal. Rather, changes result in local
optimization of the functional objectives. Lindblom (1998) suggests that al-
though the initial changes are random as proposed by Ohala (1974; 1989), the
changes that facilitate certain functional benefits are consciously preferred by
the users over those which do not.
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2.2.2 Phonetic Explanation

In phonetic or phonetically based explanations, phonological changes are at-
tributed to the underlying phonetic principles grounded in human articulatory
and perceptual mechanisms (see Hayes et al. (2004) and references therein).
Like in functional explanations, articulation and perception play an major role
here as well, however unlike the former, the changes here are not goal-directed.

Phonetic explanations of sound change based on perception errors have been
extensively studied and argued for by John J. Ohala (1974; 1983a; 1987; 1989;
1990b; 1993). For example, in (Ohala 1990b), it has been shown that consonan-
tal place assimilation is a result of “innocent misapprehensions” of the speech
signal. Similarly, it has been argued that random articulatory errors lead to
synchronic variation and in turn, to diachronic variations.

2.2.3 Evolutionary Explanation

Evolutionary explanations combine both functional and phonetic factors along
with the concept of frequency drift (Blevins 2004). The aim of evolutionary
phonology is to explain recurrent synchronic sound patterns based on historical,
non-teleological and phonetic explanations. However, in the process, it also
postulates a set of principles that can explain the nature of sound change.

At the level of a language-user, phonetic principles as well as functional
pressures like ease of articulation and the need to be understood (that manifests
as perceptual contrast) play an important role in shaping individual language
usage. These factors are categorized as change, chance and choice. While
change refers to a situation where a word/sound is misheard and consequently,
(re)analyzed in a different way, chance refers to a situation where a given
pattern can be analyzed in multiple ways, and the individual usually selects
the analysis that has the highest token frequency. These two factors are clearly
reminiscent of the phonetic explanations. For instance, the form /np/ might
change to /mp/ due to misinterpretation (as in Ohala’s case for consonantal
place assimilation) or it might be interpreted as both /np/ and /mp/, of which
/mp/ is selected due to its high frequency. choice models functional principles,
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where a particular form X is consciously favored by an individual over its variant
Y if X facilitates fast speech or Y results in confusion.

Empirical observations make it evident that all sound changes do not reflect
the presence of functional or phonetic biases; else how can we explain the co-
existence of both the natural (read frequent) and unnatural (read infrequent)
patterns of sound change? Evolutionary phonology provides an explanation to
this in terms of random drifts. If in a language a particular sound pattern
is more frequent than an alternative variant, the language users are expected
to decide in favor of the frequently occurring pattern whenever a given input
has two or more possible analyses. This triggers a cycle of change that makes
the frequent form more frequent in later stages of the language. Thus, a small
difference in the frequencies of two types can trigger a sound change in favor
of the more frequent pattern irrespective of its functional fitness or phonetic
structure. However, the initial difference in frequency can be a result of phonetic
factors, and the change may be restrained by the functional forces.

Croft (2000) proposed the utterance selection model of language change,
which is similar to the aforementioned evolutionary explanation for phonological
change. According to the utterance selection model, utterances are analogous
to DNA or genes and variation in utterances (i.e., linguistic variables) crop
up from the differences in language usage between the speakers and the same
speaker over time. Language change is the shift of the probability distribution
of the different linguistic variables over time. This shift is postulated as a result
of selection, which is a socio-cognitive process.

2.3 Schwa Deletion in Hindi

A major part of this thesis is devoted to the computational modeling of the
phenomenon of schwa deletion in Hindi (SDH). In this section, we present a brief
overview of the phenomenon, its diachronic roots and related computational
works.
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2.3.1 Hindi Orthography and Phonology

Hindi, a language of the modern Indo-Aryan family, is written from left to
right using the Devanagari script. The script is an alpha-syllabary derived
from Brahmi and consists of 35 consonants, 12 vowels, 15 diacritics and a few
more symbols for the commonly used conjugates. The complete set of vow-
els and consonants of Devanagari and their usual pronunciations are listed in
Appendix C.

The organizational unit of Hindi orthography is an alpha-syllable (called
akshara in Sanskrit and Hindi), which is of the form C∗V (C and V denote the
consonants and vowels respectively). An akshara of the form V is represented
by a free vowel, but whenever the vowel follows one or many consonants (as
in CV, CCV etc.), its presence is denoted through a diacritical mark drawn
around the consonant(s). The first vowel of the Devanagari alphabet, a, has no
associated diacritical mark; rather, it is the absence of any vowel-diacritic in an
akshara that denotes the presence of a. There is also a special diacritic called
halant that is used to denote the absence of a, and is usually used in between
consonants to represent a consonant cluster.

Thus, a is the inherent vowel of Devanagari. In Sanskrit, which is also writ-
ten using Devanagari, all the inherent a-s in a word are pronounced. However,
Hindi and several other Indo-Aryan languages, such as Bengali and Punjabi,
allow optional or mandatory deletion of a during pronunciation. Since in Hindi
and Sanskrit the vowel a is usually pronounced as the schwa, the aforementioned
phenomenon is referred to as schwa deletion.

Schwa is defined as the mid-central vowel that occurs in unstressed syl-
lables. We shall denote this vowel as /a/. Schwa deletion is a phonological
phenomenon, in which schwas in unstressed syllables are deleted during speech,
even though the morphological and etymological evidence assert the presence
of the vowel in that particular context (Ohala 1983b). Table 2.2 illustrates this
phenomenon for Hindi.

The phenomenon of schwa deletion is not unique to Hindi and is found in
languages like French, Dutch, Russian and English. In some languages like
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Sanskrit Hindi Gloss

sAphalya /sAphalya/ success
rachanA /rachnA/ creation
gagana /gagan/ sky

Table 2.2: Examples of schwa deletion in Hindi

English and French, schwa deletion can be optional and depends on semantics
or socio-linguistic contexts (Hooper 1978; Tranel 1999).

2.3.2 The Schwa Deletion Pattern

SDH has been studied from its linguistic perspective by several researchers
(Mishra 1967; Pray 1970; Kaira 1976), the most substantial of them being
by Manjari Ohala (1977; 1983b). On the basis of several experiments and
morphological evidence from the language, Ohala showed that schwa deletion
is an important feature of Hindi phonology. The context for SDH has been
summarized in (Ohala 1983b) as follows.

a→ φ /VC2
1 — CV/


[

+ loan
+ casual speech

]
[ + normal tempo ]


Condition 1 : There may be no morpheme bound-

ary in the environment to the left.
Condition 2 : The output of the rule will not vi-

olate the sequential constraints of
Hindi.

Convention : The rule applies from right to left.

The rule states that schwa is deleted in a context where it is preceded by a
vowel and one or two consonants, and followed by a single consonant and vowel.
Sequential constraints tell us which consonant clusters are considered valid in
the words of a language. An alternative term for this is phonotactic constraints.
Strangely, Ohala’s rule does not capture the context for the deletion of word
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final schwas (eg. the case of gagana in Table 2.2). Probably, the very existence
of the word final schwas in Hindi, which is clearly indicated in the orthographic
form of the word, is denied by Ohala due to its psycholinguistic uncertainty.
However, as illustrated in example 51, chapter 3 of Bhat (2001), Hindi lost the
word final schwa during the course of its development, which was otherwise
present in Middle Indo-Aryan.

To capture the word final schwa deletion we propose the following modifi-
cation of the Ohala’s rule, where $ represents the end of a word.

a→ φ /VCC?— {$,CV} (2.1)

Note that the conditions 1 and 2 of Ohala’s rule regarding morphology and
phonotactic constraints also apply to the modified rule stated above. The fol-
lowing example illustrates the application of Ohala’s rule on a few Hindi words.

Example 2.1 Let us consider the Hindi words rachanA “creation” and gagana
“sky” (refer to Table 2.2). The corresponding C-V patterns for these words are
CVCVCV$ and CVCVCV$. As per the modified schwa deletion rule stated in
equation 2.1, only the second schwa in rachanA is delible, deletion of which
results in the surface form /rachnA/. This indeed is the usual pronunciation
of the word in standard Hindi. In case of gagana, the contexts of both the
second and third schwas conform to the deletion rule. However, deletion of the
third schwa gives rise to the pattern CVCVC$, which prevents further deletion
of the second schwa. On the other hand, deletion of the second schwa results
in the pattern CVCCV$, where further deletion of the last schwa is possible.
Nevertheless, the deletion leads to the surface form /gagn/ which violates the
phonotactic constraints of Hindi (/gn/ is not allowed word finally).

Thus, we are left with two possibilities /gagan/ and /gagna/, and the right
to left convention stated in Ohala’s rule decides in favor of the former. It should
be noted that the two possible surface forms for the word gagana arise only due
to the postulation of the word final schwa. Since Ohala’s rule does not consider
the presence of this word final schwa, the ambiguity between the two possible
surface forms does not arise at all. However, in case of words like ajanabi

(stranger), two possibilities arise even for Ohala’s rule, which can be resolved
using the convention. ��
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2.3.3 Diachronic Nature of SDH

It is a well established fact that SDH has evolved through a diachronic pro-
cess (Mishra 1967; Ohala 1983b). The middle vowel schwa that occurs mostly
in unstressed syllables is often deleted or added (schwa-epenthesis) during pro-
nunciation in almost all the languages that have this phoneme. This high
susceptibility to deletion or addition is due to the neutral nature of the vowel.
Deletion of schwas lead to minimization of syllables (Tranel 1999). For exam-
ple, the word saradAra “chief”, if pronounced as /sa− ra− dA− ra/ has four
syllables (‘-’ indicates syllable boundaries); but in Hindi, it is pronounced as
/sar−dAr/ and thus have only two syllables. The lesser the number of syllables
in a word, the smaller is the time to pronounce it, though the relation may not
be linear. Therefore, schwa deletion enables faster speech through reduction in
the number of syllables. In fact, it has been found that in Hindi, schwa deletion
is much more prevalent in faster and informal speech than in formal style of
speaking (Ohala 1983b).

Although a need for faster communication can explain why schwas are
deleted, it alone cannot explain why schwas are deleted only in particular con-
texts. To explain the specific schwa deletion pattern observed in Hindi, it is
necessary to identify the forces that act against syllable minimization and pre-
vent the deletion of schwas in certain contexts. One such force, for example, is
the pressure to maintain the lexical distinctions; deletion of schwas in any arbi-
trary context might remove the distinction between two words leading to a loss
of communication. Nevertheless, we do not know of any work on explanations
for SDH in Hindi, apart from the aforementioned functional account based on
syllable-minimization.

2.3.4 Computational Models for Schwa Deletion in Hindi

Schwa deletion is one of the most important phenomena in Hindi phonology and
an algorithmic solution to SDH is essential for developing G2P converter for
Hindi TTS (Sen and Samudravijaya 2002; Kishore and Black 2003; Narasimhan
et al. 2004). Narasimhan et al. (2004) describes an algorithm for schwa deletion
in Hindi based on Ohala’s rule. In this algorithm, word-final schwa deletion
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has been captured using a cost model, which otherwise is not dealt with by
Ohala’s rule. The algorithm also uses a morphological analyzer for identification
of morpheme boundaries, because schwa deletion in Hindi respects morpheme
boundaries (condition 1). The accuracy of the algorithm, measured in terms of
the fraction of schwas correctly deleted/retained, has been reported to be 89%.
Kishore and Black (2003) mentions the problem of SDH as the hardest part of
Hindi G2P converter and describes certain heuristics to model the phenomenon.
However, according to the authors, these heuristics do not solve the problem
completely.

Thus, several aspects of this phenomenon make it an excellent example for
computational modeling. Some of them are listed below.

• The diachronic roots as well as synchronic validity of this problem are
well established.

• The context for SDH can be described by a simple rewrite rule (Ohala’s
rule), which has hardly any exception. This pattern can serve as the acid
test for a model of SDH, because the model must be able to account for
this pattern.

• There exists a functional explanation for SDH.

• Apart from Hindi, languages like Punjabi and Bengali also feature schwa
deletion, but the pattern differs from language to language. Several di-
alects of these languages exhibit further variation in the deletion pattern.
It would be interesting to explore how a single framework for change can
capture the emergence of these variable patterns, and what are the cir-
cumstances, under which specific deletion patterns evolve.

2.4 Phonological Change of Bengali Verb System

While SDH makes an interesting study of sound change, it is quite simple in
nature. In general, several simpler sound changes occur in sequence to give rise
to a complex pattern of change or shift. These changes often give rise to a set of
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new dialects or languages (e.g., the great vowel shift affected several Germanic
languages including English, Dutch and German). The second case of a real
world phonological change, for which we attempt to develop a computational
model in Chapter 7, is an example of a complex sequence of sound changes.
This change, which affected the morpho-phonological structure of Bengali verb
inflections3 (BVI), was accomplished during 13th to 18th century. The change
gave rise to more than 20 different dialects of Bengali, spoken over parts of
India and Bangladesh. In this section, we present a brief overview of the verb
inflections in Bengali and their history.

2.4.1 History of Bengali

Bengali, a language spoken in the eastern region of India and Bangladesh, is a
member of the Indic group of the Indo-Iranian or Aryan branch of the Indo-
European family of languages. In his book – The Origin and Development of the
Bengali Language (Chatterji 1926), Suniti Kumar Chatterji provides a detailed
description of the history of Bengali and evolution of the current phonological
and morphological features of the language. The origin of modern Bengali can
be traced back to Vedic Sanskrit (circa 1500 BC 600 BC), which during the
middle Indo-Aryan period gave rise to the dialects like Magadhi, and ArdhaM-
agadhi (circa 600 BC 200 AD), followed by the Magadhi-apabhramsha, and
finally crystallizing to Bengali (circa 10th century AD). The verbal inflections
underwent significant phonological changes during the middle Bengali period
(1200 - 1800 AD), which gave rise to the several dialectal forms of Bengali,
including the present standard form of the language known as Standard Collo-
quial Bengali (SCB).

However, as stated earlier, the Bengali literature of the 19th century was
written in the Classical Bengali dialect or the Sadhubhasha that used the older
verb forms and drew heavily from the Sanskrit vocabulary, even though the
forms had disappeared from the spoken dialects by 17th century. Here, we shall
take the liberty to use the term “classical forms” to refer to the dialectal forms

3The change also affected other words, however we concentrate here on the verb inflections,

mainly because of the regularity of the pattern
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of middle Bengali (i.e., the spoken forms of 17th century) and not Classical
Bengali of the 19th century literature.

2.4.2 Verbal Inflections in Bengali

Bengali has a rich and productive verb morphology, where suffixes denoting the
tense, aspect, modality, person and honorific value are added to the verb root.
Although the inflectional system is mostly agglutinative in nature, there are
cases where the same suffix stands for different persons in different tenses (e.g.,
‘a’ in the future tense marks 1st person, as in karaba /korbo/, classical form:
kariba, but in the present tense it stands for the 2nd person, as in kara /karo/,
classical form: karaha). Therefore, we shall treat the suffixes as a single fused
unit, rather than a concatenation of smaller suffixes marking for tense, aspect
etc. Going by this, any verb in Bengali has 49 finite forms, two non-finite forms
and one nominal form. The complete list of inflectional suffixes for SCB and
Classical Bengali are presented in Appendices D.1 and D.2.

The verb roots of SCB can be classified into paradigms based on the syllable
structure. The roots in the same class undergo similar orthographic changes
during suffixation. A 12-class formal classification system for the verb roots
of SCB is proposed in (Chatterji 1926). In order to develop morphological
analyzer and generator for Bengali, we have extended this classification system
into a 19-class system, which is shown in Appendix D.3.

2.4.3 Derivation of Verb Inflections

The verb inflections of the middle Bengali period have undergone a sequence
of sound changes, including, but not limited to, deletion, assimilation and
metathesis. The derivations of almost all the verb forms of SCB (and occa-
sionally, of the other dialects) from their classical counterparts are documented
in (Chatterji 1926). Sometimes the derivations from the Sanskrit (i.e. Old Indo-
Aryan) or Prakrit (Middle Indo-Aryan) forms are also shown. These example
derivations provide sufficient information for constructing the derivations of all
the 52 forms of SCB for all the 19 morphological paradigms.
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OIA MIA Classical Intermediate SCB
600 BC 200 AD 1200 AD 1200–1800 AD

karomi karimi kari kori

kariteChi kariChi kairChi koirChi korChi

karantahi karante karite kairte koirte korte

kariA kairA koirA kore

Table 2.3: Derivations of some representative verb forms of SCB from older
forms. Legends: OIA: Old Indo-Aryan, MIA: Middle Indo-Aryan, Classical:
Middle Bengali Period. All the words are in phonetic forms.

Table 2.3 shows the derivations of a few representative forms of the verb
/kar/. The corresponding derivations in another dialect can be constructed
likewise, as illustrated below for /kartAslo/, the counterpart of /korChilo/
in a dialect spoken in Agartala (the capital of the state of Tripura, situated in
north-eastern part of India). We shall refer to this dialect as Agartala Colloquial
Bengali or ACB, for short.

karuthilA� kariteChila� kartesila� kartesla� kartAslo

We defer the discussion on the details of the phonological changes that
affected the BVI to Chapter 7.

2.5 Summary

In this chapter, we have seen that sound change or phonological change is the
most basic type of linguistic change that is frequently observed in nature. Sound
changes are regular, have a preferred direction and follow an S-shaped dynamics.
Sound changes have been extensively studied in diachronic linguistics, but there
are several issues regarding the actuation (i.e., explanation) of sound change,
which are not very well understood. Researchers have put forward functional,
phonetic and evolutionary models to explain the origin and nature of sound
change. However, none of the theories are devoid of limitations.
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The prime reason behind the disagreement between the different schools
of researchers in this area is the paucity of historical data and impossibility
of experimentation. At the same time, being the foundational step of any
diachronic process in linguistics, understanding the dynamics of sound changes
is of prime importance to diachronic linguistics. Furthermore, if one accepts the
cultural transmission theories of language evolution, then the nature of sound
change can also provide us with insights regarding language evolution, which
is arguably one of the hardest problems of modern science (Hauser et al. 2002;
Christiansen and Kirby 2003b).

In the next chapter, we shall see that computational models can, at least
partially, address the issues of data scarcity and empirical validation in di-
achronic linguistics. We survey the previous works that attempted to resolve
the theoretical issues related to language change, using computational tech-
niques. We also discuss their limitations, which we address in this thesis by
constructing models for the two cases of real world sound changes discussed in
the earlier sections.





Chapter 3

Related Work

Computational modeling techniques are being used in the field of diachronic
linguistics for over the past fifty years. However, these techniques gained pop-
ularity, rather recently during the last two decades. The Language Evolution
and Computation Bibliography website1 hosted by the UIUC Agents and Multi-
Agent Systems Group, contains around 1200 references (as on May 2007) per-
taining to works on computational models of language evolution. Some of these
works also address issues related to language change and many of them are indi-
rectly relevant to diachronic linguistics. Therefore, the site provides important
information and resources for the study of computational models of language
change.

Fig. 3.1 shows the number of publications per year listed in the Language
Evolution and Computation Bibliography site since 1960. Although there has
been some isolated works in the past, the field has gained momentum from
the 90s. The number of publications in this area has almost doubled during
2005-2006 as compared to pre-2000 publications, and the curve is exhibiting an
exponential growth pattern. All these facts point towards the growing popular-
ity of the computational models as well as their impact in the study of language
dynamics.

In this chapter, we present a brief survey of the computational models of
language change. Since there has been several surveys on the computational

1http://www.isrl.uiuc.edu/∼amag/langev/

41
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Figure 3.1: Bar chart showing the number of publications per year listed in the
Language Evolution and Computation Bibliography site

models of language evolution (Steels 1997b; Perfors 2002; Christiansen and
Dale 2003; Wagner et al. 2003; Wang et al. 2005; de Boer 2006), here we do not
discuss at depth the models of evolution. Nevertheless, some of the works that
are directly relevant to the thesis are covered in this survey.

In the context of diachronic linguistics, computational techniques can be
employed to construct the phylogenetic tree of languages and infer the genetic
relationships between languages and language families (also known as recon-
struction; see Nakhleh (2005) for a review; also see Lowe and Mazaudon (1994)
and the references therein), or to explain the phenomenon of language change.
The topic of the thesis, and consequently the scope of this survey, is restricted
to the models pertaining to the second problem.

In the next section, we discuss some of the previous classifications of compu-
tational models of language evolution (or change) and propose a new classifica-
tion system that covers a wider range of computational as well as mathematical
models in this area. The rest of the survey is organized according to this pro-
posed taxonomy.
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3.1 A Three-dimensional Classification System

The inter-disciplinary nature of the models demands a multi-dimensional clas-
sification system. Since the models, techniques, and experiments in this field
have both linguistic and computational aspects, they fit well in the conventional
taxonomy of these disciplines. At the same time, the issues involved in language
change and the nature of explanations provided by a model calls for its own
classification system. Thus, given a computational model of language change,
one can ask the following questions regarding the nature of the model:

• What kind of linguistic explanation the model intends to validate? This
we shall call the objective of modeling.

• What kind of computational or mathematical tools are used to construct
the model? This we shall call the technique of modeling.

• Which level of linguistic organization (e.g., phonology, morphology, lexi-
con and syntax) the model is based on? This we shall call the domain of
modeling.

The survey by Steels (1997b) addresses all of the aforementioned dimensions
in the context of language evolution. Nevertheless, the scope of the survey
is limited to only the MAS based models. Similarly, Niyogi (2006) provides
a classification of the dynamical system models of language change following
the nature of language transmission that has been incorporated in the models.
Thus, the works are classified on the basis of the learning algorithm, and the
cultural and spatial transmission factors that have been considered. However,
in this book MAS models are not discussed at depth. In fact, as far as our
knowledge goes, there is no comprehensive survey that covers the simulation-
based models vis-à-vis the analytical and mathematical ones.

3.1.1 Objective of Modeling

In chapter 2 we have discussed the various linguistic theories of language change
with special emphasis on phonological change. Computational models can be
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constructed to (in)validate any or all of these theories. To illustrate the concept,
let us take the case of the vowel inventories. Linguists have documented several
strikingly similar cross-lingual patterns observed across the vowel inventories of
the world’s langauges (Maddieson 1984; Ladefoged and Maddieson 1996). For
example, the three vowel inventories are usually formed from the vowels /A/,
/i/ and /u/. A functional explanation for the observed regularities in the vowel
inventories beg the concept of perceptual contrast (Liljencrants and Lindlom
1972), whereby it is claimed that the vowels try to spread themselves maximally
over the perceptual space. Several computational models have been proposed
to validate this functional explanation. Liljencrant and Lindblom (1972) used
numerical simulations to show that the optimal configuration of vowel inven-
tories as per the distinctiveness criterion is similar to those observed in the
real world. Schwartz et al. (1997) further refined the model (i.e., the precise
formulation of the optimization criterion), so as to obtain vowel systems that
are closer to the real ones.

de Boer (1997; 1998; 1999b; 2000a; 2000b; 1999a; 2001) proposed a MAS
model for explaining the structure of vowel inventories, which does not encode
any global optimization strategy. Thus, the model is not a functional one, but
puts forward a self-organization based or emergent explanation of the vowel
systems. Since in the model the articulatory and perceptual mechanisms of
the agents have been modeled with some detail, the explanation can also be
considered to have a phonetic basis. Joanisse and Seidenberg (1999) uses neural
nets to show that the so-called optimal vowel systems are easier to learn and
Ke et al. (2003) uses multi-objective genetic algorithms to explain the same.

In the specific context of language change, the objectives of a model could
be to

• provide a functional explanation for a specific case of change by identifi-
cation and formulation of the functional forces and solving the resulting
optimization problem

• provide an emergent explanation by showing that the change could be
a naturally emergent behavior of the linguistic-system under specific cir-
cumstances
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• explain the problem of actuation

3.1.2 Technique of Modeling

Given an objective (i.e., explanation) and domain (i.e., problem) for modeling,
a variety of computational approaches can be adopted to realize the modeling
process. Broadly, the approaches to modeling can be classified into two classes
– the analytical and the synthetic techniques.

In the analytical approach, the hypothesis to be tested is first modeled as a
formal problem. Depending on the technique followed, at the end of formulation
step one might arrive at a difference or differential equation, an optimization
problem, or a more complex mathematical structure such as a graph or net-
work. Note that all these models have some associated free parameters (e.g.,
coefficients in equations, relative weights of the objective functions in an op-
timization problem, the number of nodes, edges etc. in a graph like structure
and so on). The next step is to use standard mathematical techniques or com-
putational method to analyze the model and find out the set of values for the
parameters that makes the model behave like its natural counterpart. In the
case of equations the process thus boils down to solving them through numerical
or analytical methods, whereas optimization problems are typically solved us-
ing soft computing techniques such as genetic algorithms, simulated annealing
and numerical simulation.

If it is possible to show that for certain configurations of the model pa-
rameters the behavior of the model resembles the natural systems, then those
particular parameter configurations are considered as the necessary or sufficient
conditions for the hypothesis to be valid. The analysis can then be taken one
step further by identifying the physical correlates of the model parameters, so
that one can precisely point out under what natural circumstances the case of
change and its explanation being studied are plausible.

Synthetic techniques, on the other hand, model the situation as an interac-
tion of entities (i.e., agents), where the design of the agents, their interaction
patterns depend on the hypothesis to be modeled as well as other simplifications
made to maintain computational tractability of the model. Usually there are a
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large number of model parameters governing the cognitive and social processes
of the agent society. The model is explored systematically by running simula-
tion experiments under controlled conditions (i.e., desired parameter settings)
and thereby, observing the emergent behavior of the model. If it is observed
that for several runs of the simulation experiments under the same parameter
settings the behavior of the model resembles the natural system, then one can
conclude that the particular parameter settings are sufficient or necessary for
the emergence of the behavior. As in the case of analytical models, the physical
significance of these parameter settings can then be further investigated.

The conceptual difference between the synthetic and analytical approaches
is similar to that between the inductive and the deductive techniques. This is
because, in the analytical approaches, if one assumes that the formulation of
the model is correct, then one must accept the conclusions arrived at from the
analysis of the model. To the contrary, the synthetic approach is similar to an
inductive technique, because even if the model is correct, the results cannot be
taken for granted, because for different runs of the simulation the results are
different. If several runs of the simulation show the emergence of one particular
behavior, then only under the inductive generalization it can be concluded that
the model always entails that behavior.

The major difference between these two approaches, however, springs up
from a practical reason; while it might be possible to encode an agent based
stochastic model into a differential equation, the equations are unsolvable un-
less one makes several assumptions (e.g., the number of agents tends to infinity,
generations of agents do not overlap). Some researchers have shown that the
model obtained after such simplified assumptions may yield significantly differ-
ent results from the original one. This casts serious doubts on the conclusions of
analytical models. The synthetic models retain their stochastic and finiteness
properties during experimentation and thus, are more trustworthy. However, a
large number of model parameters that are usually associated with the synthetic
models along with a large simulation time make it hard to explore completely.

An alternative way to view the analytical and synthetic approaches is through
the macro and micro distinction. A macroscopic description of the system views
the system as a black-box with some general global properties, whereas a mi-
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croscopic view of the system considers the system as a conglomeration of inter-
acting entities, where the general global characteristics at the macroscopic level
are emergent properties of the microscopic description. This distinction is quite
commonly made in thermodynamics and other branches of physics, where tem-
perature, pressure etc. are considered as macroscopic properties of a system,
which emerge through the microscopic interactions of molecules and atoms.

Clearly, synthetic approaches subscribe to the microscopic view of the lan-
guage, whereby the properties of the language emerge or self-organize due to
the interactions between the agents (speakers). The analytical approaches, on
the other hand, view the linguistic system as a whole (i.e., at a macroscopic
level) because the microscopic view does not yield to mathematical analysis.
Language or any physical system can also be viewed from an intermediate
mesoscopic level, where the entities and their interactions are modeled (usually
as nodes and edges respectively of a network), but the precise nature of the
agents/interactions are abstracted out.

3.1.3 Domain of Modeling

Computational models have been proposed to explain cases of linguistic change
at different levels of linguistic structure. The inherent complexities of languages
do not allow us to model a language and its dynamics over time to entirety.
Consequently, the successful models are those that address a phenomenon at a
particular level of linguistic structure, such as phonetics, phonology, morphol-
ogy, syntax, lexicon and semantics. A domain-wise description of the models
are presented in Sec. 3.4.

Since the objective of this thesis is to show that it is possible to build computa-
tional models of real world language change for the different types of linguistic
explanations, this survey has been organized primarily along the dimension of
“technique of modeling”. Thus, Sec. 3.2 and 3.3 describe the various analytical
and synthetic techniques of modeling. We also give some examples of compu-
tational models from the different domains of linguistics in Sec. 3.4. Since the
different problems in diachronic linguistics and their explanations are already
discussed in Chapter 2, we do not elaborate here along the dimension of “ob-
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jective of modeling”. Nevertheless, while discussing the particular models, we
touch upon the objective wherever appropriate.

3.2 Analytical Techniques

Analytical techniques can be classified as optimization based models and other
mathematical models. The mathematical models are usually inspired by sim-
ilar treatments in statistical physics and information theory. Here, we have
categorized the analytical models into three classes:

• Dynamical system based models, where the goal is to formulate language
as a dynamical system and obtain the rate equation for temporal evolution
of the system.

• Statistical physical models, which includes models inspired by statistical
physics. While most of them are directly based on a particular model
of statistical physics (say the Ising model), the dynamical system models
do not maintain any such analogy or assumptions. Note that this differ-
entiation has no theoretical consequences, and only reflects the modelers
perspective.

• Optimization models, where the problem of linguistic change is stated
as an optimization problem. Note that these models are theoretically
different from the two aforementioned types.

We discuss each of these modeling techniques briefly and explain the basic
concepts with some examples.

3.2.1 Dynamical Systems

We discuss three examples of dynamical system models of language change to
illustrate the modeling principles. References to other similar works are also
cited along with, even though we do not elaborate on them. All these models
are inspired, to various extents, by similar treatments in population genetics;
see (Ewens 2004) and references therein, also see (Cavalli-Sforza 2000).
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Abrams and Strogatz model of language death

This is a simple model of language competition and death proposed by Abrams
and Strogatz (2003). The objective of the model is to explain the pattern of
decline in the number of speakers in the minority languages finally leading to
the extinction of the language.

The authors consider a system of two competing languages X and Y. Let
x be the fraction of speakers speaking X and y = 1 − x be the fraction of
speakers speaking Y . The attractiveness of a language depends on the number
of speakers of the language and its relative status in the society. Let s be
the relative status of the language X and Pyx(x, s) be the probability per unit
time that a speaker of language Y will start speaking the language X. Under
the aforementioned assumptions, the dynamics of the linguistic system can be
expressed by the following rate equation.

dx

dt
= (1− x)Pyx(x, s)− xPxy(x, s) (3.1)

In words, the rate of change of the number of X-speakers is the difference
between the rate of the number of Y-speakers turning to X and X-speakers
turning to Y. Note that Pxy(x, s) = Pyx(1−x, 1−s). A few simple assumptions
regarding the boundary conditions as well as the form cxas for Pyx(x, s) helps
one to solve the value of x as a function of time, t. The authors show that for
several examples of near-extinct real languages – Scottish Gaelic of Sutherland,
Quecha of Peru and Welsh in Wales – the predictions made by the model about
the number of speakers matches the real data for suitable choice of the model
parameters s, a, c and x(0) (the initial condition).

This is a simple example of a dynamical system model of language change,
where languages compete for speakers; thus, the model subscribes to a macro-
scopic view of language. Interestingly, according to the Abrams and Strogatz
model there are two stable fixed points at x = 0 and x = 1, which implies that
there is no possibility of an equilibrium with two coexisting languages. Mira
and Paredes (2005) extended the Abrams and Strogatz model by introducing
the concept of similarity between the two competing languages, thereby show-
ing that a stable bilingual configuration is indeed possible. The authors vali-
dated their model against real data from two coexisting languages – Castillian
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Spanish and Galician, both spoken in northwest Spain. Some other models in-
vestigating language competition in a similar framework are Patriarca and Lep-
panen (2004), Tesileanu and Meyer (2006) and Pinasco and Romanelli (2006).

Niyogi and Berwick model of language change

A slightly more detailed model of language change as a dynamical system is
offered by Niyogi and Berwick (1996; 1997c; 1997a; 1997b; 1998). In this
model, a linguistic system is defined as a 3-tuple: 〈G,A,P〉, where G is the
set of possible grammars or languages, A is the learning algorithm that takes
as input a set of sentences produced accoring to a grammar and outputs a
grammar g ∈ G, and P is the probability distribution with which the input
sentences are presented to a learner.

From the description of the language at the level of individual, the authors
propose a formulation of the language dynamics at the population level under
three simplified assumptions of (1) non-overlapping generations, (2) same input
distribution to all children and (3) fixed grammars for adults (i.e., adults do
not change their grammars). Let sp(i)[g] be the fraction of population in gener-
ation i that speak according to grammar g, and let sp(i) be the corresponding
distribution function over G. Then clearly, sp(i + 1) is a function of sp(i), A
and n – the number of input examples presented to a child.

Language change in this model is change of the distribution sp(i) over time
i. Note that language acquisition is considered as the only factor affecting lan-
guage structure, and therefore, the objective of the Niyogi and Berwick models
is to validate the acquisition based accounts of language change as proposed
in (Lightfoot 1991; Lightfoot 1999). The models have been solved for various
learning algorithms such as the trigger learning algorithm (Gibson and Wexler
1994), Galves batch learning (Niyogi and Berwick 1998) and the dynamics ob-
tained has been compared with real data. For example, in (Niyogi and Berwick
1998) the authors consider the case of change from Classical Portuguese to Eu-
ropean Portuguese and show that with a batch learning algorithm, the dynamics
is given by the following rate equation.

αi+1 = 1− (1− αip)n (3.2)
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Here, αi represents the fraction of peole speaking Classical Portuguese in the ith

generation and p is the probability with which proclitics are used in Classical
Portuguese. Similar models have been used to explain the phonological merger
in Wenzhou province of China and syntactic change in French (Niyogi 2006).

Some of the other works in this framework pertaining to language evolu-
tion are: Nowak et al. (2001), which models the evolution of the Universal
Grammar; Komarova et al. (2001), which formulates an equation for grammar
acquisition and analyzes the same to find out necessary constraints on grammar
acquisition process (such as error tolerance limit); Komarova and Nowak (2003),
which extends the (Nowak et al. 2001) model for stochastic processes and finite
population; Komarova and Niyogi (2004), where authors explore the conditions
for convergence to a shared vocabulary in a group of agents. The last work
is particularly important from the perspective of language change, because au-
thors show that two languages can be mutually intelligible, even though they
might be quite different. This implies that a language can change over a few
generations without breaking down the communication flow between them, and
therefore, can be a plausible answer to the problem of actuation.

Utterance selection model of language change

Baxter et al. (2006) offers a mathematical treatment of the utterance selection
model (see Croft (2000) and Sec. 2.2.3), whereby the discrete rate equation
is approximated by a Fokker-Plank equation under the continuous time as-
sumption. The equation is exactly solvable for a single speaker and has been
analytically investigated for the case of multiple speakers. One of the interest-
ing observations made from the model is that extinction of a linguistic form in
case of multiple speakers take place in two stages. In the first stage, all the
speakers quickly converge to a common marginal distribution. The ultimate
extinction of the form takes place in the second stage after a long time due to
some random fluctuations.
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3.2.2 Statistical Physics Models

The view of language as a complex adaptive system immediately allows one
to apply the theories and techniques of physics to analyze the dynamics of a
linguistic system. This line of research has been pioneered by the works of
M. Gell-Mann (1992; 2005), who is better known for his works on physics of
complexity (Gell-Mann 1995). The dynamical system based analyses of lan-
guages that have been discussed in the previous subsection employ tools and
techniques from physics. In this subsection, we look at a few more models of
language change inspired by the current theories of statistical mechanics such
as the Ising model and complex networks.

Ising model of language change

“The Ising model is a mathematical model in statistical mechanics. It can be
represented on a graph where its configuration space is the set of all possible
assignments of +1 or −1 to each vertex of the graph. A function, E(e) is
defined, giving the difference between the energy of the bond associated with
the edge when the spins (+1 or −1) on both ends of the bond are opposite
and the energy when they are aligned.” (Wikipedia 2007). The Ising model
finds several applications in statistical physics ranging from explanations in
magentization and superconductivity to models of simple liquids.

Itoh and Ueda (2004) proposes an Ising model for change of word-ordering
rules. Typological studies on word-ordering rules reveal that the languages of
the world can be classified into two groups: prepositional and other (postpo-
sitional or adpositionless) languages. The word order parameters depend on
whether a language is prepositional (Greenberg 1963) and it seems that the
languages in the world fluctuate between the two stable structure of word or-
dering rules. In the Itoh and Ueda model, each word order parameter is assigned
a value between −1 and +1 such that the parameter values for Japanese are
assigned +1 (an arbitrary choice) and those opposite to them are assigned a
value of +1. A ternary interaction model with 8 particles with a small mutation
rate is found to display characteristics similar to that of real languages.
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The authors also construct graph, where a node represents a language and
the weight of an edge is defined as the Manhattann distance between the vectors
(a 66-dimensional vector is constructed for each language for based on the word-
ordering parameters) of the two nodes connected by the edge. The change of
word ordering rules is simulated by a random walk on the graph, where the
next node in the walk is chosen randomly from the set of nodes that are within
a predetermined Manhattann distance from the current node. The ternary
interaction model as well as the random walk suggests that languages for which
all the word-ordering parameters have the same sign are stable, and there are
occasional fluctuations between these two stable states.

Equilibrium statistical mechanics model

Kosmidis et al. (2006b) suggests the use of equilibrium statistical mechanics to
study the properties of natural languages such as Zipf law, growth of vocab-
ulary in children and reduced communication abilities by the schizophrenics.
According to this model, if an individual has a vocabulary of N words, then
the associated language faculty in the brain is assumed to be in one of the N
possible states. The brain is in the ith state when the individual utters the word
i. Temperature of the system is a measure of the willingness or ability of the
users to communicate. Based on a particular ansatz for the Hamiltonian of the
system, the authors derive several universal properties of languages. Although
not directly related to language change, the work makes interesting predictions
about language acquisition and vocabulary growth, and demonstrates the ap-
plication of techniques from physics in linguistics. Some other models that
directly employ tools of physics are (Ferrer-i-Cancho 2005a; Kosmidis et al.
2005; Kosmidis et al. 2006a; de Oliveira et al. 2006; de Oliveira et al. 2006).

Complex network based models

In statistical mechanics, physical systems are often modeled as a collection of
large number of interacting entities, where the entities are the nodes and their
interactions are represented as edges of a large network, commonly referred to
as a complex network. In recent times, complex networks have been successfully



54 Related Work

employed to model and explain the structure and organization of several nat-
ural and social phenomena, such as the foodweb, protein interaction, WWW,
social collaboration, scientific citations and many more (see Barabasi (2002)
and Newman (2003) and references therein for a review of complex networks
and their applications).

In the context of languages, complex networks have been used to model
the relationship between the words and concepts (Ferrer-i-Cancho and Sole
2001; Dorogovtsev and Mendes 2001; Sigman and Cecchi 2002; Motter et al.
2002; Holanda et al. 2004), the mental lexicon (Luce and Pisoni 1998; Tama-
riz 2005; Kapatsinski 2006), the structure of syntactic dependencies between
words (Ferrer-i-Cancho and Sole 2004; Ferrer-i-Cancho 2005b) and numerous
other applications to language modeling (Hudson 2006) and NLP (see, e.g., Bie-
mann (2006), Pardo et al. (2006), Antiquiera et al. (2007)). Although none of
these works are directly relevant to diachronic linguistics, they provide useful
insights into language evolution. The topological properties of the linguistic
networks (e.g., degree distribution, clustering and mixing patterns) reflect lin-
guistic universals and variations, whereas the dynamical processes acting on
the network as well as the evolutionary dynamics of the system that lead to
the observed topologies correspond to the processes of language evolution and
change.

Some of the more direct applications of network models in the field of di-
achronic linguistics pertain to the simulation of language competition or vari-
ation on social networks (Nettle 1999; Ke 2004; Gong et al. 2004; Dall’Asta
et al. 2006a; Dall’Asta et al. 2006b) and modeling of language acquisition (Ke
and Yao 2006). It is interesting to note that while a majority of the multi-agent
simulation models assume that the probability of interaction between any pair
of agents is the same (e.g., Steels 1996; Boer 2000; Harrison et al. 2002), vari-
ations are typically observed in agent-based systems when this probability is
skewed. In other words, agents are spatially grounded and communicate more
frequently with their neighbors. The interaction pattern in the former case
can be modeled as a clique (agents are nodes, edges denote interaction), while
the latter cases are modeled as single or many dimensional lattices (Livingstone
2002; Patriarca and Leppanen 2004) or more complex small world networks (Ke
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2004; Gong et al. 2004; Dall’Asta et al. 2006a; Dall’Asta et al. 2006b). Lee et
al. (2005) systematically explores the role of the population structure on lan-
guage evolution and variation.

3.2.3 Optimization Models

Constrained optimization is a natural choice for modeling functional explana-
tions of language change because language is viewed as an optimizing system
under the functionalist view (Boersma 1998; also see Sec. 2.2.1 of this the-
sis). As an example, let us consider the problem of explaining the universal
principles observed across the vowel inventories of the languages all over the
globe (Ladefoged and Maddieson 1996). Liljencrants and Lindblom (1972) put
forward a constrained optimization model, where the vowels are represented as
points within a bounded two-dimensional acoustic plane and the optimization
function is to minimize the mean of the inverse-square Euclidean-distances be-
tween the vowels. This explanation was motivated by the principle of maximal
perceptual contrast, which states that higher the perceptual distance among
the vowels of an inventory, the easier it is to perceive and learn the vowels.
Liljencrants and Lindblom (1972) uses numerical simulations for solving the op-
timization problem and the vowel systems obtained through the process closely
resemble the naturally occurring ones. The model has been refined by later
researchers (Crothers 1978; Lindblom 1986; Schwartz et al. 1997), which also
employ numerical simulations for carrying out the optimization process.

All the aforementioned models of vowel systems, however, are based on
a single optimization criterion. In some of the models (e.g., Lindblom 1986)
multiple optimization criteria have been proposed, though they are then com-
bined in certain ways to yield a single optimization criterion. The problem
with a single objective optimization model is that it yields a unique optimal
solution – clearly a disadvantage for modeling linguistic systems, which display
a wide range of variation. Ke et al. (2003) proposes a multi-objective opti-
mization model for explaining the structure of vowel and tonal systems. In
this model, Genetic Algorithm (GA) (originally proposed by Holland (1975)
as a natural selection technique mimicking the biological evolution), or more
specifically Multi-objective GA (MOGA) (Goldberg 1989) has been used as
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the optimization tool. In MOGA, the concept of optimality is replaced by
Pareto-optimality2 and one typically obtains a large number of Pareto-optimal
solutions rather than a single optimum candidate.

Redford et al. (1998; 2001) proposes a model for emergence of syllable sys-
tems, where several functional pressures related to the articulatory and percep-
tual processes acting over the words and vocabulary as a whole are formulated
as objective functions and/or constraints. A single optimization function is then
formed through the weighted linear combination of the different objectives. The
optimization process is carried out using GA. The model shows the emergence
of universal syllable typologies.

3.2.4 Criticisms

The analytical models have the following two important advantages over the
synthetic models:

• It is often easy to identify the causal relationship between the model
parameters and the observed properties of the linguistic systems. This is
due to the fact that once the exact analytical solution for the models are
known (esp. for the dynamical system and statistical mechanics models),
the dependence of the solution (observed pattern) on each of the variables
are also known.

• These techniques usually yield models that are computationally tractable
and can be employed to develop NLP applications. For example, the
closed form solution obtained from a dynamical system model can be
readily implemented as a program that outputs the pattern for a given
set of initial conditions.

Nevertheless, there are also several disadvantages associated with the ana-
lytical techniques. These are listed below.

2See Sec. 4.1.1 for definition of Pareto-optimality and other notions related to Multi-

objective optimization
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• In most of the cases, the dynamical system models (e.g. Abrams and
Strogatz 2003; Niyogi and Berwick 1996; Niyogi and Berwick 1998) as
well as the statistical mechanical models are analytically solvable only in
the thermodynamic limit (i.e., when the number of entities/speakers in
the system tends to infinity). Moreover, these models also assume that the
generations are non-overlapping in nature. Clearly, these assumptions do
not hold good in reality. Several lines of research show that the predictions
of analytical models (also known as the macroscopic models3) under the
above assumptions do not match those of synthetic or microscopic models
(see Stauffer and Schulze (2005) for a comparison of the macroscopic
and microscopic models in the context of language competition; also see
Briscoe (2000c; 2000a)). This is a serious drawback, as this calls into
question the validity of the predictions made by the analytical models.

• Although the optimization models do not suffer from the aforementioned
limitation, the problem with them is that these models are silent about
how the optimization process might have taken place in reality. There are
at least three reasons for which the issue of optimization deserves a non-
trivial explanation (Oudeyer 2005b): first, a näive Darwinian search with
random mutations might not be sufficient to explain the emergence of a
complex pattern; second, the speakers are generally oblivious to the fact
that the language they speak is undergoing some structural change and
they participate in the process being quite unaware of it; and third, lan-
guage change takes place in a distributed environment without any central
control. Therefore, one must be able to provide a self-organizing model of
language change based on realistic assumptions about the language users
and their interactions.

3The distinction between macroscopic and microscopic descriptions of a system is prevalent

in disciplines such as Physics, esp. Thermodynamics, Economics, Population Biology and

Linguistics. Macroscopic models abstract out the details of a system and deal with the average

behavior, whereas the microscopic models take into account the details of the individual

entities of a system. In the context of language, a microscopic model considers a language as

a collection of utterances by a population of speakers, whereas a macroscopic model abstracts

out those details and views a language as an atomic system, that is, the average of the language

of the individuals.
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In the next section, we discuss the synthetic techniques based on the micro-
scopic view of language, which circumvents some of the aforementioned limita-
tions of the macroscopic models.

3.3 Synthetic Techniques

As discussed previously, Multi-Agent Simulation (MAS) is the most popular
synthetic technique in modeling of language evolution and change. The ear-
liest examples of MAS modeling for language change goes back to the 1960s,
when Klein and his colleagues developed a general framework for Monte Carlo
simulation of language change (Klein 1966; Klein et al. 1969; Klein 1974) and
demonstrated it on Tikopia and Maori languages. These extremely detailed
simulations tried to model every aspect of the concerned population, including
the demographic distributions, social structures and interaction patterns. How-
ever, it was not until recently that the MAS models got into the mainstream
research in diachronic linguistics, presumably due to the successful application
of these models in a closely related domain of language evolution.

A MAS model has three basic components: agent representation, agent
interaction, and the world in which the agents are situated (Turner 2002).
The existing surveys on MAS models of language evolution classify the models
according to one or more of these three basic dimensions. Wagner et al (2003),
for example, suggests a classification of the simulation models based on the
features related to the agent’s world – situatedness and the agent’s linguistic
model – structuredness. A model is said to be situated if the agents interact with
the “artificial world”, in which they are situated, in non-communicative ways.
A simulation is structured if the “utterances are composed of smaller units, such
as the words forming a phrase.” Thus, according to this classification system,
there are four basic types of simulations:

• Situated and structured (Steels 1998; Cangelosi and Parisi 2001; Gong
et al. 2004; Gong and Wang 2005)

• Situated and unstructured (Steels 1995; Oudeyer 1999; Smith 2005)
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• Nonsituated and structured (Hare and Elman 1995; Kirby 1999; Kirby
2002; Oudeyer 2005a; Oudeyer 2005b)

• Nonsituated and unstructured (de Boer 1999b; de Boer 2000a; de Boer
2000b; Fyfe and Livingstone 1997; Livingstone 2003)

The linguistic issues addressed by the simulations, however, have been ex-
pressed in terms of another classification system that was proposed by Hockett
and Altmann (1968) as a suggestion to the problem of evolution of communi-
cation and complexities of communication systems of the biological world.

Steels (1997b), on the other hand, places the simulation models in a two
dimensional framework reflecting the computational issues and the problem at
hand. The problems addressed are arranged on the conventional organizational
hierarchy of languages, such as phonology, morphology and syntax.

In the following three subsections we briefly discuss the different modeling
paradigms within MAS in terms of the structure of the agents, their interaction
patterns and the simulation world.

3.3.1 The Agent Model

A linguistic agent has three basic components. The articulation and perception
mechanisms help the agent to utter and understand linguistic messages. The
mental model or the grammar is the abstract description of the language in an
agent’s brain. Learning is the process of updation of the mental model or the
grammar based on the inputs from the environment.

Articulator and Perceptor

The details of the articulator and perceptor models in any MAS depend on the
complexity of the language being modeled. For example, in de Boer (1999b;
2000a; 2000b) the scope of modeling is restricted to vowel systems. Therefore,
agents are designed to articulate vowels signals through formant-synthesis and
perceive the same through formant-analysis. Similarly, Oudeyer (2005b) de-
scribes an extremely detailed articulator and perceptor models based on the
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formant-synthesis and analysis approach (de Boer 2000b). In this model, the
movement of the vocal tract is simulated to generate the formant frequencies.

Such detailed articulatory or perceptual processes, though very accurate and
realistic, are time-consuming, and therefore, are not suitable for models that
address questions related to morphology and syntax. Consequently, in (Kirby
2001; Kirby 2002; Briscoe 2000b) that attempts to model the structure and
dynamics of syntactic constructs, the articulators and perceptors are kept ex-
ceedingly simple that can generate symbolic strings of words or phones.

Mental Model

Mental model or the representation of the grammar of the language (i.e., the
I-language) within an agent is a very crucial issue in MAS because this alone
determines the set of possible linguistic structures that can eventually emerge in
the system. If the mental model is so defined that it is tuned towards (i.e., has
a strong bias towards) the final results obtained through simulation, then there
is every reason to doubt its plausibility as well as the validity of the results. On
the other hand, extremely general mental models are computationally expensive
and usually intractable unless the problem being investigated is very simple.

The agent representation schemes can be broadly classified into the symbolic
and the connectionist paradigms. The symbolic models use rules for represent-
ing and processing of the language (Briscoe 2000b; de Boer 2000a; Kirby 2001;
Kirby 2002), whereas connectionist models are typically implemented using
Artificial Neural Networks (Hare and Elman 1995; Batali 1998; Cangelosi and
Parisi 1998; Smith 2002; Cangelosi 2003; Cangelosi 2005; Oudeyer 2005b). See
Turner (2002) for a detailed survey on use of neural nets and rules in MAS.
While connectionist models provide a strong framework for representation of
agents and do not require any unnecessary assumptions to be made on the part
of the modeller about the internal representation of the agents, they are not
transparent in the sense that one cannot precisely point out why and how a
system (read neural network) works the way it does. Thus, it is more difficult
to extrapolate from the model to the real world.
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Learning

Language acquisition is one of the key factors affecting language change (see
Sec. 1.1.1 for a discussion). Consequently, the proper modeling of the learn-
ing mechanism is of utmost importance to any MAS based model of language
change. Formally, the process of learning is an updation of the mental (or lan-
guage) model of the agent or equivalently, transition from one mental state to
another. Some of the different learning schemes that have been described in
the literature are (Turner 2002)

• Rule generalization (Kirby 2001): Given a set of non-compositional rules,
they are replaced by an equally expressive, but more compositional rules.

• Obverter (Oliphant and Batali 1997): The rules for signal generation are
chosen so as to maximize the probability of correct decoding and similarly,
the rules for signal decoding are adopted such that the probability of
correct generation is maximized. Correct generation and decoding are
defined as the average generation and decoding rules of the population
at a particular point of time, and thus the obverter procedure requires
that an agent has access to the mental states of all the other agents.
Batali (1998) describes a self-understanding based learning scheme, which
is similar to the obverter procedure but differs from the former in the
fact that during rule adoption for signal generation, the agents try to
maximize the probability based on their own decoding rules. Thus, in the
self-understanding method agents need not access the internal states of
other agents for learning the generation rules, even though they need to
do so for learning the decoding rules.

• Imitation (de Boer 2000a; Livingstone 2002; de Boer 2000b): Agents
update the rules so that they can imitate the other agents as closely as
possible. In contrast to the above two learning schemes, imitation does
not presume the knowledge of the internal states of other agents by an
agent, and thus, is more realistic.

The details of the implementation of the learning scheme in a MAS depends
on the representation of the mental model. In neural networks, learning is
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carried out using the standard techniques such as back propagation (Rumel-
hart et al. 1986) and genetic algorithms (Montana and Davies 1989). In rule-
based agents, learning is implemented through statistical techniques such as
expectation maximization, Bayesian learning, example based learning etc. See
Mitchell (1997) for an accessible introduction to these machine learning tech-
niques.

It might be worthwhile to mention here that Niyogi (2006) compares three
basic learning schemes – memoryless learner (trigger learning algorithm), batch
learner and asymmetric cue based learner, and other variations of the same
in the context of dynamical system based models of language change. Inter-
estingly, different theoretical predictions are made for the different learning
algorithms. For instance, in the case of language competition between two lan-
guages (Niyogi 2006: Ch 5), the memoryless learner gave rise to a single stable
attractor (i.e., only one of the languages dominate), the batch learner gave rise
to two stable attractors (i.e., both the language can co-exist) and depending
on a model parameter p the cue based learner could give rise to both a single
stable attractor, or two stable attractors.

3.3.2 Agent Interaction

In MAS the agents form a linguistic community and they interact with other
agents linguistically and sometimes also extra-linguistically or through the shared
environment. The interaction pattern between the agents has crucial impact
on the nature of the emergent linguistic system. Usually agent-interactions are
modeled using language games.

The concept of language game was introduced by Steels (1995; 1998). Any
linguistic communication among a group of individuals is viewed as a series
of language games. The basic structure of a language game is as follows. An
initiator (speaker) initiates a language game by identifying a concept to be
communicated; the initiator then generates a linguistic signal corresponding to
the concept; the signal is received by another agent – the receiver, who then
tries to identify the concept from the linguistic signal perceived; finally, the
receiver conveys the information regarding the identified concept through the



3.3 Synthetic Techniques 63

generation of a linguistic or extra-linguistic signal, or through some action on
the shared environment. In some cases an extra step is added, where the initia-
tor, based on its interpretation of receiver’s linguistic/extra-linguistic signal or
action, informs the receiver whether the communication was successful or not
(e.g., Steels 1995; de Boer 2001). Nevertheless, recent works (Oudeyer 2005b;
Smith 2005) have shown that high communication success rate and convergence
to a set of shared linguistic conventions can be arrived at in a multi-agent system
even without the assumption of extra-linguistic communication.

There are numerous MAS models based on language games. The exact
nature of the game depends on the objective of modeling. Naming games (Steels
1995), spatial language games (Bodik 2003a), imitation games4 (de Boer 2000a)
and advertising games (Avesani and Agostini 2003) are examples of commonly
used language games. We do not elaborate any further on the structure of
the language games; rather we discuss at some depth the different strategies
for choosing the initiators and receivers in a language game and their physical
significance.

Recall that for explaining the causal forces behind language change one must
explain the interaction patterns of the speakers and the language acquisition
process (Fig. 1.2). Different strategies for selecting the players of a language
game can be correlated to the different arrows shown in Fig. 1.2. Based on this,
we propose the following classification of the MAS models.

• Vertical model or Iterated learning model: Normally, there is one teacher
and one learner. The information flows vertically as the learner acquires
the teachers language. Thus, only the thick black vertical arrows are
modeled (Hare and Elman 1995; Kirby 2001). These models try to explore
the effect of language acquisition on language change.

• Horizontal model: A population of agents tries to communicate with each
other and learn from the success and failures. In some models the agents
might age and die (removed from the system). Thus, the white thick and
gray horizontal arrows are modeled (de Boer 2000a). These models try to

4In Chapter 5 and 6 of this thesis we use imitation games to develop MAS models for

language change. Sec. 5.1.1 describes the concept of imitation game in details.
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explore the self-organization of the language through cultural transmis-
sion. The effect of learning is not ignored, but more importance is laid
on synchronic variation and social communication patterns (Gong et al.
2004).

• Hybrid model: Children learn from their teachers, and fellow learners.
Adults learn from other adults, but at a much slower rate. Thus, it
models the white, black and gray arrows (Bodik 2003b; Smith and Hurford
2003). Clearly, the hybrid model subsumes the vertical and horizontal
models as far as the explanatory power is considered. However, owing to
their simplicity and computational tractability, the later models are more
popular than the former one.

3.3.3 World Models

In the context of language evolution the environment or world model, where the
agents are grounded, is usually quite complex because it is important to model
the benefits of a verbal communication system, if any, through the interactions
with the world, such as the presence of predators (Jim and Giles 2000) or poi-
sonous foods (Cangelosi and Parisi 1998). However, in the context of language
change, where there already exists a language, the role of the environment is
limited to social issues such as the structure of the society, the social status
associated with a language and migration of population. Some of these issues
are discussed below.

Society Structure: The interaction pattern between the agents plays an im-
portant role in the nature of linguistic variation observed in an artificial
system. This has been discussed in Sec. 3.2.2.

Aging: Many MAS models consider the aging of the agents because the adults
usually stick to the already learnt conventions, though the children during
the learning phase acquire languages quite fast. It has also been observed
that languages usually change when one generation of speakers are acquir-
ing the language. See e.g., Hurford (1991a); Kirby and Hurford (1997)
and de Boer (2005).
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Migration and Language Contact: Migration is modeled in MAS through an
influx or outflux of agents. Migration of agents leads to language con-
tact and language change. Several MAS models (see e.g., de Boer (1999a;
2000a; 2000b)) implement small scale migration through random intro-
duction or removal of agents. Steels (1997a) studies the effect of language
learning and language contact on language dynamics.

We do not know of any MAS model of language change, where the social
status associated with a language is explicitly modeled. However, as discussed
earlier there are some analytical models (see e.g., Abrams and Strogatz (2003))
that take into account the effect of social status associated with a language.

3.4 Research Issues

The previous two sections primarily focus on the modeling techniques and the
linguistic problems being modeled have been excluded from the discussion. Fur-
thermore, due to the similar nature of the techniques used in modeling language
evolution and change, a large number of examples included in those sections
have been borrowed from the area of language evolution. In this section, we
concentrate on the different domains and problems in diachronic linguistics that
have been addressed using computational techniques. We shall briefly mention
the field of investigation and cite relevant examples within the board areas of
linguistics.

3.4.1 Phonetics and Phonology

Structure of sound inventories: Explanations of the emergence of vowel sys-
tems through optimization (Liljencrants and Lindlom 1972; Lindblom
1986; Schwartz et al. 1997; Lindblom 1998), neural networks (Joanisse
and Seidenberg 1997), MAS (de Boer 1997; de Boer 1999a; de Boer 2000a;
de Boer 2000b; de Boer 2001) and MOGA (Ke et al. 2003).
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Complex utterances and syllables: Explaining universals and other phono-
logical constraints through MAS (Oudeyer 2005a; Oudeyer 2005b); ex-
plaining the emergence of syllables typologies through GA-based con-
strained optimization (Redford et al. 1998; Redford 1999; Redford and
Diehl 1999; Redford et al. 2001); interactions between syllables as com-
plex networks (Soares et al. 2005).

Vowel harmony: Modeling the emergence of vowel harmony in the Turkic
languages through MAS (Harrison et al. 2002; Dras et al. 2003).

3.4.2 Lexicon

There has been several works on emergence of a shared lexicon in a group
of communicating agents (see e.g., Steels (1995; 1996); Oudeyer (1999)) and
universal properties of the lexicon and word usage (see e.g., Dorogovtsev and
Mendes (2001); Sigman and Cecchi (2002); Ferrer-i-Cancho (2005a); Tama-
riz (2005); Kosmidis et al. (2006b)). However, we shall discuss here only the
issues related to lexicon change.

Spontaneous lexicon change: Models explaining the spontaneous change of a
lexicon through MAS (Steels and Kaplan 1998; Dircks and Stoness 1999;
Bodik and Takac 2003).

Homophony and borrowing: See Wang et al. (2005) for a survey on models
of homophony and borrowing. Also see (Steels and Kaplan 1998; Ke and
Coupé 2002).

Lexical diffusion: See Wang et al. (2005) for a survey on models of lexical
diffusion.

3.4.3 Morphology and Irregularity

Hare and Elman (1995) describes a neural network based modeling of the histor-
ical change of English verb morphology. The input to the system is the highly
complex past tense forms of Old English. The neural nets are trained to learn
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the past tense forms from this data. The learnt structure of the neural net is
then set as the target for the next generation. Thus, it is similar to an Iterated
learning model, where each generation is represented as a neural network. Af-
ter several generations of training, the past tense forms get regularized and the
modern forms emerge in the system. Certain verbs, nevertheless, remain irreg-
ular (i.e., retain their older forms), which is observed in modern English as well.
This immunity towards regularization is explained through usage frequency of
the verbs.

Kirby (1999; 2001; 2002) describe an Iterative learning based MAS model
for emergence of regular and irregular patterns in morphology. The findings are
similar to that of (Hare and Elman 1995). However, unlike (Hare and Elman
1995) the experiments are conducted with artificial string languages, rather
than on real linguistic data.

3.4.4 Syntax

Diachronic syntax is a well studied and challenging research area in histor-
ical linguistics (see Kroch (2001) for a review). Several models have been
put forward to explain the emergence of recursive syntax in a population of
agents that initially had a language without recursive syntax. See for ex-
ample, Steels (1998)and Kirby (2002) for MAS based accounts; Christiansen
and Devlin (1997) for neural network based explanation; Ferrer-i-Cancho and
Sole (2004) for complex network based approach; Niyogi (2006) for dynami-
cal system model. Here we discuss a few models that have direct relevance to
diachronic syntax.

Learning and syntactic change: Briscoe (2000b; 2002) discuss the effect of
learning on diachronic syntax both in microscopic (i.e., MAS) and macro-
scopic (i.e., dynamical system) models. Effect of learning on language
change (specifically syntactic change) is also discussed in Niyogi (2006),
where the analysis is purely from the macroscopic perspective.

Word order change: Itoh and Ueda (2004) describes an Ising model for word
order change, which has been described in Sec. 3.2.2. Minett et al. (2006)
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proposes a MAS model for predicting word order bias. Also see Chris-
tiansen and Devlin (1997).

Loss of V2 (verb second property): Niyogi and Berwick (1997c; 1997; 1998)
put forward dynamical system models of language change to explain the
loss of V2 in languages such as Portuguese.

3.4.5 Other Areas

We have already discussed the models that explore the effect of interaction pat-
tern between the individuals on language variation (synchronic and diachronic).
Another common research problem in this field is to explain the emergence of S-
shaped dynamics during language change (Briscoe 2000a; Harrison et al. 2002).

3.5 Concluding Remarks

In this chapter we have seen that computational and formal modeling of lan-
guage evolution and change is a burgeoning research area. A variety of modeling
techniques are being used and the results obtained from them are convergent
as well as complementary. As is evident from the publication trend shown in
Fig. 3.1, the field, however, is still in its initial phase; it is expected to flour-
ish as a fruitful research program in the coming years with a larger number of
contributions from the various disciplines involved.

At the same time, one cannot deny the fact that almost all the models
pertaining to the field are weak on rigorous empirical validation. In the context
of the models of language evolution, this limitation is understandable because
we do not have any data from the past that show the different stages of evolution
of human language. However, despite several methodological problems (see
Sec. 1.1.4 for a discussion), we do have some amount of historical data to study
and validate the models of language change.

Rather than simulating the change of real languages, a majority of the
models of language change, e.g., (Steels and Kaplan 1998; Kirby 2001; Red-
ford et al. 2001; Briscoe 2002), study the general properties of the model and
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compare them against the empirically observed linguistic universals. On the
other hand, several works that claim to have modeled real languages typically
validate the models against the statistical distribution of the linguistic forms
or speakers, rather than the structure of the linguistic forms. For example,
the dynamical system models described in Niyogi and Berwick (1997c; 1997a;
1998) that intend to model the change affecting European Portuguese, end up
measuring the number of two competing linguistic varieties in a corpus of histor-
ical Portuguese, and compare this statistic with that predicted by the models.
Similarly, the work on Turkic vowel harmony (Harrison et al. 2002; Dras et al.
2003) try to match the S-shaped dynamics observed in the real world, and not
the phonological structure of the words obtained after application of harmony.

In fact, there are very few works that compare the real world linguistic
forms with the emergent ones. The works on vowel systems (see Sec. 3.4.1 for
references) and change in English verb morphology (Hare and Elman 1995) are
few such examples. Despite the fact that a large number of cases of language
change have been documented by the historical linguists, this extreme paucity of
models of real world language change is presumably an outcome of the hardness
of modeling vis-à-vis the lack of practical applications of such models. Else how
can one explain the existence of exceedingly complex and extremely detailed
“synchronic models” of natural languges that are used for the purpose of NLP
applications? See Jurafsky and Martin (2000) for an accessible introduction to
the synchronic language models used in NLP.

Given the fact that computational models of diachronic linguistics have
been criticized for their aforementioned drawback (Hauser et al. 2002; Poibeau
2006), development of models of real language change seems to be an extremely
important as well as challenging research direction that can provide further
insights into the phenomena being investigated, giving more reasons to believe
not only the plausibility of that particular model, but also the computational
models as such. This is precisely the aim of the current work, which we explore
in the subsequent chapters of this thesis.





Chapter 4

Constrained Optimization

Model for Schwa Deletion in

Hindi

Functional explanations of phonological change argue that the sound patterns
of a language evolve through a constant process of optimization under the pres-
sure of functional forces acting over a language (Boersma (1998) and Sec. 2.2.1
of this thesis). Schwa deletion in Hindi (SDH) can be explained in terms of
syllable minimization within the framework of functional phonology. The ob-
jective of this chapter is to construct a functional model for explaining the
schwa deletion pattern observed in Hindi. For this purpose, we propose a
constrained-optimization framework, where the different functional forces are
formally encoded as constraints and/or optimizing criteria, and the model is
solved analytically to obtain the schwa deletion pattern of Hindi. This in turn
helps us formulate a linear time algorithm for predicting the deletion pattern,
which has been used to develop a grapheme-to-phoneme converter (G2P) for
Hindi.

This chapter is organized as follows. In Sec. 4.1, we propose a general
mathematical framework for constrained-optimization in functional phonology.
Some basic definitions and notations specific to SDH are also explained in this
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section. Sec. 4.2 describes a way to specify the syllable structure of Hindi as well
as the syllabification procedure in this framework. Sec. 4.3 discusses a formal
encoding of the acoustic distinctiveness constraints in the context of SDH. In
Sec. 4.4 we redefine SDH as a syllable minimization problem and analytically
show that the optimal SDH pattern according to the proposed model is almost
identical to Ohala’s rule (Ohala 1983b). Sec. 4.5 presents an efficient algorithm
for generating the SDH pattern based on the syllable-minimization technique.
The effect of morphology on the deletion pattern is described subsequently, for
which some modifications to the algorithm are suggested. The evaluation of
the algorithms and their applicability to Hindi text-to-speech system are also
reported in Sec. 4.5. Sec. 4.6 summarizes the salient features of the constrained-
optimization model, its advantages and limitations with special reference to
SDH.

4.1 The Framework

In this section we propose a general mathematical framework for modeling
functional explanations. We also introduce certain basic concepts and notations
in the context of schwa deletion. These will be used to develop a functional
model for SDH in the subsequent sections.

4.1.1 A General Framework for Constrained Optimization

Let L be the universal set of natural languages consisting of all the languages
of the past, present and the future (possibilities). Let F = {f1, f2, . . . , fn} be
the universal set of objective functions, each measuring some functional benefit
of a language l ∈ L under consideration. Note that as discussed in Sec. 2.2.1,
the proponents of functional phonology (Boersma 1998) as well as optimality
theory (Prince and Smolensky 1993) claim that the structure of all natural
languages are shaped by the interaction of a universal set of functional objectives
and/or constraints. Therefore, in this framework, we assume F to be universal
(i.e. language-independent) and finite. Also, without loss of generality, we
define each of the objective functions f : L→ R, to be maximizing in nature.
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Definition 4.1 For two languages li, lj ∈ L, and an objective function f ∈ F,
li is said to be better than lj with respect to f if and only if f(li) > f(lj).

Definition 4.2 For two languages li, lj ∈ L, li is said to be better than lj or li
dominates lj with respect to F′ ⊆ F, if and only if

1. li is better than lj with respect to at least one of the objective functions
f ∈ F′, and

2. there does not exist any objective function f ′ ∈ F′, such that lj is better
than li with respect to f ′.

The inherently conflicting nature of the objective functions eliminates the
possibility of any globally optimum language l∗ ∈ L such that l∗ dominates all
the languages in L (see Sec. 2.2.1 for discussion on the same). Nevertheless, we
can have languages which are dominated by no other language.

Definition 4.3 A language li ∈ L is said to be Pareto-optimal or non-dominated
if and only if there does not exist a language lj 6=i ∈ L, such that lj dominates
li.

The concepts of domination and Pareto-optimality are illustrated in Fig. 4.1
with the help of two objective functions f1 and f2. Note that in general, it is
not possible to achieve arbitrary high values for one of the functions, say f2,
by fixing the other function f1 at a constant k1. For example, if we restrict
the maximum length of the words of a lexicon to some value, say 5, then the
maximum acoustic distinctiveness, measured as the edit distance between the
two words, can never exceed 5. Let φ12(x) be the maximum value of f2, when
f1 is held at x. As illustrated in Fig. 4.1, φ12 is expected to be a decreasing
function of x and it bounds the set of possible languages over the f1−f2 plane.
It also defines the set of Pareto-optimal languages. Moreover, according to
the functional principles (Boersma 1997b), all the languages observed in nature
must belong to this set; if not, then the language will undergo a series of change
and will finally converge to a language on the φ12 curve. In other words, all
languages on the left of the φ12 curve are unstable, and languages on the φ12
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Figure 4.1: The concept of Pareto-optimality illustrated through two objective
functions f1 and f2. The φ12 curve represents the Pareto-optimal languages,
which are semi-stable. The points (languages) in the shaded region represents
the dominated set, i.e. the languages that are unstable, whereas the points
above the φ12 curve represents impossible languages.

curve are semi-stable. The curve acts as a stable attractor (Ott 2002) for the
state space L, where the dynamics are governed by language change.

One possible way of defining language change in this framework is as follows.
Let there be a language l, whose functional fitness across the n dimensions are
given by {fi(l)}, for 1 ≤ i ≤ n. Suppose that out of these n objectives, the
value of the first m < n are fixed at constant values fi(l), for 1 ≤ i ≤ m, and
the rest are allowed to change. The process of language change under these
circumstances will try to search for a language l∗ such that

• fi(l∗) = fi(l) when 1 ≤ i ≤ m

• l∗ is non-dominated in L with respect to the objective functions fm+1 to
fn
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Note that depending on the situation, the process of change might define l∗

uniquely. Alternatively, the restrictions might define a subset of L, of which l∗

is a member.

The process of language change as defined above is similar to a constrained
optimization problem (Bertsekas 1996; Chong and Żak 2001), where the first
m objective functions act as constraints and the rest n − m as optimization
criteria. The scope and complexity of the process of change is determined
by the mathematical nature of the constraints and objective functions (e.g.
linear vs. non-linear, discrete vs. continuous, etc.). Functional Optimality
Theory (Boersma 1997a), for instance, proposes a hierarchical organization of
constraints (through ranking) as the underlying interaction scheme between
the objectives. Here we refrain from making any comments on the functional
forms as it is a hard and debatable issue; rather, in the rest of this chapter we
try to develop a very specific mathematical model for SDH under this general
constrained optimization framework.

4.1.2 Notations and Definitions

In order to model SDH as a constrained optimization problem, we consider
the orthographic representation as the underlying form, and the corresponding
phonemic representation (i.e. the pronunciation of the word) as its surface form.

Let ΣG (ΣP ) be the finite set of graphemes (phonemes) for a language l.
Each of these sets can be partitioned into two subsets of vowels VG (VP ) and
consonants CG (CP ), such that

ΣG = VG ∪ CG, ΣP = VP ∪ CP

There is a special symbol aG ∈ VG, which is the schwa. VP also has a symbol
aP , which represents the default pronunciation of the grapheme aG in l. An
orthographic word wG is a string over ΣG, i.e. wG ∈ Σ∗

G. It should be noted that
not all strings in Σ∗

G are valid orthographic words of l. Similarly, a phonetic
word wP is a string over ΣP , i.e. wP ∈ Σ∗

P . Let Λ be the set of all valid
orthographic words of l. We define a function FG2P : Λ → Σ∗

P that maps
a valid orthographic word in l to a phonetic string, such that FG2P (wG) is
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the pronunciation of wG. The subscript G2P stands for grapheme-to-phoneme
conversion. It should be mentioned here that in most of the languages, one does
encounter situations where the same orthographic form can have more than one
valid pronunciation. Such words are called homographs, meaning different words
with the same orthographic representation. However, such instances are rare
in any language and almost absent in Hindi. This leads us to define FG2P

as a single-valued function, which in turn helps us avoid several unnecessary
complications in the notations as well as analysis of the model.

To further simplify our analysis, we conceive FG2P as a composition of two
functions – fG2P and fDS , such that fG2P : Λ → Σ∗

P maps an orthographic
word to its proper pronunciation except for the case of schwas, which are kept
unchanged. The function fDS : Σ∗

P → Σ∗
P takes a phonetic string as input and

maps it to another phonetic string by appropriately deleting the schwas. The
subscript DS in fDS stands for Delete Schwa. Mathematically, this fact can be
stated as follows.

FG2P (wG) = fDS(fG2P (wG)) (4.1)

The assumption behind this decomposition is that all other phonological pro-
cesses are independent of schwa deletion. Although this assumption may not be
true for a language in general, it holds good for Hindi because of its phonemic
orthography. In fact, fG2P for Hindi involves mapping of each grapheme to a
corresponding phoneme irrespective of the context1, but fDS happens to be a
non-trivial function (Narasimhan et al. 2004; Kishore et al. 2002; Ohala 1983b).
In the rest of this chapter, we focus only on the function fDS .

4.2 Syllable and Syllabification

Our objective here is to show that the schwa deletion pattern of Hindi is an
outcome of syllable minimization. Consequently, in this section, we define the
concepts of syllable and syllabification following the framework and notations

1There are a few cases, however, where the mapping fg2p requires context information.

For instance the nasal marker M is replaced by an appropriate homorganic nasal: chaMdA

/chandA/ (moon), chaMpA /champA/ (a flower), chaMgA /cha∼NgA/ (fit and fine)
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described above, on which we build up the model for SDH in the subsequent
sections.

In linguistics, a syllable is defined as the unit of processing and representa-
tion in the recognition of spoken words (Kahn 1976; Selkirk 1982), and is widely
accepted as a psycholinguistically meaningful and morpho-phonologically influ-
ential concept (Hooper 1972; Marslen-Wilson et al. 1994). The internal struc-
ture of a syllable is composed of a nucleus, which is optionally preceded by an
onset and followed by a coda. The process of segmenting a string of phonemes
into syllables is known as syllabification. Discussions on syllable structure and
principles of syllabification can be found in (Goslin and Frauenfelder 2000) and
the references therein.

Based on the notations introduced in Sec. 4.1.2, we define a syllable σ as
a string αϑβ, where α ∈ C∗

P , ϑ ∈ VP and β ∈ C∗
P . Both α and β can be null

strings. Here, α, β and ϑ represent the onset, coda and nucleus respectively.
We also define the projection functions onset and coda, such that the function
onset returns the onset and the function coda returns the coda of a syllable. In
other words,

onset(σ) = onset(αϑβ) = α

coda(σ) = coda(αϑβ) = β

4.2.1 Phonotactic Constraints

One of the most widely accepted principles of syllabification is that of the
Legality principle (Pulgram 1970; Hooper 1972; Kahn 1976; Vennemann 1988),
which states that the syllable onsets and codas are restricted to only a small
subset of strings in C∗

P . The constraints on allowable consonant clusters (i.e.
strings over C∗

P ) are called morpheme-sequential constraints (Ohala 1983b) or
phonotactic constraints (PC). According to the Ohala’s rule, SDH should not
violate the PCs of a language. There is some debate on whether PCs are
to be defined with respect to a word (Ohala 1983b; Goldsmith 1990) or a
syllable (Kahn 1976; Vennemann 1988). For the purpose of this work, we shall
model the PCs at the level of syllables. However, as it will be evident soon,
modeling of word-level PCs are similar to that of syllable level PCs.
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Several techniques have been suggested in the literature for the represen-
tation of PCs in a language (Carson-Berndsen 1993; Belz 1998). As defined
below, here we conceptualize PCs as constraint functions; nevertheless, these
constraint functions can be implemented for computational purposes by follow-
ing any of the previously proposed schemes for representation of the PCs.

Definition 4.4 The function Conset : C∗
P → {0, 1} maps a consonant cluster

to 1 if and only if it is an allowable onset in the language l.

Definition 4.5 The function Ccoda : C∗
P → {0, 1} maps a consonant cluster to

1 if and only if it is an allowable coda in the language l.

An alternative approach to syllable structure is known as the Sonority Cy-
cle (Clements 1990), according to which the phonemes or segments can be
placed on a universal sonority scale (de Saussure 1916; Vennemann 1988); the
sonority is maximum for the nucleus, and decreases as one moves away from
it. In this theory, PCs in all the languages reflect this universal principle of
sonority cycle, and consequently, the PCs as well as the syllabification proce-
dure can be modeled independent of the language. Although it is tempting to
adopt such an elegant generalization for syllabification, there also exist several
counter-examples to this rule and the absolute validity of this principle is de-
batable (see Goslin and Frauenfelder (2000) for a discussion in the context of
French). However, we note an interesting corollary of the above sonority cycle
principle:

For any language l, if s ∈ C∗
P is an allowable onset/coda, then so is

every substring of s.

We conjecture that even if the basic principle of sonority cycle is violated in a
language, the above corollary is always true. We do not know of any previous
work stating or investigating this result, but through empirical analysis of the
Hindi PCs as enlisted in (Ohala 1983b), we have found this corollary to be valid
for Hindi.

For the current purpose we maintain a list of allowable consonant clusters
in Hindi, which is used during the process of syllabification as described below.
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4.2.2 Syllabification

Syllabification is a language specific issue and often the syllable boundaries are
not clearly evident from the acoustic signal. These issues have even lead some
of the researchers in the past to cast a doubt on the existence and usefulness of
the concept of syllables (Lebrun 1966; Kohler 1966). The specific case of Hindi
is not an exception either. Several theories have been proposed to describe
the syllable structure of Hindi, but there is hardly any consensus among the
researchers. However, it is interesting to note that, unlike the case of most of
the world’s languages, Hindi does not seem to follow the Onset maximization
principle2 (Pulgram 1970; Hooper 1972; Selkirk 1982).

In fact, some of the studies claim that Hindi syllabification follows the law
of Coda maximization3. As we shall see shortly, it is possible to explain the
schwa deletion pattern of Hindi through syllable minimization, if one adopts a
syllabification based on coda maximization and not onset maximization prin-
ciple. However, syllabifications that tend to strictly maximize the length of
the coda often lead to very counter-intuitive results. For example, according
to this rule, jantu (animal) is syllabified as /jant− u/, which is unacceptable.
The acceptable syllabification in this case is /jan − tu/. Here we propose a
syllabification principle for Hindi, which neither maximizes the onset nor the
coda; rather it tries to strike a balance between the two principles. Since, our
primary objective here is to present a plausible account of SDH within the
constrained optimization framework, we make no attempt to empirically verify
this principle as a part of this work. Nevertheless, it is worth mentioning that
a text-to-speech system developed based on the proposed syllabification prin-
ciple produces intelligible speech outut. Furthermore, we also show that apart
from the proposed syllabification, certain other classes of syllabification rules
for Hindi (which do not include the onset maximization principle) are capable
of explaining the Ohala’s rule.

We begin our discussion on syllabification with a very general definition of
2The onset maximization principle states that the syllable boundaries are so chosen in a

word that every resulting syllable has the maximum length onset as allowable by the PCs
3Through personal communication with Prof. Thakur Das, Department of Linguistics,

University of Agra, India
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the term, and subsequently introduce several constraints and rules specific to
Hindi. A syllable is valid in a particular language l if it satisfies the PCs of the
languages. A valid syllabification of a phonetic word wP is one in which all the
syllables are valid and each phoneme in the word belongs to one and only one
syllable4. These facts can be formally stated as follows.

Definition 4.6 A syllable σ is valid in a particular language if and only if the
following conditions hold.

Conset(onset(σ)) = 1

Ccoda(coda(σ)) = 1

Definition 4.7 Let wP ∈ Σ∗
P be a phonetic word. A valid syllabification of wP

is a string of syllables σ1σ2 · · ·σm, where

• ∀i, 1 ≤ i ≤ m,σi is a valid syllable.

• Concatenation of the syllables in that order (from 1 to m) gives the string
wP .

These concepts are illustrated through the following example.

Example 4.1 Let wP be /samprati/ and the language under consideration be
Hindi. The syllabification σ1 = /sa/, σ2 = /mpra/ and σ3 = /ti/ is not valid
because, Conset(onset(σ2)) = Conset(/mpr/) = 0, i.e. /mpr/ is not an allowable
valid onset in Hindi. Similarly, the syllabification σ1 = /samp/ and σ2 = /rati/
is invalid because /rati/ is not a valid syllable as it contains two vowels. But
the syllabifications /sam− pra− ti/, /samp− ra− ti/, /samp− rat− i/ and
/sam− prat− i/ are valid, where ‘−’ denotes syllable break. ��

A valid syllabification is one that is pronounceable, however, not all valid
syllabifications of a word are pronounced by the native speakers. In other words,
there is always a preferred syllabification for every word. We shall refer to this

4Note that this may not be strictly true in real life, because there are cases where a segment

may belong to more than one syllable; such segments are known as ambisyllabic (Kahn 1976).
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preferred syllabification as the optimal syllabification of a word. According
to the functional view, the optimal syllabification is the one which maximizes
the perceptibility and ease of articulation of a word. Thus, our aim here is
to define a function that measures the “goodness” of a syllabification and the
optimal syllabification is the one, for which the value of this goodness function is
maximum. Alternatively, we can define a hardness function for a syllabification,
the value of which is minimum for the optimal syllabification.

Intuitively, this hardness function should measure the cumulative hardness
of the syllables in a syllabification, where the hardness of a syllable depends on
the structure of the syllable. Thus, in effect, we want to associate a hardness
scale with the syllable structure. The empirical analysis of Hindi syllabifica-
tion tells us that the hardness of the syllables must increase in the following
order: V, CV, VC, CVC, CCV, CCVC, VCC and so on. One possible encoding
of such a hardness scale, in the lines of OT, is through constraint-ranking of
syllable structures, such that the harder a syllable is, the higher is its rank.
The optimal syllabification in this scheme is defined as the one which violates
the least number of constraints (i.e. possess as few hard syllables as possible).
Moreover, the violation of a higher ranked constraint is considered costlier than
the violation of any number of lower ranked constraints.

Nevertheless, here we take a different approach that can not only model the
principles of Hindi syllabification elegantly within the framework of constrained-
optimization, but also yield to simple algebraic analysis that helps us to prove
several properties of the syllabification pattern. As far as our knowledge goes,
this is a novel approach to syllabification and is based on the reductionist prin-
ciple, where the hardness of a syllabification is defined in terms of the hardness
of its constituent syllables, which in turn is defined in terms of the hardness
of the constituent segments. We define the hardness function in a bottom-up
fashion.

Definition 4.8 The structure of a syllable σ, denoted by CVMap(σ) is a string
over C∗V ∗C∗, where each phoneme x of σ is mapped to C if x ∈ CP , or V if
x ∈ VP .

Definition 4.9 Let σ = x1x2 · · ·xs be a syllable of length s, where xv ∈ VP is
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the vowel, for some integer v satisfying 1 ≤ v ≤ s. We define the hardness of a
phoneme (segment) xi, denoted by h(xi) as

h(xi) =


22(v−i−1) if i < v

0 if i = v

22(i−v)−1 if i > v

Thus, the farther a phoneme is from the nucleus, the harder it is to perceive
and/or articulate. For two phonemes at the same distance from the nucleus, the
one which is in the coda is harder than the one in the onset. See (Ohala 1990a;
Redford 1999; Redford and Diehl 1999) and references therein for empirical
evidence in favor of the aforementioned principles; also see (Redford et al. 1998;
Joanisse 1999; Redford et al. 2001) for computational models of emergence of
syllable systems based on these principles.

Definition 4.10 The hardness of a syllable σ = x1x2 · · ·xs, denoted by Hσ(σ),
where Hσ : C∗

PVPC
∗
P → N is the sum of the hardness of its phonemes.

Hσ(σ) =
s∑
i=1

h(xi)

Definition 4.11 The hardness of a syllabification ψ = σ1σ2 · · ·σm, denoted by
Hψ(ψ), is the sum of the hardness of its syllables.

Hψ(ψ) =
m∑
i=1

Hσ(σi)

This metric of hardness is just a hypothetical measure, which allows us to
compare two syllables in terms of their functional hardness and is by no means
an absolute measure of the degree of hardness based on the syllable structure
of a syllable. Note that for two distinct syllables σ and σ′, if CVMap(σ) =
CVMap(σ′), then Hσ(σ) = Hσ(σ′). It is also easy to see that Hσ defines a
total ordering over the set all syllable structures (i.e. C*VC*). Table 4.1 enlists
the first few syllable structures in increasing order of the value of Hσ.
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Syllable Hσ Syllable Hσ

Structure Structure

V 0 CV 1

VC 2 CVC 3

CCV 5 CCVC 7

VCC 10 CVCC 11

Table 4.1: Hσ defines a total ordering on syllable structures. The first few
syllable structures in ascending order of their hardness

Definition 4.12 Let wP ∈ Σ∗
P be a phonetic word and let Ψ(wP ) be the set of

all valid syllabifications of wP . A valid syllabification ψ0 ∈ Ψ(wP ) is also an
optimal syllabification of wP if and only if @ψ ∈ Ψ(wP ),Hψ(ψ) < Hψ(ψ0)

Thus, the optimal syllabification for a word is the valid syllabification which
has the least hardness. This concept is explained through the following example.

Example 4.2 For the phonetic word wP = samprati, the set of valid syllabifi-
cations is Ψ(wp) = {samp−ra−ti, samp−rat−i, sam−pra−ti, sam−prat−i}.
The hardness of the syllabifications are as follows.

Hψ(samp− ra− ti) = Hσ(samp) +Hσ(ra) +Hσ(ti) = 11 + 1 + 1 = 13

Hψ(samp− rat− i) = Hσ(samp) +Hσ(rat) +Hσ(i) = 11 + 3 + 0 = 14

Hψ(sam− pra− ti) = Hσ(sam) +Hσ(pra) +Hσ(ti) = 3 + 5 + 1 = 9

Hψ(sam− prat− i) = Hσ(sam) +Hσ(prat) +Hσ(i) = 3 + 7 + 0 = 10

Since, the hardness is lowest for /sam− pra− ti/, this is the optimal syllabifi-
cation. ��

One of the interesting and useful consequences of defining the optimal syllab-
ification in this way is the fact that for any string wP , the optimal syllabification
is unique. This fact is formally stated in theorem 4.1 and the proof is presented
subsequently.
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Theorem 4.1 For a phonetic word wP ∈ Σ∗
P , if the set of valid syllabifications

Ψ(wP ) is non-empty, then there exists one and only one optimal syllabification
ψ0 ∈ Ψ(wP ). We shall denote the optimal syllabification of wP as OPTψ(wP ).

Proof: That there exists at least one optimal syllabification of wP = x1x2 · · ·xn
ψ0 ∈ Ψ(wP ) is obvious. We prove the uniqueness of the optimal syllabification
by providing a construction methodology for ψ0.

Note that every syllabification can also be uniquely specified by the sequence
of the indices of the characters of wP after which there is a syllable break. Let us
denote such sequences by ξ0ξ1ξ2 · · · ξm−1ξm, where ξ0 is always 0, since we can
assume a hypothetical syllable boundary before the word beginning. Similarly,
ξm =| wP |, because we can assume a hypothetical syllable boundary after the
last phoneme of the word. Here, m is the number of syllables in wP , and is
equal to the number of vowels in wP .

Let ψ = ξ0ξ1 · · · ξm be a valid syllabification of wP and let vi be the index
of the ith vowel in wP , 1 ≤ i ≤ m. Therefore, vi satisfies the following relation.

ξi−1 < vi ≤ ξi, ∀i, 1 ≤ i ≤ m (4.2)

Also, the ith syllable of ψ, σi, is xξi−1+1 · · ·xξi . Thus, we have

Hψ(ψ) =
m∑
i=1

Hσ(σi)

=
m∑
i=1

Hσ(xξi−1+1 · · ·xξi)

=
m∑
i=1

ξi∑
k=ξi−1+1

h(xk)

=
m∑
i=1

vi−ξi−1−2∑
k=0

22k +
ξi−vi∑
k=0

22k+1


=

1
3

m∑
i=1

[
4(vi−ξi−1−1) − 1 + 2× (4ξi−vi − 1)

]
=

1
3

[
4v0−1 + 2× 4n−vm − 3m

]
+

1
3

m−1∑
i=1

[
4vi+1−ξi−1 + 2× 4ξi−vi

]
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∴ Hψ(ψ) = Kc +
1
3

m−1∑
i=1

fi(ξi) (4.3)

where,

Kc =
1
3

[
4v0−1 + 2× 4n−vm − 3m

]
, is independent of ξis

fi(ξi) = 4vi+1−ξi−1 + 2× 4ξi−vi

Note that vi ≤ ξi < vi+1 for all the ξis. In other words, the range of ξis are
non-overlapping, and therefore, their values can be chosen independently. This
independence condition along with Eqn. 4.3 implies that Hψ(ψ) is minimized,
when the terms fi(ξi) is minimized for each i. fi(ξi) is the sum of two terms,
whose product

4vi+1−ξi−1 × 2× 4ξi−vi = 2× 4vi+1−vi−1

is a constant for a given wP and i. Stated differently, the product of the terms
are independent of ξi. Therefore, by the AM-GM inequality (Rudin 1987) fi(ξi)
is minimum when the two terms, i.e., 4vi+1−ξi−1 and 2× 4ξi−vi , are equal or as
close as possible. This happens for

ξi =
⌊
vi+1 − vi

2

⌋
However, assigning ξi a value as described above may violate the PCs of the
language. If the resulting coda is illegal, that is

Ccoda(xvi+1 · · ·xξi) = 0

Then ξi is to be redefined in such a way that for the new value of ξi

Ccoda(xvi+1 · · ·xξi) = 1, but Ccoda(xvi+1 · · ·xξi+1) = 0

Intuitively, it refers to the process of minimally shifting the syllable boundary
to the left, so that the resulting coda to the left of the syllable boundary is
phonotactically valid. Similarly, one can optimally choose ξi if the Conset con-
straints are not satisfied. However, for any given choice of ξi, it is not possible
that both the onset and coda constraints are simultaneously violated. This is
due to the substring validity property of PCs, which in this case implies that
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shifting boundary to the left would always violate the resulting onset to its right
and shifting the boundary to the right would always violate the resulting coda
to its left.

In conclusion, there is always a unique choice of the values of ξi for 1 ≤
i ≤ m − 1, that minimizes Hψ(ψ). This choice uniquely defines the optimal
syllabification ψ0.

��

In essence, the optimal syllabification is obtained by placing the syllable
boundary in the middle of the word-medial consonant clusters. In case the
number of consonants in the cluster is odd, the boundary is so chosen that
the length of the resulting coda of the syllable to the left is one less than the
length of the onset of the syllable to the right. Thus, for VCCV, the resulting
syllabification is VC-CV, whereas for VCCCV, it is VC-CCV.

Thus, we have defined a syllabification for Hindi within the constrained op-
timization framework, where the constraints are 1) phonotactic legality of the
onset and coda clusters and 2) the well-formedness or validity of the syllabifi-
cation, and the optimization criterion is minimization of the hardness function
Hψ.

4.3 Acoustic Distinctiveness

Theoretical and computational models of language change have emphasized on
the property of acoustic distinctiveness, which states that the linguistic enti-
ties like phonemes, syllables or words must be maximally distinct, so that the
probability of confusion between pairs remains small resulting in a high rate
of successful communication (Liljencrants and Lindlom 1972; de Boer 2001).
In the case of schwa deletion, acoustic distinctiveness restricts the deletion of
schwas in the contexts, where the deletion might result in an incorrect inter-
pretation of the word. This is illustrated in Fig. 4.2. Suppose that there are
n words wP1, wP2, · · · , wPn, represented as points in a d dimensional acoustic



4.3 Acoustic Distinctiveness 87

Figure 4.2: Words in a two dimensional acoustic space. The black dots represent
the realization of the word wP4. The lines indicate proximal words. The solid
line shows that there is only one word that is close to wp. The broken line shows
that there are several words close to wp and consequently a potential case for
misunderstanding.

space. Deletion or shortening of the schwa leads to a realization of an acous-
tic signal w′

P that is distinct from the original word (wP4 in the figure). If
the distance of this signal from the intended word (wP4) in the acoustic space
is comparable to other words (such as wP2 and wP1), then the probability of
incorrect interpretation goes up. On the other hand, if the acoustic signal is dis-
tinctively closer to the intended word (such as wP ), then there will be very little
scope for wrong interpretation, making the communication successful. Thus,
functional forces will work in favor of wP and not w′

P , in course of language
change.

A complete specification of the acoustic distinctiveness features between
words would require an appropriate definition of the acoustic space and a re-
alistic distance metric. Steriade (2001) suggests a hierarchical representation
of the acoustic distinctiveness between syllables and segments through the use
of P-maps. In this work, we adopt a simplified version of the concept and
appropriately modify the same to model the pattern of SDH.

It is a well known fact that perceptibility of phonemes at the onset of a
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syllable is much higher than that in the coda (Ohala 1990a; Redford 1999;
Redford et al. 2001). Moreover, stressed syllables are better perceived than
unstressed one. Therefore, if two syllables have different phonemes/phoneme
clusters at onset, the probability that they are perceived differently is much
higher. In other words, they are acoustically distinct. Similarly, if two stressed
syllables differ at any position, the difference is pronounced. On the other hand,
if two syllables differ in their coda positions and both are unstressed, they are
acoustically closer or less distinct. Thus, we can define an acoustic distance
metric Dσ : C∗

PV
∗C∗

P × C∗
PV

∗C∗
P → <, such that

Dσ(αϑβ, αϑβ) = 0 (4.4)

0 < Dσ(αϑβ, αϑβ′) ≤ dc (4.5)

dc < Dσ(αϑβ, α′ϑβ′′) ≤ do (4.6)

do < Dσ(αϑβ, α′′ϑ′β′′) (4.7)

where,

α, α′, α′′ ∈ C∗
P β, β′, β′′ ∈ C∗

P ϑ, ϑ′ ∈ VP dc, do ∈ <+

α 6= α′ β 6= β′ ϑ 6= ϑ′ dc < do

Although we have defined Dσ as a real valued function, it is essentially a
ranking over the different syllable types. In the case of SDH, it suffices to define
two syllables σ and σ′ as distinct if Dσ(σ, σ′) > dc. Given two phonetic words
wP and w′

P , they can be considered to be acoustically non-distinct, if the corre-
sponding syllables in their optimal syllabifications are acoustically non-distinct.
However, since the deletion of schwas leads to a reduction in the number of syl-
lables, we allow insertion of null syllables in the optimal syllabifications, so that
the sequences can be properly aligned and compared. Moreover, an unstressed
syllable in which schwa is the nucleus can be deleted altogether; therefore, a
syllable with schwa can be considered to be acoustically non-distinct from a
null syllable, if the former is unstressed. This is formally defined below.

Definition 4.13 We define two syllables σ and σ′, both of which can be null,
as non-distinct if any one of the following conditions hold.

1. If both of them are null.
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2. If none of them are null and Dσ(σ, σ′) ≤ dc

3. If both of them are unstressed and one of them is null and the other one
has a schwa in the nucleus.

Definition 4.14 Let wP and w′
P be two phonetic words. Acoustic distinctive-

ness constraint CAD : Σ∗
P × Σ∗

P → {0, 1} maps the tuple 〈wp, w′
p〉 to 1 (i.e. the

constraint is satisfied) if and only if there exists an alignment σ1σ2 · · ·σm and
σ′1σ

′
2 · · ·σ′m between the sequence of syllables OPTψ(wP ) and OPTψ(w′

P ) such
that σi and σ′i is non-distinct for all i, 1 ≤ i ≤ m.

The following example illustrates the concept.

Example 4.3 Let wP be the Hindi word /amara/. There are three schwas,
deleting each we get three phonetic words, whose optimal syllabifications, along
with that of wP are given below.

wP = /amara/ OPTψ(wP ) = /a−ma− ra/

wP1 = /mara/ OPTψ(wP1) = /ma− ra/

wP2 = /amra/ OPTψ(wP2) = /am− ra/

wP3 = /amar/ OPTψ(wP3) = /a−mar/

Being a bound stress language, in Hindi, the stress is always on the first syllable.
Therefore, we get the following alignments between wP and the other words.

wP a ma ra

wP1 φ ma ra

wP2 am φ ra

wP3 a mar φ

Here, φ represents the null syllable. There exists no alignment between wP
and wP1 that respect the acoustic distinctiveness constraint. Although, both
wP2 and wP3 are allowable by the acoustic distinctiveness constraints, the latter
is the accepted pattern in Hindi. ��
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4.4 SDH as Constrained Optimization Problem

In this section, we formulate SDH as a constrained-optimization problem and
analytically solve the model to obtain the schwa deletion pattern of Hindi. The
formulation of the problem is straight forward.

Formulation of SDH as a Constrained Optimization Problem: Given
a phonetic word wP ∈ Σ∗

P , fDS(wP ) is a subsequence of wP obtained by deleting
zero or more schwas from wP , such that

• Constraint: CAD(wP , fDS(wP )) = 1

• Optimization Criterion: fDS(wP ) has minimum number of syllables (or
equivalently phonemes).

Thus, SDH has been posed here as a syllable minimization problem, which
is equivalent to maximization of the number of schwas being deleted, subjected
to the acoustic distinctiveness constraint. Note that since the acoustic distinc-
tiveness constraint is defined in terms of the optimal syllabification, syllabifi-
cation is essentially a subproblem of SDH, which again has been modeled as a
constrained-optimization problem.

We state and prove below the most important property of the problem of
SDH as formulated above.

Theorem 4.2 fDS(wP ) is obtained from wP by deleting all the schwas in wP

that conform to the context specified by Eq 2.1.

Proof: We prove the result in two steps. First we show that the deletion
of a schwa in the context specified by Eq 2.1 does not violate CAD, and then
we show that deletion of a schwa in any other context violates the constraint.

Case Ia: V1C1aC2V2 → V1C1C2V2; The optimal syllabification of wP is
V1−C1a−C2V2, whereas the optimal syllabification of the string after deletion
of the schwa is V1C1 − C2V2. The alignment of the syllables are shown below.
It is easy to see that all the alingments respect the non-disctinctive property
and therefore, the CAD constraint holds good.
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V1 C1a C2V2

V1C1 φ C2V2

The non-distinctive alignments for the other three cases are shown below.

Case Ib: V1C1C2aC3V2 → V1C1C2C3V2

V1C1 C2a C3V2

V1C1C2 φ C3V2

Case Ic: V1C1a→ V1C1

V1 C1a

V1C1 φ

Case Id: V1C1C2a→ V1C1C2

V1C1 C2a

V1C1C2 φ

This completes the first part of the proof. To prove that deletion is possible
in no other context, we classify the remaining contexts into four cases.

Case IIa Word initial schwa. Since the word initial syllable is stressed, the
word initial schwa is also stressed and cannot be aligned to the null syllable.
Consequently, a schwa in this position cannot be deleted.

Case IIb Schwa followed by consonant cluster: We show the case for two con-
sonants; V1C1aC2C3V2 → V1C1C2C3V2. There is no non-distinctive alignment
between the two strings, and therefore, the acoustic distinctiveness constraint
is violated (the last column is distinctive).

V1 C1aC2 C3V2

V1C1 φ C2C3V2

The proof for more than two consonants in the following cluster is similar.

Case IIc Schwa preceded by more than two consonant: We show the case for
three consonants; V1C1C2C3aC4V2 → V1C1C2C3C4V2. Here also, there is no
non-distinctive alignment between the two strings, and therefore, the acoustic
distinctiveness constraint is violated (the last column is distinctive).

V1C1 C2C3a C4V2

V1C1C2 φ C3C4V2
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Moreover, longer sequences of consonants are rare and usually violate the
PCs if the intermediate schwa is deleted.

Case IId schwa is immediately followed by vowel: The case is illustrated
below. Here also ADC is violated. V1C1aV2 → V1C1V2.

V1 C1a V2

V1 φ C1V2

The only case where it is possible to delete the schwa even though the
rule does not allow the deletion is V1aC1V2 → V1C1V2. Nevertheless, words
featuring this pattern are rare, and the apparent discrepancy may be due to
incorrect syllabification. Instead of V1 − a−C1V2, the preferred syllabification
in such cases may be V1a − C1V2, which is impossible to incorporate in our
model due to the very definition of syllable. ��

Thus, we have shown that the context of schwa deletion described by Eq 2.1
is necessary as well as sufficient to describe the schwa deletion pattern emerging
according to the constrained-optimization based formulation of the problem.
Also note that the optimization criterion regarding syllable minimization states
that all the schwas whose contexts permit deletion must always be deleted.
However, deletion of a schwa might destroy the context of deletion for another
schwa. In such a case, our model suggests that the deletion operation must be
carried out from the direction (left-to-right or right-to-left), which facilitates
deletion of a larger number of schwas. There are cases, where deletion from
left-to-right produces a different pattern than deletion from right-to-left, even
though both the patterns have same number of syllables. In such cases, the
model does not provide a unique schwa deletion pattern for an input string.

4.4.1 Constraints on the properties of syllabification

In Sec. 4.2.2 we have proposed a definition of optimal syllabification in Hindi,
and we have shown that under the assumptions of the optimal syllabification
and the acoustic distinctiveness constraint, one can derive the context for SDH
as is suggested by Ohala’s rule. Nevertheless, an issue worth investigating is
what should be the formal properties of the syllabification of Hindi so as to yield
the context of schwa deletion under the acoustic distinctiveness assumption.
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It can be shown that a syllabification based on the onset maximization prin-
ciple is incapable of giving rise to the desired pattern. This is because, for the
string V1C1aC2V2, the syllable boundaries according to the onset maximization
principle will be placed as V1 − C1a − C2V2. Schwa deletion in this context
will lead to a resyllabification of the form V1 − C1C2V2, violating the acoustic
distinctiveness constraint. Therefore, schwa deletion should not be permitted
in such a context. Similarly, for V1 − C1a − C2C3V2, deletion almost always
leads to V1C1−C2C3V2, because V1−C1C2C3V2 is expected to violate the PCs
of Hindi (i.e. there are very few consonant clusters of size three that are allow-
able at the onset). Hence, deletion of schwa in this context will not violate the
acoustic distinctiveness constraint, and therefore, should be permissible. How-
ever, in reality, the context of SDH is just the reverse of it and therefore, onset
maximization-based syllabification cannot explain SDH.

In fact, it is possible to derive the desired context for SDH for any syllab-
ification scheme that predicts a syllable boundary of the pattern V CC∗V as
V C − C∗V . This fact provides strong evidence against onset maximization-
based syllabification in Hindi. Nonetheless, one must be aware that under a
different definition of the acoustic distinctiveness constraint, it might be possi-
ble to show otherwise.

4.5 Algorithm for SDH

Apart from providing a functional explanation for SDH, the constrained opti-
mization model also provides us with a framework to algorithmically compute
the schwa deletion pattern. In other words, the formulation of fDS as a con-
strained optimization problem implicitly captures a computational definition
of the same. This is of practical importance, because schwa deletion is a chal-
lenging issue in Hindi G2P conversion. In this section, we present a rule based
algorithm for SDH and empirical evaluation of the same.

The simplest way to implement fDS is through exhaustive search. Given a
word wG ∈ Σ∗

G, we generate all possible schwa deleted forms of wG. If there are
k schwas in wG, then there are 2k such forms. For each of these forms, we check
whether the acoustic distinctiveness constraint holds good. This in turn requires
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syllabification of wG as well as the schwa deleted form. It may be mentioned
at this point that the formulation of syllabification as an optimization problem
also provides us with a method to compute the syllable boundaries. In fact, the
constructive proof for Theorem 4.1 entails the method. Out of the word forms
that conform to the distinctiveness constraint, the one(s) with the minimum
number of syllables is/are finally chosen as the output(s).

The exhaustive search technique is correct, but inefficient. However, we
have seen that the context of schwa deletion specified by Eq 2.1 is identical to
that predicted by the constrained optimization model. This fact can be used to
design an efficient implementation of fDS . The basic idea is summarized below.

1. Scan the word from left-to-right. For every schwa encountered check
whether

a. its local context satisfies the condition specified by Eq 2.1?

b. the deletion of this schwa does not violate the PCs?

2. If both the conditions are satisfied, then delete the schwa.

3. Continue till the end of the word. Let the transformed word so obtained
be wl.

4. Repeat steps 1-3, but now scanning from right-to-left. Let the trans-
formed word so obtained be wr.

5. Among wl and wr, choose the one with smaller number of schwas.

The schwa deleted form obtained by following the above algorithm does not
violate the acoustic distinctiveness constraint. The optimality of the output
is ensured by running the algorithm from both the directions. However, more
often than not wl is identical to wr, and therefore, it suffices to carry out the
scan only in one direction. In fact, Ohala’s rule claims that the rule always
applies from right-to-left.

We describe below an algorithm – DeleteSchwa – for SDH based on the
aforementioned idea. Rather than modeling the PCs and contextual constraints
separately, the algorithm combines these two types of constraints and checks
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them through a small look-ahead. The word is scanned twice from left-to-right.
Thus, the complexity of the algorithm is O(n), where n is the length of the input
word. The algorithm DeleteSchwa has a high accuracy for monomorphemic
words.

4.5.1 Algorithm for monomorphemic words

For the description of the algorithm, we shall take the help of a notation called
half – H and full – F sounds. We define a full sound as a consonant-vowel
pair or a vowel alone, whereas half sound as a pure consonant sound, without
any immediately following vowel. Therefore, any vowel or a consonant followed
by a vowel is a full sound, whereas a consonant followed by halant (i.e. the
consonants of a cluster, except the last one) are half sounds. Hence, when a
schwa following a consonant is deleted, it becomes half, but if it is retained, the
consonant is full. Since the nature of the consonants followed by schwa might
not be known beforehand, we shall call such consonants as unknown - U.

To illustrate this point, consider the example of bachapana cited before.
Here, b is F, n is H but ch and p are U . In the algorithm, only the consonants
and full vowels will be marked H, F or U , but the mAtrAs (i.e. the vowels)
will not be marked.

Note that after marking the consonants of the word according to the rules
stated above, only the consonants immediately followed by schwas can be
marked as U . The algorithm scans the marked word from left to right re-
placing each of the U s by either F or H , depending on the two adjacent
syllables of that particular U-marked consonant. At the end of the algorithm,
schwas following the consonants marked as H are deleted.

The formal steps of the algorithm DeleteSchwa are shown in below.
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DeleteSchwa(wG)
1 Mark all the full vowels and consonants followed by vowels

other than the inherent schwas in the word as F.
2 Mark all the h in the word as F.
3 Mark all the consonants immediately followed by consonants

or halants (i.e. consonants of conjugate syllables) as H.
4 Mark all the remaining consonants, which are followed by

implicit schwas as U.
5 If in the word, y is marked U and preceded by i, I, rri, u or

U , mark it F.
6 If y, r, l or v are marked U and preceded by consonants

marked H, then mark them F.
7 If a consonant marked U is followed by a free vowel, then

mark that consonant as F.
8 While traversing the word from left-to-right, if a consonant

marked U is encountered before any consonant or vowel
marked F, then mark that consonant as F.

9 If the last consonant is marked U , mark it H.
10 If any consonant marked U is immediately followed by a con-

sonant marked H, mark it F.
11 While traversing the word from left-to-right, for every conso-

nant marked U, mark it H if it is preceded by F and followed
by F or U; otherwise mark it F.

12 For all consonants marked H, if it is immediately followed by
(an implicit) schwa in the input word, then delete the schwa
from the word.

13 return the resulting word after the above transformations.

4.5.2 Modification for Polymorphemic Words

Ohala’s rule states that SDH respects the morpheme boundaries. This is illus-
trated by the word pairs dha.Dakane and dha.DakaneM , where the former is
pronounced as dha− .Dak− ne and the latter dha.D− ka− neM . The reason
for these is that while dha.Dakane is derived from the root verb dha.Daka by
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affixing the case-ending ne, the latter is obtained by adding the plural marker
eM to the noun root dha.Dakana. Ohala’s rule states that except for the case
of suffixes beginning with vowels, the algorithm DeleteSchwa must be sep-
arately applied to the individual morphemes and the resulting pronunciations
must be concatenated in order to obtain the correct pronunciation of the poly-
morphemic word. The details of the rules in the case of polymorphemic words
are enumerated below.

• Compound words are formed by concatenation of two or more words.
Each of the words retain their original pronunciation, so DeleteSchwa

is applied separately on the words and the results are simply concate-
nated to get the pronunciation of the compound word. For example,
charaNakamala→ (after morphological analysis, + represents morpheme
boundary) charaNa+kamala→ (after individual schwa deletion) charaN
and kamal → (after concatenation) charaNkamal. On the other hand,
without morphological analysis, the result would have been charNakmal,
which is incorrect.

• For prefixes, the rule is identical to that above. E.g. pra+gati→ pragati

(and not pragti) or a+ samaya→ asamay (and not asmay).

• Suffixes that begin with a consonant are simply juxtaposed at the end of
the stem as in rule 1 above. However, if the suffix begins with a vowel,
DeleteSchwa is applicable to the whole word instead of the stem and
the suffix individually. For example, arab + I → arbi (and not arabi, as
would be the case if the morphemes were treated separately). Similarly,
namak + Ina→ namkIn (and not namakin).

• Stems, which have a conjugate syllable in the second last position, are
exceptions to rule 3. For words derived from such stems, schwa deletion
is separately applicable to the stem and the affix. For example, nindak+
oM → nindakoM (and not nindkoM , as would be the case if rule 3 was
followed).

Based on these rules, we extend the algorithm DeleteSchwa appropri-
ately to handle the case of polymorphemic words. This algorithm, called
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ModifiedDeleteSchwa, is described below.

ModifiedDeleteSchwa(wG)
1 Analyze the morpheme boundaries of the word using mor-

phological analyzer.
2 if the word is monomorphemic, return DeleteSchwa(wG).
3 else apply algorithm DeleteSchwa(wGi) to the individual

morphemes wGi as suggested by the rules above and concate-
nate the outputs accordingly.

4 return the resulting word after the above transformations.

Note that ModifiedDeleteSchwa presumes the knowledge of morpheme
boundaries, which can be automatically obtained with the help of a morpho-
logical analyzer.

4.5.3 Evaluation

The algorithms DeleteSchwa and ModifiedDeleteSchwa have been eval-
uated on a set of around 11095 commonly used Hindi words obtained from
a standard lexicon5. The output of the algorithms was manually judged by
a native speaker of Hindi. The word level accuracy of DeleteSchwa and
ModifiedDeleteSchwa has been found to be 96% and 99% respectively.
Table 4.5.3 shows the break-up of the fraction of errors due to various mor-
phological processes for DeleteSchwa. We observe that the majority of the
errors are due to inflections and compound words. In this context it may be
mentioned that it is easier to develop an inflectional morphological analyzer for
Hindi than a compound word analyzer.

When the morpheme boundaries are correctly known, the algorithm Mod-

ifiedDeleteSchwa achieves a near perfect accuracy. In fact, the output of
ModifiedDeleteSchwa is erroneous only for the loans and very infrequently
used words of Hindi.

Previously, there has been some work on SDH from a computational per-
spective (Kishore et al. 2002; Kishore and Black 2003; Narasimhan et al. 2004;

5Hindi Bangla English Tribhasa Abhidhaan, Sandhya Publication, 1st Edition, March 2001



4.6 Conclusion 99

Morphological process Fraction of error

Derivational suffix 10.2%
Derivational prefix 13.7%
Inflectional suffix 30.2%
Compound word 43.1%
Others 2.8%

Table 4.3: Break up of error due to morphological processes for DeleteSchwa

Bali et al. 2004). However, only (Narasimhan et al. 2004) contains a detailed
treatment of the problem. The work combines Ohalas rule (Ohala 1983b) and
morphological analysis with finite state transducers (Kaplan and Kay 1994)
and cost models. Initially the algorithm generates all possible output candi-
dates for a given input, following Ohalas rule on possible contexts for schwa
deletion. Then certain candidates, which violate phonotactic constraints, are
filtered out. Among the remaining candidates, the one with the minimum cost
according to the cost model is selected as the final output, where the cost mainly
takes care of the deletion of the word final schwa. The authors report an accu-
racy of 89%. This figure, however, is not comparable to that of ours, because in
(Narasimhan et al. 2004) the accuracy is measured in terms of schwas rather
than words.

4.6 Conclusion

In this chapter, we have proposed a general framework for modeling language
change from the perspective of functional phonology and described a model for
SDH within the framework. Since the present orthography of Hindi faithfully
reflects the historical pronunciations, the diachronic model proposed here for
SDH can also be considered as a synchronic model. This in turn allows us
to develop an algorithm for SDH that is useful from the perspective of G2P
converter and speech synthesis systems. The algorithm for SDH proposed here
takes time linear in the length of the input word, and achieves a word-level
accuracy of 96% that can be further boosted up to 99% by using a morphological
analyzer for the language.
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There are a few important issues regarding the work presented in this chap-
ter that are worth discussing. First, in what sense the model for SDH proposed
here reflects language change? Second, since the constraints and optimization
criteria are to a large extent reverse-engineered to fit our needs, what is the
linguistic plausibility of the explanation presented? and thirdly, how does this
work further our knowledge regarding SDH, when facts like Ohala’s rule and
principles of syllable economy are already known?

The answer to the first question can be sought for in evolutionary phonol-
ogy (Blevins 2004), which states that the recurrent synchronic patterns in
phonology are those that are outcomes of common sound changes. Stated dif-
ferently, if a linguistic form X is transformed to a form Y through some regular
phonological change, then the synchronic pattern Y can be explained by posit-
ing an underlying form X. The regularity of the phonological change in this
context can then be viewed as the part of the synchronic grammar that maps
the underlying form X to the surface form Y. Indeed, this alternative view to
language change (as proposed in evolutionary phonology) can be used to design
several NLP applications including machine translation systems (discussed in
Chapter 7), and therefore, can be an important and useful paradigm for NLP.
In the specific context of SDH, the proposed syllable minimization-based model
can be considered as a synchronic as well as diachronic explanation. However,
we argue in favor of the diachronic view as it provides a causal explanation
making any further synchronic propositions unnecessary and extraneous (see
Sampson (1970) and Chapter 1 in Blevins (2004) for a discussion).

To answer the second question, it is true that the precise formulation of the
objective functions is primarily guided by the schwa deletion pattern of Hindi.
Stated differently, there are several other possible formulation of SDH that are
equally grounded in linguistics, but would predict an altogether different dele-
tion pattern. Nevertheless, we emphasize the fact that the objective functions
and constraints in our analysis have been kept as simple and realistic (i.e. inde-
pendently grounded in linguistics) as possible, and nowhere anything has been
assumed that overtly captures the deletion pattern. We have also attempted
to introduce a general form for each of the functions, after which language spe-
cific parameters (like thresholds) are set. Furthermore, we also identify general
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properties of the functions (e.g. optimal syllabification) necessary and/or suf-
ficient to give rise to Ohala’s rule, which have been independently verified by
other researchers in other contexts (such as the coda maximization principle
for Hindi). Therefore, we feel that the present formulation of the problem is
linguistically plausible as well as insightful.

Some points regarding the contribution of the current work, as raised by the
third question, have already been discussed above. Besides those, an important
aspect of the present work is its mathematical elegance. SDH has been analyzed
and modeled within a single framework and this has allowed us to formally
prove several properties of the problem through simple algebraic techniques.
We believe that for a wide range of linguistic phenomena, similar formulations
and proofs are possible within the proposed framework.

The general framework proposed here is based on constrained optimization,
and is comparable to some of the previous models (Liljencrants and Lindlom
1972; Prince and Smolensky 1993; Prince and Smolensky 1997; Boersma 1997a;
Boersma 1997b; Boersma 1998) in synchronic and diachronic linguistics that
try to represent a linguistic phenomenon as an optimization problem. Nev-
ertheless, unlike the previous models, the framework proposed here does not
try to combine the objective functions into a single optimization criterion by,
for example, ranking of constraints (Prince and Smolensky 1993); rather the
problem of language change has been proposed as a multi-objective and multi-
constrained problem, where the constraints and objectives operate on the lin-
guistic forms, independent of each other. This, we believe, is the major strength
of the current framework that enables one to model a wide range of linguistic
phenomena through this framework. In Chapter 7 we shall revisit this multi-
objective multi-constraint optimization framework and demonstrate its power
and effectiveness in the context of the morpho-phonological change of Bengali
verb inflections.

One of the strongest criticisms against functional explanations is that they
are goal-directed (Ohala 1974; Ohala 1987; Ohala 1989). Indeed, most of the
functional models, such as the one presented in this chapter or (Liljencrants and
Lindlom 1972) proposed to explain the universals of vowel inventories are clearly
goal-directed. According to these models, the linguistic systems try to attain
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an optimal state, dubbed as the goal. A major drawback of these models is that
they do not provide any insight on how the optimization process takes place in
the real world, despite the absence of any explicit drive towards optimization
either in the speakers or in the system as such. Nevertheless, in many cases
(such as Boer (2001) in the context of vowel inventories) it can be shown that
the optimal state is an emergent property of the linguistic system. In other
words, even though the linguistic system or the speakers are not goal directed,
the global optimization process emerges in the system as an outcome of simpler
non-global processes. In the next chapter, we describe a model based on multi-
agent simulation, which show that the schwa deletion pattern of Hindi can be
explained as an emergent behavior of simpler interactions between speakers,
obviating the need for a functional explanation. Nevertheless, as we shall see in
the subsequent chapters, it is much easier to develop an efficient computational
model and practically useful algorithms based on the functional explanation,
but not for the emergent models.



Chapter 5

MAS Model I: Emergence of

the Schwa Deletion Pattern

In the previous chapter, we have presented a constrained optimization model
for SDH, which provides a functional explanation for the schwa deletion pat-
tern of Hindi. We have also argued in the lines of evolutionary phonology to
establish the fact that the syllable minimization-based account of SDH entails
a diachronic explanation. Thus, to summarize our claim, the observed pattern
of SDH is an outcome of the process of language change over the past centuries,
the process being governed by functional forces such as syllable economy and
acoustic distinctiveness. Nevertheless, this claim cannot be established beyond
doubt unless one shows how the process of language change can lead to the
emergence of the optimal pattern of SDH, despite the fact that there is no
volitional attempt on the part of the language users or the linguistic system
towards the optimization.

In this chapter, we describe a MAS-based model for SDH, where the speak-
ers are modeled as linguistic agents capable of speaking, listening and learning
languages. The agents interact with each other through linguistic communica-
tion and learn from their mistakes or successes. In the process, their language
changes over time and several interesting structural property of the language
emerges in the system. The cognitive processes of the agents and the simula-
tion experiments are appropriately designed to capture the real world dynamics
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of language change as closely as possible; at the same time, in order to keep
the system computationally tractable and analyzable, suitable abstractions and
simplifications are made, wherever possible.

We observe that under specific circumstances, the emergent pattern of the
MAS model closely resembles that of SDH. This leads us to believe that the
proposed MAS-based model entails a plausible emergent explanation for the
pattern of SDH and its evolution. We further argue that the explanation so
entailed supports the tenets of phonetically-based phonology (Ohala 1974; Ohala
1987; Ohala 1989; Ohala 1993; Hayes et al. 2004), even though the final pattern
that emerges can also be explained in terms of functional phonology.

The chapter is organized as follows. Sec. 5.1 presents the MAS framework
by introducing the concept of imitation games and detailing out the design of
the linguistic agent. Sec. 5.2 describes the various properties and parameters
associated with the model, initialization conditions, and the simulation environ-
ment. The experiments and observations are reported in Sec. 5.3. The analysis
of the results and their interpretations in the context of SDH are presented in
Sec. 5.4. Sec. 5.5 summarizes and concludes the chapter.

As we shall see below, the MAS model presented in this chapter has certain
limitations, for which it is not possible to carry out simulation experiments with
a realistic Hindi lexicon. To overcome these limitations, we enhance this model
in several ways in the next chapter. For this reason, we shall refer to the MAS
model presented in this chapter as “MAS Model I” and the model presented in
the next chapter as “MAS Model II”.

5.1 The MAS Framework

In this section, we describe the MAS framework developed for modeling lan-
guage change. The MAS setup consists of a population of linguistic agents,
which interact with each other through language games. The framework, al-
though generic, has been designed keeping in mind the experiments to be con-
ducted and therefore certain features of the agent model are kept at the bare
minimum to model only relevant phonological processes. We would like to



5.1 The MAS Framework 105

Figure 5.1: Schematic representation of an imitation game. The arrows rep-
resent events, which are numbered according to their occurrence and oriented
according to the direction of information flow. The thick white and black arrows
represent the process of articulation and perception respectively. The thin black
arrow represents extra-linguistic communication and the gray arrows represent
learning

emphasize however, that this is not a limitation and the framework can be
extended to capture other phonological as well as syntactic phenomena.

5.1.1 Imitation Games

Imitation games (de Boer 2001), a special type of language game, are played
by two linguistic agents. The agents are identical in every respect except for,
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possibly, their language models. The basic framework of the current work
is similar to the imitation game model, which is schematically represented in
Fig. 5.1. Nevertheless the current work differs significantly in the details of the
linguistic agent described subsequently. The two agents playing the imitation
game are known as the initiator and the imitator. The initiator chooses a
particular linguistic unit w (a phoneme, word, or a sentence depending on the
objective of the simulation) and generates a signal s corresponding to w using
its articulator model A (described in Sec. 5.1.4). The imitator perceives the
signal and tries to map it to some valid linguistic unit w′ in its language model
using the perceptor model P (described in Sec. 5.1.5). It then produces a signal s′

corresponding to w′, which then reaches back to the initiator. The initiator now
tries to map s′ to some linguistic unit w′′ in its language model using P . If w
(the original message) is same as w′′ (the perceived message after the imitation
game), then the game is considered to be successful; otherwise it is a failure.
The initiator conveys this information to the imitator extra-linguistically. At
the end of the game, both the agents learn on the basis of the result of the last
language game as well as their past history.

At this point, it might be useful to correlate this model with the existing
hypotheses regarding language change and scrutinize some of the assumptions
made here, which we summarize below.

• Here we do not make any distinction between the adult phase when the
rate of learning is very low, and the learning phase when the rate of
learning is high of an agent.

• We do not model the noise in the communication channel. In other words,
the signal s produced by the initiator reaches the imitator without any
distortion. This is hardly the case in reality, where noisy communication
channel introduces further complications into the system and demands
robust communication pattern. However, here we assume that the noise
in communication channel is modeled within the articulator model itself.

• The extra-linguistic communication of the success of a game (step 5 in
Fig. 5.1) is a simplification in the sense that in reality when an uttered
word is unclear to the listener, often he/she prompts the speaker to repeat,
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or wrong interpretations might go unnoticed as well. In fact, it has been
shown that successful communication can emerge in a system even without
the assumption of extra-linguistic communication (Smith 2005).

5.1.2 Linguistic Agent Model

An agent (Russell and Norvig 2002) is composed of a sensor-actuator system,
where the sensor helps the agent to get inputs from the environment and the
actuator helps it to change the environment by some action. The agent also has
a central control system that decides its actions based on the inputs and helps
it adapt to its environment through appropriate learning. A linguistic agent is
a special type of agent that acts in a linguistic environment. Fig. 5.2 shows the
block diagram of a linguistic agent. Formally, a linguistic agent LA is defined
as a 4-tuple

LA : 〈M,A,P,Learn〉

where,

M : Mental model of the agent (a set of mental states)
A : The articulator model (or actuator)
P : The perceptor model (or sensor)

Learn : M→M is the learning algorithm that maps a mental state
to another mental state

Ideally, in a MAS based model of language change, one would like to model
A,P,M and Learn as close to human articulatory, perceptual, language rep-
resentation and language acquisition mechanisms as possible. However, this is
impossible partly because of the complexities of these phenomena and partly
because of our incomplete knowledge of these faculties. Therefore, several sim-
plified assumptions are made about each of the components of LA so that the
MAS becomes practically realizable and at the same time the model remains
realistic and powerful enough to facilitate the emergence of the desired linguis-
tic features. Moreover, simplification is often desirable, as it makes the model
transparent facilitating the study of the cause and effect relationships between
the observed and the modeled.
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Figure 5.2: The architecture of a linguistic agent

5.1.3 Mental Model

The mental model M is defined as the set of all possible mental states of an
agent. At any particular instant, one and only one of these mental states is
associated with a agent. Let mi and mj be two distinct mental states belonging
to M. An agent can change its mental state from mi to mj through learning.
Therefore, a learning mechanism Learn can be conceived as a function from the
set M to itself that maps a mental state mi to another mental state mj . Learn

also depends on other parameters like the past history of an agent (in terms of
success in communication) and the outcome of the most recent language game.
Learn can be considered as a part of the mental model as well, but for the
simplicity of presentation, we define Learn separately. Here, we describe M
for linguistic agents that share a common vocabulary, but possibly different
surface forms (pronunciations) of the words.

Recall that the (finite) set of phonemes in a language is represented by ΣP ,
a word w ∈ Σ∗

P , and the lexicon Λ ⊂ Σ∗
P denotes the set of valid words in

the language. We define the realization of a word w, represented by r(w), as
a string of 2-tuples 〈pi, ti〉, for 1 ≤ i ≤ n, such that w = p1p2 . . . pn , (i.e. the
string of phonemes) and ti ∈ [0, 2] represents the duration of the phoneme pi in
its realization in some abstract unit. A realization of Λ, represented as r(Λ),
is obtained by replacing each element of Λ (say w), by a realization r(w). A
mental statemi consists of a realization of Λ, which we shall represent as ri(Λ) or
simply Ri. Note that by defining the realization as above, we have eliminated
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intonation and other supra-segmental features from the pronunciation of the
words. Below, we illustrate this using a concrete example from Hindi.

Example 5.1 ΣP = {a,A, i, k,m, r, h, . . . } is the set of all Hindi phonemes. Λ
is the set of all Hindi words, but for the purpose of illustration let us define
Λ as {hara,mara, amara, krama}, a set of four words. A specific realization
r(hara) of the word hara looks like 〈h, 1〉〈a, 2〉〈r, 1.5〉〈a, 0〉, which means the
word hara will be pronounced as har, where the first a will be long (duration 2),
and the last a will be deleted (duration 0). The durations of the consonants h
and r can be interpreted likewise. A typical mental state mi will be comprised
of one realization for each of the words in Λ, as given below (note that this
realization is not representative of standard Hindi pronunciations).

ri(hara) → 〈h, 1〉〈a, 2〉〈r, 1.5〉〈a, 0〉
ri(mara) → 〈m, 1〉〈a, 2〉〈r, 1.5〉〈a, 2〉
ri(amara) → 〈a, 2〉〈m, 1〉〈a, 1.3〉〈r, 1.5〉〈a, 0.5〉
ri(krama) → 〈k, 0.5〉〈r, 1.5〉〈a, 1.6〉〈m, 0.5〉〈a, 0〉

This particular state can also be represented as ri(Λ) or simply Ri. We can
have another mental state mj (also rj(Λ) or Rj) that looks like

rj(hara) → 〈h, 1〉〈a, 2〉〈r, 1.5〉〈a, 0〉
rj(mara) → 〈m, 1〉〈a, 2〉〈r, 1.5〉〈a, 0〉
rj(amara) → 〈a, 2〉〈m, 1〉〈a, 1.3〉〈r, 1.5〉〈a, 0.5〉
rj(krama) → 〈k, 0.5〉〈r, 1.5〉〈a, 1.6〉〈m, 0.5〉〈a, 0〉

An agent can reach mental state mi from a mental state mj by learning to
delete the schwa at the end of the word mara, thus reducing the duration of
the word final a from 2 (long) to 0 (complete deletion). ��

Note that as we allow the durations to assume any arbitrary value between 0
and 2, it leads to the possibility of an infinite number of mental states. However,
by restricting the durations to a finite set of values (say 0 for deleted, 1 for short
and 2 for long) we can restrict the number of mental models to a finite value.
For instance, for the Λ defined in Example 5.1, if the durations are restricted to
take one of only three possible values, then there are 319 possible mental states
that comprise M.
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According to this definition of mental model, the agents share a common
lexicon Λ. However, there exists variation in pronunciation among the agents,
which is represented through the mental state an agent is in. This type of men-
tal model also implies that the agents remember the pronunciation of each of the
words by listing them separately, rather then learning a set of general phonolog-
ical rules. Although this sounds counterintuitive, there are at least two reasons
for which this choice makes our model more general. First, by defining the type
of phonological rules that an agent may learn we provide a bound on the pos-
sible types of variation in the pronunciations within an agent and between the
agents. Second, in the absence of a complete knowledge about the phonological
representation in human brain, it is better to avoid any inherent bias in the
system towards any particular kind of rules. However, a disadvantage of non-
generalization is that the agents have to learn the pronunciation of each of the
words individually, which makes the simulation experiments time-consuming.

Apart from the realizations of the words, a mental state also consists of
some memory where an agent can store its past experiences. In our case, the
agents remember the number of games played previously and the number of
games that were successful. In other words, the agents remember how many
times in the past they have been successful in communication, but they do not
remember the outcome of each of the games individually.

5.1.4 Articulator Model

The articulator model A is a procedure that maps a linguistic unit ri(w) from
the mental state Ri of an agent to a physical signal s. We define A as a
procedure and not a function, because there is an element of randomness in the
mapping, such that the same unit ri(w) can be mapped to different physical
signals at different time. The randomness models the imperfections of the
human articulators that result in errors during speech production. Moreover,
as has been stated previously, this randomness can also be thought of to model
the noise in the environment. For representational convenience, we will denote
a signal s generated for a unit ri(w) as A(ri(w)) or simply Ai(w). Note that
although A is identical for all agents, the articulatory behavior of an agent also
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depends on its current mental state and therefore, can be different for different
agents.

The signal s is represented as a string of phonemes and phoneme-to-phoneme
transitions, tagged with the corresponding durations in some abstract unit. So
for a word w = p1p2 . . . pn, Ai(w) is a string of tuples 〈ρj , τj〉, where j varies
from 1 to 2n− 1. Here, ρj represents the phoneme pdj/2e when j is odd and the
transition from pdj/2e to pd(j+1)/2e when j is even. τj represents the duration of
the corresponding phoneme or transition. We also make the assumption that the
duration of a consonant is 0. Only vowels and phoneme-to-phoneme transitions
have non-zero durations. The following example illustrates the representation
of a signal.

Example 5.2 Let w be amara (refer to Example 5.1 above). If the agent is
currently in the mental state mi (i.e. Ri), then the corresponding realization
of w (according to Example 5.1) is

ri(amara)→ 〈a, 2〉〈m, 1〉〈a, 1.3〉〈r, 1.5〉〈a, 0.5〉

The signal s corresponding to amara has 9 units (rhois) represented as
follows:

a, a−m, m, m− a, a, a− r, r, r − a, a

Here, x − y represents the transition from phoneme x to y. The complete
representation of the signal also includes the corresponding durations of the
individual units, the duration of the consonants being 0. Therefore, a possible
signal s generated for ri(w) has the following nature.

〈a, 1.8〉〈a−m, 0.9〉〈m, 0〉〈m−a, 0.65〉〈a, 1.3〉〈a− r, 0.65〉〈r, 0〉〈r−a, 0.15〉〈a, 0.3〉

��

The procedure A takes place as follows. Suppose the word to be articulated
is ri(w) = 〈p1, t1〉〈p2, t2〉 . . . 〈pn, tn〉. Initially, the string

s = 〈ρ1, τ1〉〈ρ2, τ2〉 . . . 〈ρ2n−1, τ2n−1〉
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is generated, where each ρj is defined as above and the τj are all 0. With respect
to example 2, this corresponds to the string

〈a, 0〉〈a−m, 0〉〈m, 0〉〈m− a, 0〉〈a, 0〉〈a− r, 0〉〈r, 0〉〈r − a, 0〉〈a, 0〉

Next, for all odd js that represent phonemes, τj is assigned a value tdj/2e +
Aε(tdj/2e) if ρj is a vowel. The term Aε(tdj/2e) denotes a small random pertur-
bation representative of the articulatory error model. In the context of schwa
deletion, the duration of each of the schwas in the realization is reduced with
a probability prd by a fixed amount δ from the duration stored in the current
mental state of the speaker. The durations of other vowels are kept unchanged.
Suppose δ is chosen to be 0.2 and prd is 0.4, then with probability 0.4 we reduce
the duration of the schwas by 0.2. In the context of Example 5.2, the duration
of the first schwa is 2, which is reduced by 0.2, the duration of second schwa is
1.3, which is not reduced and the duration of the last schwa is again reduced
by 0.2, leading to the following possibility.

〈a, 1.8〉〈a−m, 0〉〈m, 0〉〈m− a, 0〉〈a, 1.3〉〈a− r, 0〉〈r, 0〉〈r − a, 0〉〈a, 0.3〉

The duration of the transitions (i.e. τj , when j is even) is initialized based
on the durations of the neighboring vowels. Each transition is assigned half
the duration of the adjacent vowel, when the vowel follows immediately, else
it is assigned a further scaled down value. Thus, in our example, we get the
following duration pattern:

〈a, 1.8〉〈a−m, 0.9〉〈m, 0〉〈m−a, 0.65〉〈a, 1.3〉〈a− r, 0.65〉〈r, 0〉〈r−a, 0.15〉〈a, 0.3〉

Assumptions and Justifications

Several simplifying assumptions have been made while designing the articulator
model. We discuss each of them and provide motivation and justification for
making such assumptions.

Assumption 1: The signal is represented as a sequence of phonemes and
phoneme-to-phoneme transitions.



5.1 The MAS Framework 113

Justification: Analysis of speech signals show that there are steady states cor-
responding to the phonemes (especially the vowels and other sonorants), and
between two phonemes there is a significant portion of the signal that repre-
sents phoneme-to-phoneme transition. This is a result of co-articulation and
provides important cues for perception. Several concatenative speech synthesis
systems utilize this fact and use diphones as the basic unit of synthesis (see
Dutoit (1997) for an overview of such systems). This has been chosen as the
representation scheme, because considering our objective, which is phone dele-
tion, lower-level representations (e.g., formant-based as used in de Boer (2001))
make the system computationally intensive without providing us any extra rep-
resentational power. On the other hand, a syllable-level representation, which
can provide a useful abstraction, calls for a definition of syllabification quite a
controversial concept (see Sec. 4.2). For a general overview on challenges and
issues related to human perception, see (Jusczyk and Luce 2002) and references
therein.

Assumption 2: Articulatory model has an inherent bias for schwa deletion,
but not deletion of other vowels or consonants.
Justification: During casual speech, several articulatory phenomena are ob-
served including vowel and consonant deletion, epenthesis, metathesis, assimi-
lation and dissimilation. We refer to these as articulatory errors, because such
effects are unintentional, involuntary, and lead to deviation from the correct
pronunciation (Ohala 1974; Ohala 1993). Nevertheless, the objective of the
current work is to investigate the schwa deletion pattern and not general vowel
deletion, or other types of sound changes. Incorporating these extra factors can
further complicate the model leading to masking and interference of different
factors. Moreover, we do not make any claims here regarding the emergence of
the schwa deletion; we only claim that the model explains the specific pattern
observed for SDH.

Assumption 3: Duration of consonants is 0.
Justification: According to the sonority scale (Clements 1990), the vowels,
which are placed at the top of the scale, can almost always form the sylla-
ble nucleus and have a longer duration. On the other hand, stops, placed at
the lower end of the scale, can never form syllable nucleus and can never be
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lengthened. Nonetheless, several consonants, especially the sonorants can be
lengthened as well as used as the syllable nucleus. Thus, the assumption that
all the consonants have 0 duration is clearly incorrect. However, in the con-
text of the current work, due to the following reason it is a good abstraction
to make. We want to model the deletion of the schwas. When a schwa gets
deleted, the consonants that were part of the syllable have now to be placed
within other syllables. For example, if both the schwas of the word ha− ra are
deleted the resulting word hr is not pronounceable, whereas deletion of only
one of the schwas gives rise to the patterns hra or har both of which are well
formed. If we assume that the consonants have durations of their own, and
can be perceived even without the transitions, in our model we have no way to
claim that hr is not pronounceable. To the contrary, the assumption that con-
sonants have no duration, allows us to model the syllables around the vowels,
even though there is no explicit reference to the syllables. In fact by assigning
the duration of the transitions on the basis of the neighboring vowel duration,
we capture the fact that a syllable, including its onset and rime, is perceptible
only if it is of sufficiently large duration.

Assumption 4: The duration of the schwas are reduced randomly, without
considering the context.
Justification: The inherent bias towards fast speech is modeled through the
tendency to reduce the duration of the schwas, but the articulator model does
not accomplish this randomly. The duration is reduced by a fixed and prede-
termined amount δ (a model parameter) and a probability prd (also a model
parameter). The randomness is with respect to the context in which the schwa
is deleted. Stating it in another way, all the schwas in a word are equally likely
to be deleted. This is a desired feature because we want to examine the emer-
gence of the schwa deletion context and therefore, should refrain from providing
any initial bias in the system towards deletion in certain contexts and not in
others.

5.1.5 Perceptor Model

The perceptor model P maps a signal s to a word w in Λ. The perceptual mech-
anism can be divided into two distinct parts - perception and cognition. The
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former refers to the identification of the individual phonemes in the input signal
s and the latter refers to the mapping of the string of phonemes, so identified,
to a word w in the mental lexicon Ri of an agent. Although these two actions
might proceed hand in hand in human beings, separating them out simplifies
P. These two modules can be identified with the acoustic and the pronunci-
ation models of automatic speech recognition systems (Jurafsky and Martin
2000, Chapter 7). Given a signal s = 〈ρ1, τ1〉〈ρ2, τ2〉 . . . 〈ρn, τn〉, the procedure
P tries to perceive a phoneme pi either from its realization 〈ρ2i−1, τ2i−1〉 or from
the transitions 〈ρ2i−2, τ2i−2〉 or 〈ρ2i−1, τ2i−1〉. The probability of perception of
a phoneme from a unit qj depends on its duration uj and also the neighbor-
ing phoneme for transitions. As uj increases from 0 to 2, the probability also
increases linearly from 0 to 1 according to the following equation.

Prob(pj is correctly perceived from realization ρj) = τj/2 (5.1)

Since the consonants are assigned a duration of 0, therefore, they can be
perceived only from the transitions. We relax the probability for transition
perception as follows, because transitions are assigned half the duration of the
neighboring phonemes.

Prob(pj is correctly perceived from transition ρj) = τj (5.2)

If a phoneme is correctly perceived from any of the three units (two neigh-
boring transitions and the phoneme itself) than it is considered to be perceived,
otherwise it is assumed that the listener has not heard the phoneme. In the cur-
rent model, a phoneme that is not perceived correctly is assumed to be deleted
(i.e. replaced by the nothing). Once all the units in s have been analyzed, the
complete string v of perceived phonemes is obtained. Below, we illustrate this
process by an example.

Example 5.3 Let the signal s corresponding to the word w = amara be (taken
from Example 5.2)

〈a, 1.8〉〈a−m, 0.9〉〈m, 0〉〈m−a, 0.65〉〈a, 1.3〉〈a− r, 0.65〉〈r, 0〉〈r−a, 0.15〉〈a, 0.3〉
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Phoneme p Left transition Realization Right transition Pr(pi)
plt ¬plt prz ¬prz prt ¬prt

a 0 1 0.9 0.1 0.9 0.1 0.99
m 0.9 0.1 0 1 0.65 0.35 0.96
a 0.65 0.35 0.65 0.35 0.65 0.35 0.96
r 0.65 0.35 0 1 0.15 0.85 0.7
a 0.15 0.85 0.15 0.85 0 1 0.23

Table 5.1: Computation of perception probabilities. Pr(pi) denotes the prob-
ability of perceiving the ith phoneme and is computed using the expression
1− (¬plt)× (¬prz)× (¬prt).

Let us estimate the probabilities of perception of the phonemes based on
the above realizations. For this, we first calculate the probabilities that the
phoneme is not perceived from its realization and any of the neighboring tran-
sitions. We multiply these probabilities to identify the probability that the
phoneme is not perceived from any of them. We subtract this quantity from 1
to get the actual perception probability of the phoneme. Table 5.1 illustrates
the computations. We see that for the specific signal s presented in this exam-
ple, the first three phonemes are almost always perceived (probability > 0.95),
whereas the last one is hardly perceived (probability = 0.23). Also, the phoneme
r is usually perceived (probability = 0.7). Therefore, the probability that v,
the string of perceived phonemes, is amar can be computed by multiplying the
probabilities of perceiving the first four phonemes (i.e. 0.99, 0.96, 0.96 and 0.7
respectively) and not perceiving the last a (i.e. 1− 0.23 = 0.67). This amounts
to 0.49, which is the highest for all possible strings that could be perceived
from this s. Likewise, v is mar with probability 0.005, and ra with probability
3× 10−7 (the least probable case). ��

The perceived string of phonemes v might not be a valid word in Λ. The
next task, therefore, is to map v to the nearest word w in Λ (the cognition step).
This is accomplished by comparing v with realization of every word ri(w) in Ri.
A score is calculated based on the minimum edit distance (Levenshtein 1966)
of w and v, taking into account the duration of the vowels in ri(w) as well.
The process is described below. If a vowel has a short duration in ri(w) and
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Cost(x, y) p Schwa φ

q 0 (if p = q), 2 (otherwise) 2 2
Schwa 2 0 2
φ 2 t NA

Table 5.2: The cost matrix for aligning the phonemes x and y, where x (the
column entries) belongs to the string w and y (the row entries) belong to v.
φ is the null phoneme. p and q stand for any phonemes other than schwa. t

represents the duration of the schwa according to the current mental state of
the agent.

it is deleted in v, the cost of the alignment is lower than the case when the
vowel has a longer duration. The cost matrix used for calculating the minimum
edit distance is given in Table 5.2. The case, where schwa in w is aligned with
nothing in v (last row, second column), corresponds to schwa deletion, which
is penalized by t the duration of the schwa according to the current mental
state of listener. Note that the cost matrix is asymmetric and therefore, cost
of aligning w to v is not the same as that of v to w.

The word w∗ ∈ Λ that has the lowest score (i.e. the word that is nearest
to v) is then chosen as the output of the procedure P. If there are multiple
words with the same minimum score, one of them is chosen at random. If the
minimum score so obtained is larger than a threshold, then v is much different
from any of the words in the agent’s vocabulary. In such a case, the perception
fails and no word is perceived corresponding to s. We illustrate the cognition
process in Example 5.4.

Example 5.4 Let us consider an agent, whose current mental state is Ri given
in Example 5.1. Let the perceived string v be amar (refer to Example 5.3). The
minimum edit distance of v from amara is calculated by finding out the best
alignment, which is shown in Table 5.3. The total cost of alignment between
amar and amara is 0.5. The costs of alignment of v with the other words in
Ri can be computed similarly. The results are displayed in Table 5.4. The
scores are also displayed when calculated according to the mental state Rj

(Example 5.1.We observe that for both the mental states, the perceived string
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w a m a r a(0.5)

v a m a r φ

Cost 0 0 0 0 0.5

Table 5.3: Minimum distance alignment

Words Cost of alignment
Ri Rj

hara 4 4
mara 4 2
amara 0.5 0.5
krama 6 6

Table 5.4: Cost of alignment of amar with the different words, in mental states
Ri and Rj

amar is mapped to the word amara, because this has the minimum cost of
alignment. Stated differently, amara is the closest word to the string amar.
However, if v was mar instead of amar (as figured out in Example 5.3, this has
a probability of 0.005), the perceived word would have been mara. ��

Assumptions and Justifications

Assumption 5: A phoneme that has not been correctly perceived is assumed to
be deleted.
Justification: A phoneme that is not perceived correctly can be substituted
for a similar sounding phoneme. For example, “par” can be heard as “bar”,
because /p/ and /b/ are similar sounding in the sense that both of them are
labial stops. To incorporate this feature in our model, we need to define real-
istic phoneme-phoneme substitution probabilities, which are indeed considered
while designing speech recognition systems. Firstly, this makes the perception
model quite computationally intensive, increasing the simulation time signifi-
cantly. Secondly, this reduces the chances of successful communication. Note
that in reality the context (surrounding words) provides extensive clues for rec-
ognizing a word, which is completely absent in our model due to its limited
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scope. Thirdly, the only parameter considered here is phoneme and signal du-
ration, which has a direct implication on deletion. The idea is not to deny the
effect of a whole lot of other parameters on general human perception, but to
focus specifically on the durational effects which is arguably the most crucial
factor for SDH (Ohala 1983b).

5.1.6 Learning

The procedure Learn defines transitions from one mental state to another on
the basis of the outcome of the imitation games. As we have seen in Sec. 3.3.1,
several approaches to learning have been explored for MAS models in the con-
text of language evolution and change. For MAS Model I, we choose a very
simple trigger learning algorithm (Gibson and Wexler 1994; Niyogi 2002). The
basic idea is as follows.

An agent articulates different signals corresponding to a word in different
language games. If a particular language game is successful, there is enough
reason for the agent to believe that the articulated signal is well understood by
the other agents and thus, the signal articulated is considered to be a successful
example, which the agent remembers for future use. An agent is allowed to learn
from the successful language games only if it has been quite successful in its
recent past, because a high failure rate indicates that the agent’s model differs
from most of the other agents in the population, implying that the apparent
success of the recent language game might have been a result of random chance.
The agents can similarly learn from their failures.

Suppose the initiator articulates a signal s corresponding to a word w, which
is perceived by the imitator as w′. The imitator then articulates a signal s′

corresponding to w′, which is perceived by the initiator as w′′. The procedure
Learn is as follows.
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Learn(ksn, ksm, kf , prsn, prsm, prfn, prfm)
1 if w = w′′

2 then if the agent is the initiator
3 then if success rate of the agent > ksn

4 then generate a random number r ∈ [0, 1]
5 if r ≤ prsn then UpdateDuration(w, s)
6 else if success rate of the agent > ksm

7 then generate a random number r ∈ [0, 1]
8 if r ≤ prsm then UpdateDuration(w′, s′)
9 else if success rate of the agent < kf

10 then if the agent is initiator
11 then generate a random number r ∈ [0, 1]
12 if r ≤ prfn then IncreaseDuration(w)
13 else generate a random number r ∈ [0, 1]
14 if r ≤ prfm then IncreaseDuration(w′)

UpdateDuration(w, s)
1 w = p1p2 · · · pn, s = {〈ρj , τj〉}2n−1

2 for i = 1 to n
3 do if pi =/a/
4 then ti ← min(τ2i−1, ti)

Recall that ti stands for the duration of pi according to the realization of the
word w in the mental model of the agent.

IncreaseDuration(w)
1 w = p1p2 · · · pn
2 for i = 1 to n
3 do if pi =/a/
4 then if ti + δ > 2
5 then ti ← 2
6 else ti ← ti + δ

The learning parameters are set to some predefined values at the beginning
of a simulation experiment and are kept constant over a particular run of the
simulation.

Note that the learners (i.e., the agents) here are memoryless in the sense
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that they do not remember the details of the previous games and the interaction
history. Only the last imitation game and the overall communicative success
are remembered by the agents.

5.2 The Simulation Set up

In this section, we describe the simulation setup for MAS Model I. We start
with an outline of the simulation mechanism; this is followed by a discussion
on issues related to lexicon selection and initialization of pronunciations. We
also enlist a comprehensive list of the model parameters, which help us design
the various simulation experiments. The details of the simulation environment
and empirical results related to simulation time are also presented.

5.2.1 Simulation Mechanism

A population of N agents is initialized with identical mental states, say m0 (the
details of the initial mental states are discussed in the next subsection). The
simulation is continued for several rounds with rn games per round. At the
end of each round, the mental states of the agents are documented in a log file.
Thus, the result file generated at the end of the simulation records the mental
states of the agents only at the end of each round. Note that the mental states
of every agent after every game can be recorded by setting rn = 1 and there
is also provision for observing the words and signals generated/perceived by
the agents during the games. Nevertheless, the huge number of games required
for convergence makes it easier to analyze and visualize the results when the
mental states are tapped only after a sufficiently large number of games. This
is precisely the reason for introducing the concept of rounds, which is otherwise
insignificant.

The steps in a language game are:

1. Two agents are selected randomly from the population of N agents. One
is given the status of initiator and the other the imitator.
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2. The initiator chooses a word w at random from Λ and generates a signal
s corresponding to w using the articulator model A,

3. The imitator receives the same signal s.

4. Imitator uses the perceptor model P to map the signal s to a valid word
in Λ (if possible). Let the word perceived be w′.

5. Imitator generates a signal s′ corresponding to w′ using A.

6. Initiator tries to perceive s′ using P. Let the perceived word be w′′. If
w = w′′ then the game is successful, this message is conveyed to the
imitator extra-linguistically.

7. Depending on the outcome of the game, both initiator and imitator may
decide to learn (i.e. change there current mental states)

8. Finally, the agents update their mental states by registering the results
of the last interaction as well as the learnt durations.

5.2.2 Lexicon Selection and Initialization

Ideally, we would like to run the simulation experiments with the complete
lexicon of Hindi. Since the lexicon of real languages are open systems, we
could choose to work with core lexicon of the language defined as the set of
most frequent M words. The value of M typically is between 10000 to 50000.
However, as shown in Table 5.7, the time required to run simulation experiments
with a lexicon of size 2000 is quite large and it is practically impossible to run
meaningful simulations with lexicon of size 10000 for MAS Model I.

At the same time, the lexicon Λ has an important impact on the emerging
pattern. This is due to the fact that perception is based on the closest word in
Λ corresponding to the given string of phonemes. Table 5.5 shows two runs of
a simple experiment with two agents and two words in the lexicon. With the
exception of Λ, the values of the model parameters for the two runs are identical.
We see that the emergent pronunciation of the word amara is different for the
two runs.
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Run Words Emergent Correct
pronunciation pronunciation

I hara hra har

amara mar amar

II mara mar mar

amara amar amar

Table 5.5: Two runs of the experiment with different lexica

The apparent discrepancies in the emergent pronunciations in Run I can
be explained as follows. Since there is no word other than amara having the
consonant m, identification of m itself allows identification of the word amara;
similarly, hra, which can be often confused with ra is still perceived as hara,
because the edit distance of ra to hara is less than that to amara. On the
other hand, if Λ contains both mara and amara, deletion of the word initial a
in amara is not preferred as it removes the distinction between the two words,
resulting in a sharp decline in communication success. Therefore, presence
of both the words helps in the emergence of the correct pattern. In short,
the structure of the lexicon defines the acoustic distinctiveness constraints and
consequently the emergent SDH pattern.

In order to nullify the effect of the vocabulary the experiments we introduce
the concept of normalized lexicon, where only two consonants and two vowels
are used in many possible combinations to generate the words. One such lexicon
is given below, which has been used as the Λ for most of the experiments with
MAS Model I.

Λnormalized = {karaka, karakA, karAka, karAkA, kAraka, kArakA, kArAka}

The motivation behind this definition comes from the observations made on the
structure of the mental lexicon and the phonological neighborhood of words (Luce
and Pisoni 1998; Vitevitch 2005; Kapatsinski 2006). The words of the real lan-
guage lexica are found to be phonologically similar to each other making the
structure of the network of phonological neighbors very dense and small. Note
that in the normalized lexicon so defined, the average edit distance between
a pair of words is 1.71 (assuming that cost of substitution is 1). Considering
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the fact that the minimum edit distance between two words cannot exceed 1,
this value is quite small. Thus, the phonological neighborhood of a word in the
normalized lexicon is very dense.

Apart from Λ, another important aspect of the model is the choice of initial
pronunciations. Since we want to model the phenomenon of SDH, this choice
is obvious, i.e., all the schwas have duration of 2 units. The initial states, thus,
corresponds to the Sanskrit (or old-Hindi) pronunciations, where all the schwas
are prominently pronounced.

5.2.3 Model Parameters

There are several parameters associated with MAS Model I that might have a
significant effect on the emergent pattern. These parameters or free variables
have already been defined and discussed in the previous section. Nevertheless,
here we summarize them again in Table 5.6, which help us to understand the
complexity and degrees of freedom of the model. Furthermore, this is important
for the design of simulation experiments to systematically study the effect of
these parameters on the emergent SDH pattern and their real life correlates.

Apart from the parameters listed in Table 5.6, an important issue governing
a simulation experiment is the number of games for which the simulation is run,
which is rn times the number of rounds. The values of all these parameters
are specified in the beginning of a simulation experiment, and held fixed during
that experiment.

5.2.4 Simulation Environment and Timing Analysis

All the simulation experiments reported in this chapter have been carried out
on the Windows XP running on a Pentium-4 1.6GHz processor having 256MB
RAM. The modules have been implemented in C.

Typically, it has been observed that the number of games required for con-
vergence is linear in M – the size of the lexicon. This is because the agents learn
the pronunciation of each of the words independently. Similarly, the number
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Symbol Type Range Description

N integer [2,∞] number of agents

δ real [0,2] duration reduction step

prd real [0,1] duration reduction probability

ksn real [0, 1] minimum initiator success rate
for positive learning

ksm real [0, 1] minimum imitator success rate
for positive learning

kf real [0, 1] maximum success rate for nega-
tive learning

prsn real [0, 1] probability of positive learning
by the initiator

prsm real [0, 1] probability of positive learning
by the imitator

prfn real [0, 1] probability of negative learning
by the initiator

prfm real [0, 1] probability of negative learning
by the imitator

Table 5.6: Model parameters for MAS Model I. Positive and negative learning
implies learning from successes and failures respectively.
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M #Games Time req.
(in secs)

Time req. (in
secs) per mil-
lion games

Time req. (in secs)
per million games
per word

8 3M 290 96.67 12.08
8 2M 200 100 12.5

1800 0.55M 680 12363 6.87

Table 5.7: Time taken for simulation. The values reflect the real time and not
the exact system time and are therefore dependent on system load. Machine
specs: Pentium 4, 1.6 GHz

of games required for convergence is also proportionate to N – the number of
agents, as every agent has to converge on a set of pronunciation independent
of other agents. The time required for one game increases linearly with M ,
because, even though the articulation and learning phases take constant time,
the perception step takes a time proportionate to M . This is due to the fact
that the perceived string of phonemes v is compared with each of the words in
Λ by computing the edit distance.

Therefore, the simulation time required for convergence is O(M2N). Ta-
ble 5.7 shows the time required for a few different parameter settings. Assuming
that convergence requires 10M games per word (see Sec. 5.3.1), the estimated
time required for convergence for a 8000 word lexicon is 4 × 1015 seconds or
12 × 107 years approximately (simulation is run on a Pentium 4 1.6GHz ma-
chine)! Thus, even though the model (or a game) has an apparently manageable
time complexity, it is not so in practice because of the large hidden constants.
Stated differently, since the number of games required for convergence is very
large even for small M and N (e.g., 8 and 2 respectively), we cannot afford to
run experiments till convergence for sufficiently large M and/or N .

5.3 Experiments and Observations

Let us first enumerate the parameters that might affect the emergent schwa
deletion pattern: 1) agent model, i.e. the learning, articulatory, perceptual
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mechanisms and the mental model, 2) vocabulary, 3) population size N , 4)
the learning parameters like thresholds ksn and ksm, the learning probabilities
prsn and prsm and 5) the deletion parameters prd and δ. The study of the
effects of different agent models on the emergent pattern is out of the scope
of this work. Also it has been found that the size of the population does
not have any significant effect on the emerging pattern, it only determines
the rate of convergence with larger time required for convergence for larger
population. Below, we shall describe some of the significant observations for
different experiments.

5.3.1 Results for the Normalized Lexicon

The emergent pattern for the normalized lexicon for a specific run of the simula-
tion has been presented in Table 5.8. Several runs of the simulation experiment
under the same parameter settings show the emergence of very similar patterns,
but the time required for convergence vary substantially between the runs.

Since the agents share the same lexicon Λnormalized, the only aspect where
they vary is the realization of the lexicon. In other words, they may disagree
only with respect to the duration of the schwas. Therefore, we list the duration
of the schwas averaged over all the agents. We assume a schwa to be deleted if
its duration is less than 0.67, and retained if it is greater than 1.33. We make
this choice on the basis of the observation that schwas in Hindi can be long,
short or deleted. Since the duration of the schwa can vary from 0 to 2, we
divide the region into three equal length zones from 0 to 0.67, 0.67 to 1.33, and
1.33 to 2 representing the deleted, short and long schwas respectively. Based
on this, we derive the emergent pronunciation of the population and compare
it with the pronunciation in standard Hindi derived according to Ohala’s rule.

There are two discrepancies in the emerging pattern, one is due to deletion
of a schwa in a context where it should have been retained, and one is due to
retention of a schwa, in a context where it is normally deleted. There are 12
schwas in the lexicon, and therefore, the emergent pronunciation shows 83.33%
similarity to the actual pronunciation with respect to schwas and 71.4% similar-
ity at the word level. Although the results clearly show that the model captures
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Words Vowel duration Emergent pro-
nunciation

Pronunciation
in std. Hindi

Number
of errors

karaka 1.99, 1.49, 0.00 ka− rak ka− rak 0
karakA 2.00, 0.00, 2.00 kar − kA kar − kA 0
karAka 2.00, 2.00, 0.00 ka− rAk ka− rAk 0
karAkA 0.00, 2.00, 2.00 krA− kA ka− rA− kA 1
kAraka 2.00, 1.99, 2.00 kA− ra− ka kA− rak 1
kArakA 2.00, 0.50, 2.00 kAr − kA kAr − kA 0
kArAka 2.00, 2.00, 0.00 kA− rAk kA− rAk 0

Table 5.8: Emergent pronunciations for the normalized lexicon. The parameters
for this typical experiment were: N = 4, ksn = ksm = 0.7, prsn = 0.6, prsm =
0.2, prfn = 0.6, prfm = 0.0, d = 0.01. Games required for convergence: 70
million

the evolution of the schwa deletion pattern in Hindi to a great extent, certain
phenomena like the immunity to deletion of the schwa in the first syllable of the
word have not been reflected in the emergent pattern (karAkA→∗ krA− kA).
We make two remarks on this issue: 1) there are languages like Punjabi, which
feature deletion of schwas in the first syllable. This implies that the emergent
pattern is not unnatural; and 2) immunity to deletion in such cases might be
a result of other features like stress patterns, which have not been captured in
this model.

Fig. 5.3 shows a plot of the duration of a particular schwa that was finally
deleted (and correctly so) averaged over all the agents against the number of
games played. We make the following observations and comments from Fig. 5.3.

• The transitions in the figure are very sharp (spanning over less than 10000
games) spaced by significantly longer periods of stable intermediate pro-
nunciations.

• All the schwas that finally got deleted exhibit similar dynamics, which is
represented by the so-called S-shaped curve.

• The fact that the MAS model I also exhibits similar property is a further
validation of its plausibility.
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• A deeper scrutiny reveals that each of these drops correspond to the dele-
tion of a specific schwa by a particular agent. In other words, there are
four drops in Fig. 5.3. The first one is observed when the first agent
dropped the schwa, the second one is observed when another agent drops
the schwa and the average duration reduced from 1.5 to 1. Note that in
this experiment the population size was N = 4.

It requires a much deeper analysis of the dynamic behavior of MAS in general
and the present model in particular to explain why a particular agent drops
the schwa by reducing its duration sharply over a thousand games and not
gradually over a longer period overlapped with the deletion phases of the other
agents.

Figure 5.3: The average duration of a schwa vs. the number of games plotted
for the final schwa of the word karAka.

5.3.2 Effects of other Parameters

The thresholds ksn and ksm that determine whether an agent will learn or not
based on its average success rate in communication have a significant impact on
the final communication success at convergence point as well as the emerging
pattern. When these thresholds are set to 1.0, just after a few games, when all



130 MAS Model I: Emergence of the SDH Pattern

the agents have encountered some failure, they stop learning and therefore, the
system stabilizes very early, and the system retains its initial pronunciation,
i.e. no schwas are deleted. On the other hand if the threshold is set to 0.0 a
successful game just by chance allows the agents to learn and hence almost all
the schwas are deleted. The system takes a long time to stabilize, whereby the
communication success falls drastically.

There are two parameters related to deletion – the duration reduction step δ
and the duration reduction probability prd. The duration step parameter δ has
a strong influence over the emergent pattern. If it is very small, convergence is
steady, but in such cases the deletion of successive schwas are often prohibited
resulting in two short schwas.

On the other hand very large d (< 0.5) leads to proper schwa deletion
patterns, but the population of agents seem to develop two distinct dialects, one
following the left to right convention suggested by Ohala and another following
the right to left convention. In fact, apart from the vocabulary, δ and ksn

are the other two most influential parameters. Fig. 5.4 and 5.5 illustrate how
these two parameters govern the communication success rate and the average
duration of the schwa in the simulation experiments. We observe that when
ksn is close to 1, the effect of δ is negligible, but for smaller values of ksn
(less than or equal to 0.8), communicative success drops significantly for large
δ. This can be explained as follows. When the agents greedily reduce the
duration (large δ) without considering the communicative success (low ksn),
there is no global emergent pattern. In such a case, every agent develops its
own dialect (or more correctly idiolect), and the communicative success of the
system falls. However, if the agents reduce the durations slowly (small δ) or
if they consider the communicative success while reducing the duration (high
ksn), a global pattern emerges leading to more successful communication. Thus,
a non-greedy deletion strategy is a must for the emergence of a consistent global
pattern.

The δ vs. average schwa duration curve (Fig. 5.5) however presents a slightly
different scenario. It is clear that when k is small (0.5 or below), all the schwas
are deleted leading to complete communication failure (as reflected in Fig. 5.4).
However, when k is very close to 1, the system becomes too strict to allow schwa
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Figure 5.4: The dependence of average communication success rate on δ (dura-
tion reduction step) and learning threshold k(= ksn = ksm). Other simulation
parameters: vocabulary size = 7, N = 4, prsn = 0.6, prsm = 0.2, prfn = 0.6,
prfm = 0.0, number of games=300000.

Figure 5.5: The dependence of average schwa duration on δ (duration reduction
step) and learning threshold k(= ksn = ksm). Other simulation parameters:
vocabulary size = 7, N = 4, prsn = 0.6, prsm = 0.2, prfn = 0.6, prfm = 0.0,
number of games=300000. The expected duration according to Ohala’s rule is
1.07

deletion and the original pronunciations are retained. Such a system has very
high communicative success rate (as reflected in Fig. 5.4), but fails to facilitate
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the emergence of schwa deletion. For moderate values of k (between 0.5 and 1),
a schwa deletion pattern emerges that is closer to the one observed in Hindi.

5.3.3 Dialects and Synchronic Variation

The previous subsections discuss the average behavior of the MAS experiments,
where the schwa durations were averaged over all the agents and/or all the
schwas in the lexicon. A deeper look inside the mental states of individual
agents reveals several other interesting facts. Although the observed mean
schwa durations vary from 0 to 2, the schwa durations in the mental states
of the agents are categorical in nature. A particular schwa has duration of
either 0 or 2. Very rarely an agent has a fractional duration for a schwa (2
out of 130 cases), but even when it does, the value is very close to one of
the two extremes. Note that Fig. 5.3 suggests something similar, where the
agents show a sharp decline in the schwa duration over a very short period of
time (measured in terms of games). Table 5.9 lists the different variants of the
words that were observed in a particular simulation experiment. We make the
following observations regarding the variants:

• The schwa is invariably deleted in the words with a single schwa. How-
ever, as discussed in Sec. 5.2.2, these results are also dependent on the
vocabulary.

• All the emergent variants are unique. This is possibly the reason behind
their coexistence, because the lexical distinctions are not affected by the
presence of the different variants.

• The word karaka shows two variants - karka and karak pertaining to
Ohala’s rule applied from left to right and right to left respectively.

• Not all the variants that emerged are observed in Hindi or its dialects.
For example, krkA is not a valid phoneme sequence in any of the Indo-
Aryan languages, but it emerged as a variant of the word karakA. The
realization of krkA and its perception will be limited to the monosyllabic
word kA. Therefore in this case, the deletion of the two schwas implies
the dropping of the first two syllables ka and ra.
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Words Variants

kArakA kArkA(10)
karakA krakA(4), krkA(3), karkA(2), karakA(1)
kAraka kArk(10)
karAkA krAkA(10)
karaka karka(6), karak(4)
karAka karAk(5), karAka(3), krAk(1), krAka(1)
kArAka kArAk(10)

Table 5.9: Different variants of a word that emerged during a simulation. The
number of agents speaking that variant is given in the parentheses. Simulation
parameters: vocabulary size = 7, N = 10, d = 0.1, prsn = 0.6, prsm = 0.2,
prfn = 0.6, prfm = 0.0, ksn = ksm = 0.9, number of games=3M.

5.3.4 Robustness and Convergence Issues

What happens when under the same parameter settings we run two different
simulations with different initial random seeds? Table 5.10 reports the average
communicative success and the average schwa duration for 10 runs under the
same simulation settings, except for different values of the initial random seed.
We note that the average communicative success is nearly the same for the
different runs, but the mean schwa duration is not and it takes certain specific
values like 0.85 (2 runs), 0.92 (3 runs) etc. This is not surprising though. There
were 13 schwas in the vocabulary and there were 4 agents. Therefore, the value
by which the mean schwa duration will decrease (recall the sudden drops in
Fig. 5.3) should be a multiple of 2/52, i.e. 0.0385. Thus an average duration
of 0.85 indicates that out of the 52 schwas, exactly 30 (= 52 − 0.85/0.0385)
were dropped. Similarly, 0.92 indicates that exactly 28 schwas were dropped.
Therefore, the difference in the mean schwa duration implies the difference in
the number of schwas deleted in the whole system.

We cannot, however, assume the schwas to be deleted in the same manner
for every run. Observe that in Fig. 5.3 the last agent deleted the schwa much
later than the other 3 agents (note that the x-axis is in logarithmic scale). In
fact, theoretically it is impossible to predict the number of games after which
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Random Average Commu- Average schwa
seed nicative success (%) duration

1 78.19 0.85
2 76.77 0.92
3 76.78 0.85
4 78.73 0.73
5 76.39 0.92
6 78.63 0.92
7 78.00 1.27
8 76.77 1.15
9 77.16 0.81
10 75.18 0.73

Table 5.10: The results for 10 different runs under the same parameter settings.
Simulation parameters: vocabulary size = 7, N = 4, d = 0.1, prsn = 0.6,
prsm = 0.2, prfn = 0.6, prfm = 0.0, ksn = ksm = 0.9, number of games=3M

a particular schwa will be deleted (see Bhat (2001) and references therein for
a general discussion on predictability of sound change). This leads us to an
extremely difficult problem: how to decide whether a MAS experiment has
stabilized or not? This question presumes the existence of a stable fixed point
of a MAS. To the contrary, studies in language change have shown that there
is no concept of absolute stabilization in the process of language change and
languages often change along cyclical paths (Boersma 1997b; Boersma 1998;
Niyogi 2006). Thus, it seems that there is no method for deciding on the
convergence of a simulation experiment and neither is there an upper bound
on the games required for a particular change to take place. This is precisely
the reason why we see a considerable variation in the average schwa durations,
even though all the parameters were set to the same values.

Therefore, it is not possible to judge the robustness of the current model in
terms of its average or asymptotic behavior. However, the following observa-
tions about the model provide us with reasons to rely on its plausibility:

• The emergent behavior is sensitive to the model parameters. In other
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words, the schwa deletion pattern is not ingrained in the model itself. This
gives us a way to estimate the model parameters by trying to simulate the
emergence of the pattern observed in real languages. These parameters
can be further compared with their real counterparts (easier said than
done!) for further validation of the model.

• Under certain parameter settings, the model behaves realistically, giving
rise to the pattern observed in Hindi as well as some other variants, but
the variations are not random. They exhibit some patterns too.

• The communicative success, which is an important measure of the whole
system is fairly stable over different runs and despite synchronic variations
in the system, the system can maintain a high communicative success.

5.4 Analysis and Interpretation

Let us analyze the reasons behind the structure of the emergent pattern of SDH
in MAS Model I. We have already seen in the previous section that the specific
pattern of SDH emerges only for certain range of the parameter values. Besides
the model parameters, the agent model and the structure of the imitation game
also play a major role in shaping the emergent behavior of MAS Model I.

5.4.1 Phonetic Factors Affecting the Emergent Pattern

The proponents of phonetically-based phonology (Ohala 1974; Ohala 1987;
Ohala 1989; Ohala 1993; Hayes et al. 2004) argue that the course of sound
change and other phonological changes are shaped by phonetic factors such as
the common errors made while articulation and perception. Unlike functional
phonology, phonetically based accounts of change do not advocate the optimal-
ity or communicative function of the linguistic structures as the driving force
behind the change. We discuss below the properties of the articulatory and
perceptual processes, which we think are primarily responsible for the emer-
gent pattern of SDH as observed in MAS Model I. Consequently, we claim that
MAS Model I entails a phonetically-based explanation for the SDH pattern of
Hindi and its evolution over time.
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Effect of the Articulatory Model

In MAS model I only one type of articulatory error, i.e. the reduction of schwa
duration, has been modeled. This is because, other types of errors seemed
unnecessary for explaining schwa deletion. In order to model more complex
phonological changes, the articulator model can be enhanced to capture other
types of errors such as metathesis and assimilation. Nevertheless, the inherent
tendency to reduce the schwa duration seems to be a necessary and sufficient
precondition for the emergence of schwa deletion. Stated differently, the artic-
ulator model embeds the driving force for the phonological change, though it
alone cannot explain the structure of the emergent pattern.

Effect of the Perceptor Model

The perceptor model can explain the emergent pattern to a good extent. The
three basic assumptions made while building the perceptor model are

1. Consonants can be perceived only from the transition cues, where the
perceptibility of a consonant-vowel transition depends on the duration of
the nearest vowel.

2. Vowels can be perceived from their steady-state realizations as well as
transitions and the perceptibility depends on the duration.

3. A string of phoneme is perceived as the word nearest to it according to
the minimum edit-distance measure. However, the cost of deletion of a
schwa is smaller when that particular schwa has a short duration in the
agent’s own vocabulary.

The first two assumptions loosely model the universal tendencies of human
perception (Jusczyk and Luce 2002). Loosely, because some consonants like
sibilants and liquids can also be perceived from their steady-state realizations
and the duration of the transitions are not dependent on the duration of the
steady-states of the nearest vowels. Nevertheless, the model succeeds to cap-
ture the fact that a consonant cannot be perceived when the duration of the
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adjacent vowel becomes sufficiently small. Thus, deletion of schwas reduces
the perceptibility of the consonants, especially when there are no other vowels
adjacent to a consonant. This decreases the likelihood of the deletion of schwas
immediately after/before consonant clusters. Similarly, it prohibits the deletion
of two successive schwas in words like kAraka, because the deletion of the two
schwas will result in the string kArk, where the final k has a very low percep-
tibility according to the perceptor model. On the other hand, it enhances the
probability of deletion of the word-initial and word-final schwas, because the
peripheral schwas need to support the perception of only one consonant unlike
the word-medial ones which need to support two. These facts are observable in
the emergent pattern (Table 5.8).

The third assumption also has some important consequences on the emer-
gent pattern. A word can be perceived if and only if there is sufficient informa-
tion in its realization to distinguish it from the rest of the words in the lexicon.
The sensitivity of the emergent pronunciation to the lexicon is outcome of this
assumption. Moreover, since the deletion of schwas can be less costly than that
of other phonemes (due to the definition of the cost matrix in Table 5.2), the
nearest word to a pattern, such as kArak is the word kAraka and not kArakA,
though both the words could have generated the string kArak by deletion of a
single vowel. The perception model, therefore, clearly have a strong influence
on the emergent pattern.

At the same time, we also mention that since in the beginning of the sim-
ulation, all the schwa durations are 2, the initial cost matrix is symmetric and
therefore, unbiased. The matrix becomes asymmetric for an agent only after it
has learnt to reduce the duration of a particular schwa. Therefore, in a sense,
this bias is not preset in the system; rather it can also be viewed as an emer-
gent behavior of the system. In general, we may hypothesize that one of the key
factors shaping phonological change is the nature of human perception. This
hypothesis can be further verified through computational modeling as well as
cognitive experiments.
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5.4.2 Analysis of other Model Parameters

Despite the fact that the agent and agent interaction models have a significant
impact on the emergent pattern, a complete description of any phonological
change calls for the postulation of other influential parameters, because the
agent and agent interaction models are universally identical and therefore, can-
not explain the various ways in which languages have changed over time. For
example, the schwa deletion pattern observed in the three languages Bengali,
Oriya and Punjabi are quite different from that of Hindi, even though all of
them are derived from Vedic Sanskrit.

Oriya does not exhibit schwa deletion; Bengali features word final schwa
deletion, but does not allow deletion word medially, whereas unlike Hindi, Pun-
jabi also allows deletion of schwas from the word-initial syllable. These differ-
ences have to be explained independent of the agent model. We have observed
that there are certain preconditions involving the allowable rate of communica-
tion and the duration reduction step that are crucial to the emergence of the
Hindi schwa deletion pattern. We hypothesize that these parameters are some
of the possible factors that govern the emergent pattern. When the allowable
rate of communication is held at a high value we observe that none of the schwas
are deleted in the system (Fig. 5.5). This resembles the case of Oriya. We also
observe that word-final schwas are deleted first. If the process of phonological
change stops after this phase, or takes some other course, we can explain the
schwa deletion pattern of Bengali. The case of deletion of the schwa from the
word-initial syllable, as seen in Punjabi, has also been observed in the current
model (Sec. 5.3.1).

Other factors that are known to be significant for the schwa deletion pattern
observed in a language include stress and morphology. The current work can
be extended to model the stress pattern and the morphological features of a
language and their effect on the emergent pattern can be studied.

We conclude our analysis of MAS Model I with one of the most interest-
ing and counterintuitive observations: the emergent pattern is sensitive to the
lexicon. This, as explained above, is clearly a consequence of the perception
model. Nevertheless, the complete vocabulary of a language is expected to be
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optimally encoded with little redundancy such that the neighborhoods of words
are dense (Luce and Pisoni 1998; Vitevitch 2005; Kapatsinski 2006). This in
turn results in a situation where deletion of a consonant or a vowel makes correct
recognition of a word less likely. At the same time, one must also consider the
fact that in reality words are always uttered and recognized in context of other
words and this provides extra clues for its perception. Moreover, a tendency
towards phonological generalization, which is missing in the current model, is
expected to even out any discrepancy arising due to the structure of the lexicon.
Thus, we believe that, in general, the schwa deletion pattern observable in a
language is independent of the lexicon.

5.5 Conclusion

In this chapter, we described a MAS based model for explaining the emergence
of schwa deletion pattern in Hindi. Under suitable conditions, the pattern of
SDH is found to evolve in the model with a significant S-shaped trajectory for
duration reduction. These findings make MAS Model I a plausible explanation
of the phonological change giving rise to the pattern of SDH. We also argue that,
in effect, the model entails a phonetically based explanation of the phenomenon.
Below we summarize some of the salient features of the model and important
observations made from the experiments.

• A tendency towards reduction of schwa duration (i.e. fast speech) is pre-
encoded in the model and seems to be a necessary as well as sufficient
condition for emergence of schwa deletion.

• Under suitable conditions, the emergent pattern resembles the pattern of
SDH with 83% similarity at the level of schwas and 71% similarity at the
level of words.

• The pattern correct emerges only when neither the learning strategy nor
the deletion rates are greedy. In other words, moderately stringent learn-
ing conditions and small deviations (articulatory errors) from the pronun-
ciations are necessary preconditions for SDH.
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• The articulatory and the perceptor models, and the lexicon have signifi-
cant effects on the emergent pattern.

• The simulation experiments predict the coexistence of several variants of
the words.

• It is not possible to provide an upper bound on the time required (in terms
of games) for a particular schwa to be deleted, which in turn implies that
we cannot predict whether a schwa will be deleted at all.

MAS Model I supplements the constrained optimization model presented
in the last chapter. While the optimization-based model provides an elegant
and comprehensive view of the phenomenon that can be used to compute, in
real time, the pattern of SDH, it cannot explain how the pattern might have
emerged. MAS Model I, on the other hand, provides enough insight on how
the pattern might have emerged, even though it is not possible to compute this
pattern accurately or run the system in real time for the model.

The primary objective of this thesis is to develop computational models of
“real world” phonological change. Although MAS Model I partially realizes this
goal by putting forward a plausible model for SDH, the most serious limitation
of the model towards realization of the objective of the thesis is in its inability
to support meaningful experiments for a large and realistic lexicon of Hindi. In
the next chapter, we extend and modify the current model in various ways and
carry out experiments for real Hindi lexica.



Chapter 6

MAS Model II: Emergence of

the Schwa Deletion Rule

In the previous chapter, we have seen that a tendency towards reduction of the
duration of schwas coupled with appropriate learning mechanism gives rise to
the schwa deletion pattern of Hindi. Nevertheless, the MAS Model I has the
following limitations.

1. The articulatory as well as perceptual processes used in the model are
costly in terms of the computations involved. We have seen that the sim-
ulation time required for convergence is very large (Table 5.7), making it
impossible to carry out meaningful experiments with large and realistic
lexica. The number of games required for convergence as well as the time
required for each game is directly proportional to M , the size of the lexi-
con, which turns out to be rather costly as the constant of proportionality
is very large.

2. The model assumes that the agents (read human beings) learn and store
the pronunciation of each of the words independent of the pronunciation
of any other words and without any generalization. This assumption is
questionable as phonological rules are often generalized over the whole
lexicon.

141
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3. The duration of the vowels in the mental representation has been assumed
to be a continuous variable between 0 and 1. However, past researchers
have shown that phonological distinctions are often binary in nature. This
fact is explicitly stated and argued for in the generative school (Chomsky
and Halle 1968) and is implicit in several others including optimality
theory (Prince and Smolensky 1993; Ellison 1994) .

In this chapter, we extend MAS Model I presented in chapter 5 in sev-
eral ways to circumvent the aforementioned limitations. As we shall see, the
modified model (henceforth referred to as MAS Model II) incorporates various
abstractions, many of which are direct consequences of the experimental results
of the previous model. These abstractions in turn help us to conduct experi-
ments over a sufficiently large Hindi lexicon (20000 words), which grounds the
model and the allied experiments more firmly in reality.

The chapter is organized as follows. Sec. 6.1 and 6.2 describes the modifi-
cations made in the mental and articulatory models, and the perceptory model
respectively. The simulation setup including the initialization conditions, model
parameters and analysis of simulation time, is presented in Sec. 6.3. The obser-
vations and findings of the simulation experiments are reported in Sec. 6.4, and
the next section discusses the analysis and interpretations of the observations.
Sec. 6.6 summarizes and concludes the chapter.

6.1 Representation and learning of Phonological Rules

In MAS Model I, the agents store and learn the pronunciation of the words
individually, without any generalization. Furthermore, the vowel durations are
stored as a continuous variable. However, we make the following important
observations from the experiments with MAS Model I.

Observation: Upon convergence the duration of the schwas learnt by the
agents are very close to either 0 or 2 (see section 5.3.1).

Implication: The agents essentially arrive at binary distinction, where a schwa
is either fully pronounced (duration 2) or completely deleted (duration 0).
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Thus, the first abstraction we introduce in MAS Model II is that in the pro-
nunciations the schwas are either fully retained or deleted.

The second issue involving mental representation is generalization over in-
dividual pronunciations. Any generalization requires an appropriate bias and
the choice of the bias is tricky, since it might render the emergent properties
of the model trivial or impossible. Since other than the schwas, we treat all
vowels and consonants alike, it is safe to assume that the pronunciations of the
words that have the same consonant-vowel patterns are similar.

In this section, we describe the modifications made over the mental, articu-
latory and learning mechanisms based on the two aforementioned assumptions.

6.1.1 Mental Model

The words are clustered into groups in terms of their consonant vowel pattern
or the CV map as defined below. Pronunciations are defined for each CV map
in terms of probabilistic rules.

Definition 6.1 For a word w = p1p2 . . . pn, the CV map of w, represented by
CVMap(w) is a string of length n over the alphabet {C, V, a}, which is obtained
by replacing every phoneme pi in w by a corresponding C, V or a, depending on
whether pi is a consonant, a vowel (excluding schwa) or a schwa respectively.
We shall use the symbols Ω and ω to denote CV maps.

Note that the above definition of CV map differs slightly from the one presented
in the context of syllable structure in Def. 4.8. Unlike the case of CVMap(w),
the schwa or /a/ is treated as a vowel, i.e. V, in CVMap(σ). Nevertheless,
conceptually the definitions are very similar and therefore, we refrain from using
different notations for the two definitions. The concept of CV map is illustrated
in Table 6.1. Note that several words can have the same CV Map.

Suppose a particular CV map Ω has k schwas. Based on whether a particular
schwa in Ω is deleted or retained, there can be 2k possible pronunciations asso-
ciated with Ω. Let these pronunciations, which are also strings over {C, V, a}
be denoted by ω0, ω1, . . . ω2k−1. Then a pronunciation rule for Ω is a set of 2k
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w CVMap(w) w CVMap(w)

tuma CVCa kAma CVCa
krama CCaCa karma CaCCa
bAI CVV saradAra CaCaCVCa

Table 6.1: CV maps for some common Hindi words.

2-tuples of the form 〈ωi, pri〉, where pri is the probability of pronouncing a word
with CV map Ω as ωi. Note that for every pronunciation rule, the probabil-
ities pr0 to pr2k−1 must sum up to 1. The concept is illustrated through the
following example.

Example 6.1 Let us consider the CV map Ω = CaCaCV Ca of the word
saradAra, which has k = 3 schwas. There are 8 possible pronunciations asso-
ciated with Ω. A typical pronunciation rule associated with this CV map looks
like

CaCaCV Ca→ 〈CaCaCV Ca, 0.10〉 〈CaCaCV C, 0.25〉
〈CaCCV Ca, 0.20〉 〈CCaCV Ca, 0.05〉
〈CaCCV C, 0.30〉 〈CCaCV C, 0.07〉
〈CCCV Ca, 0.02〉 〈CCCV C, 0.01〉

��

We define the mental state of an agent as a tuple 〈Λ, R〉, where Λ is the
lexicon comprising of M words and R is the set of pronunciation rules. In
general, the number of pronunciation rules depends on the number of distinct
CV maps for all the words in Λ. However, for a CV Map that does not contain
any schwa (e.g. the CV map CV V of bAI in Table 6.1), there is just one
trivial pronunciation with probability 1. Therefore, we can concieve of a default
pronunciation rule rd that maps a CV map to the same string with probability
1. Therefore, the set R consists of λ+1 rules, where λ is the number of distinct
CV maps that have at least one schwa and cover all the words in Λ.

According to this representation, all the agents share the lexicon Λ. There-
fore, only the probabilities associated with the pronunciation rules vary across
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the mental states of the agents. The example below shows two possible mental
states associated with a toy lexicon.

Example 6.2 Let us assume that Λ = {tuma, nAma, bAI, so, kala}. The dis-
tinct CV maps consisting of at least one schwa are CV Ca and CaCa. Therefore,
two possible mental states mi and mj can be denoted by 〈Λ, Ri〉 and 〈Λ, Rj〉,
where the pronunciation rules are defined as follows.

Ri Rj

CV Ca→ 〈CV Ca, 0.2〉, 〈CV C, 0.8〉 CV Ca→ 〈CV Ca, 0.5〉, 〈CV C, 0.5〉
CaCa→ 〈CaCa, 0.1〉, 〈CaC, 0.7〉, CaCa→ 〈CaCa, 0.1〉, 〈CaC, 0.2〉,

〈CCa, 0.2〉, 〈CC, 0.0〉, 〈CCa, 0.5〉, 〈CC, 0.2〉,
rd rd

��

Apart from the linguistic knowledge, the agents also possess a small short-
term memory in which they can store the outcome of the recent imitation games
played as well as the pronunciation patterns used during the last game played.
The details of these are outlined in Sec. 6.1.3. Some of the salient features of
the current mental representation are enumerated below.

1. Like M in MAS Model I, here too it is assumed that the agents share a
common vocabulary.

2. Since the probabilities associated with the pronunciation rules can vary
across the agents, there are infinite number of mental states, even though
they have a fixed lexicon and a bounded number of pronunciation rules.

3. Learning in this representation implies change of probability distribution
associated with the pronunciation rules. Thus, instead of learning M

individual pronunciations as in the case Model I, here the agents need to
learn λ+ 1 probability distributions.

4. By definition, the scope of pronunciation variation is restricted to deletion
of schwas only.
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In the rest of this section, we discuss the modifications made on the articu-
lator model and the learning mechanism that takes care of the new description
of M.

6.1.2 Articulator Model

In MAS Model II, we choose to use the same representation for the acoustic
signal as in MAS Model I (see Sec. 5.1.4). Given a word w ∈ Λ and a mental
state m = 〈Λ, R〉, the articulatory process A produces an acoustic signal s
corresponding to w in the following manner.

1. Compute the CV-map of w. Let us denote the same by Ω.

2. If Ω does not contain any schwa, use the default rule rd ∈ R; otherwise
choose the appropriate pronunciation rule rΩ ∈ R, whose antecedent is Ω.

3. Out of the possible pronunciations ω0, ω1, . . . , ω2k−1, associated with Ω,
stochastically one of the pronunciations, say ω∗, is chosen following the
probability distribution pr0, pr1, . . . , pr2k−1. If the rule is rd, the pronun-
ciation chosen is Ω.

4. The phonemes and transitions of the signal s are generated from w as
described in Sec. 5.1.4. The durations of the vowels other than schwa are
assigned as 2.

5. If a particular schwa in w (and consequently in Ω) surfaces in ω∗, then its
duration is assigned as 2− δ with probability prd and 2 with probability
1− prd. We refer to prd as the duration reduction probability and δ as the
step of duration reduction.

6. If a particular schwa in w (and consequently in Ω) does not surface in
ω∗, then its duration is assigned as δ with probability prd and 0 with
probability 1− prd.

7. The duration of transitions are computed from the duration of the phonemes
as described in Sec. 5.1.4.
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There are a couple of points about the articulatory model that require some
elaboration. Firstly, the step of duration reduction δ must lie between 0 and
2. However, a more practical scenario would be one where 0 < δ < 1, as
otherwise a schwa which is deleted according to the pronunciation rule chosen
will surface as a long vowel and vice versa. Secondly, here we assume that the
probability of duration reduction prd is same as that of duration increment.
Although this is not necessarily true in reality, we make this simplification in
order to reduce the number of free variables (parameters) associated with the
model. The articulatory process is further explained below with the help of an
example.

Example 6.3 Let us consider an agent with mental state mi as described in
Example 6.2 earlier. Suppose that the word chosen for articulation is w = kala.
In order to find out the pronunciation rule applicable in this case, we construct
the CV-map of w, which in this case is Ω = CaCa. The rule associated with the
antecedent Ω in Ri (refer to Example 6.2) is 〈CaCa, 0.1〉, 〈CaC, 0.7〉, 〈CCa, 0.2〉,
〈CC, 0.0〉. One of these pronunciations are chosen following the probability
distribution. Let us assume that the pronunciation chosen is CaC (this has the
highest probability 0.7).

The next step is identification of the schwas in w which are to be deleted ac-
cording to the pronunciation pattern chosen. In this case, the absolute phoneme
durations, therefore, are as follows.

〈k, 0〉〈a, 2〉〈l, 0〉〈a, 0〉

Further, we assume that δ = 0.5 and prd = 0.8. Thus, with probability 0.8, the
duration of the schwas are increased or decreased by 0.5. Suppose that after
this process of random perturbation, the following durations are obtained for
the phonemes.

〈k, 0〉〈a, 2〉〈l, 0〉〈a, 0.5〉

Finally, the duration of the transitions are computed from the phoneme dura-
tions to characterize the articulated signal s corresponding to w.

s = 〈k, 0〉〈k → a, 1〉〈a, 2〉〈a→ l, 1〉〈l, 0〉〈l→ a, 0.25〉〈a, 0.5〉

��
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6.1.3 Learning

Learning in MAS Model II involves the change of the probabilities associated
with the pronunciation patterns on the basis of the outcome of an imitation
game. The learning strategy used here is similar to that of Model I, where every
imitation game, whether a failure or a success, triggers the learning process.
Recall that in MAS Model I (Sec. 5.1.6, the learning process is triggered with
a particular probability (psn and psm) based on the success rate of the agent in
the previous games (ksn and ksm). We observe that the parameters ksn and ksm
have a significant effect on the emergent pattern, because in a sense they capture
the tendency of the speakers to delete the schwas in spite of communication
failure. Thus, for very low values of ksn and ksm, a coherent schwa deletion
pattern fails to emerge and consequently the communication success rate of the
system fails drastically. Clearly, this situation does not reflect the reality.

In Model II therefore, we introduce a single parameter, namely the learning
rate η, which captures the tendency of the agents to learn a new pronunciation
rule. We do not condition the learning on the communication success rate of
an agent, because we assume that maintaining a high communication rate (as
close to 1 as possible) is the goal of all the agents. Instead, the parameter
η controls the communication success rate indirectly as follows. If η is very
small, the agents learn very slowly maintaining a high communication rate in
the system, but if η is large, it denotes that agents pay more importance to the
outcome of recent past than the overall history. In other words, large value of
η signifies that the agents are greedy. As we shall see shortly, unlike Model I,
here η does not reflect any bias for schwa deletion; rather the tendency towards
deletion is captured by the initial probability distributions associated with the
pronunciation rules.

The learning proceeds as follows. Suppose in a particular game an agent
(initiator or imitator) uses the pronunciation pattern ωi associated with a CV-
map Ω to articulate a word w for some i. Let the pronunciation rule for Ω
according to the current mental state of the agent be as follows.

Ω→ 〈ω0, pr0〉, 〈ω2, pr2〉, . . . , 〈ω2k−1, pr2k−1〉
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If the game is successful, the probability pri of ωi is increased according to the
following rule (pr′i is a temporary value).

pr′i = pri + ηpri (6.1)

To maintain the sum of the probabilities at unity, the probabilities of the other
rules are penalized equally as follows.

pr′j = prj −
ηpri

2k − 1
, i 6= j (6.2)

However, if after the application of the above rule, we find that pr′j < 0 for
some j, then pr′j is forcefully made 0. This might call for renormalization of the
probability values. Thus, the final probability values after the learning process
are obtained from normalization of the temporary values accordingly.

pri =
pr′i∑t=2k−1

t=0 pr′t
(6.3)

prj =
pr′j∑t=2k−1

t=0 pr′t
(6.4)

If the game is a failure, the probability of pri is decreased and the other
probabilities are increased according to the following equations.

pr′i = pri − ηpri (6.5)

pr′j = prj +
ηpri

2k − 1
, i 6= j (6.6)

This is followed by the renormalization step, which is same as Eq. 6.3 and 6.4.
The following example illustrates the learning process.

Example 6.4 Let us consider an agent whose current mental state is mi as
described in Example 6.2. Suppose that in the last game, the word articulated
was kala and the rule used for articulation was

CaCa→ CaC, 0.7

Let us further assume that the last imitation game was successful and η = 0.6.
Therefore, the probability of the pattern CaC is initially increased by 0.42
(= 0.7× 0.6) and the other values are decreased by 0.14 (= 0.42/3). This step
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(we shall call it step 1) is followed by step 2: assignment of negative probabilities
to 0, and step 3: renormalization. The initial and final probabilities values for
each of the above steps are shown below.

Pronunciation Initial After After After
pattern value step 1 step 2 step 3

CaCa 0.10 -0.04 0.00 0.00
CaC 0.70 1.12 1.12 0.95
CCa 0.20 0.06 0.06 0.05
CC 0.00 -0.14 0.00 0.00

Thus, at the end of the learning process, the agent is in a mental state, say
m′
i, where the pronunciation rule R′

i is identical to Ri except for the rule whose
antecedent is CaCa. The revised probability values of this particular rule are
those in the last column of the above table. ��

6.1.4 Implementation issues

In order to facilitate fast execution as well as lower memory usage, several
optimizations and tricks have been used while implementing the aforementioned
processes. The most important ones are described below.

• Since Λ is shared by all the agents, we store Λ as global variable, which
can be read by all the agents. Each word w ∈ Λ is assigned a unique id
(number), which is nothing but its array index.

• The pronunciation rules are stored as a part of the agent, because they
can vary across the agents. For a particular rule, it suffices to store the
list of indices of schwas in the antecedent CV-map. Associated with the
antecedent with k schwas, there is an array of 2k elements, which store
the probability values. The index itself is indicative of the pronunciation
pattern, because we assume that in the binary representation of the index,
a 0 means the schwa is deleted and 1 means it is not. Thus, index 0 means
all schwas are deleted in the pronunciation, whereas index 2 (10 in binary),
the last schwa is deleted but the second last is not.
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• With every word w ∈ Λ we also store the index of the rule that is applica-
ble based on its CV-map. Thus, we do not need to compute the CV-map
of w during the articulation process.

6.2 Perceptor Model

The task of the perceptor model P is to map a signal s to a word w in Λ. Recall
that P involves two distinct phases - perception and cognition (Sec. 5.1.5). The
perception step described in MAS Model I takes time linear in the length of the
signal (number of phonemes and transitions) and produces a string of perceived
phonemes v. Nevertheless, the cognition step, where we try to find out the word
w ∈ Λ that is nearest to v, takes a time linear in the number of words in Λ.
This takes a significant amount of time for simulation when Λ is large, and
consequently prevents us from experimenting with large lexicon in MAS Model
I.

In MAS Model II, the perception phase of P is identical to that of MAS
Model I. However, we introduce major modifications in the cognition phase.
Firstly, since the structure of the mental model in Model II is significantly dif-
ferent from that of Model I, we introduce a new notion of nearness between the
words based on the noisy channel approach (introduced in Shannon (1948), but
also see Kernighan et al. (1990), Brown et al. (1993) and Brill and Moore (2000)
for examples of applications in language modeling and processing). We design
an efficient search algorithm for the nearest word using the concept of Universal
Levenshtein Automaton (Mihov and Schulz 2004). The time complexity of the
algorithm is linear in the size of v - the sequence of perceived phonemes, but
almost independent of the size of the lexicon.

6.2.1 Defining the Nearest Word

We can formulate the cognition process in terms of a noisy channel as follows.
Let w be a word in Λ, which has been articulated by some agent. The process
of articulation, transmission and the perception steps can be abstracted out in
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Figure 6.1: The noisy channel view of the articulation, transmission and per-
ception processes. In the models described in this thesis, the transmission phase
is assumed to be noise free. Therefore, u and u′ are identical.

form of a noisy channel, so that after being transmitted through this channel,
w is converted to as v. This process is illustrated in Fig. 6.1.

The noisy channel is characterized by the conditional probability Pr(v|w).
We can estimate the probability Pr(w|v) from Pr(v|w) using Bayes rule as
shown below.

Pr(w|v) =
Pr(v|w)Pr(w)

Pr(v)
(6.7)

The word nearest to v can be defined as w∗ ∈ Λ for which Pr(w|v) is maximum.
Thus,

w∗ = argmax
w∈Λ

Pr(v|w)Pr(w) (6.8)

Note that we can neglect the term Pr(v) in the denominator, as it is identical for
all the words in Λ and as a result does not have any effect on Eq. 6.8. Through-
out the experiments in MAS Model II, we shall assume that the probability of
articulating any word in Λ is same, that is 1/|Λ|. Under this assumption, the
above equation can be rewritten as

w∗ = argmax
w∈Λ

Pr(v|w) (6.9)

This assumption has been made in order to guarantee that the emergent pat-
tern of SDH is independent of the distribution of the words in the language.
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Nevertheless, an interesting direction of research can be to study the effect of
the distribution of the words, if any, on phonological change, which we deem as
a future work.

In order to compute the probability Pr(v|w), we make the following as-
sumptions:

Assumption 1: The transmission stage, as shown in Fig. 6.1, has no noise
and consequently no visible effect on the value of Pr(v|w). This fact is
justified from the point of simulation as we do not add any noise during
the transmission phase. Nevertheless, the perception phase is a stochastic
process and can add to the distortion.

Assumption 2: The agents follow the Saussurean convention (Hurford 1989;
Oliphant 1996) that states that the same model (i.e., grammar rules)
are used for encoding and decoding the linguistic signals. In this case, it
translates to the fact that the perceiver agent uses its own mental state to
compute the probability Pr(v|w) rather than assuming a different mental
state or some statistical distribution over the mental states.

Therefore, we can express the probability Pr(v|w) as a product of two inde-
pendent probabilities PrP(v|u) and PrA(u|w), where the former represents the
perception step and the latter the articulation step. u is the intermediate string
of phonemes representative of the pronunciation pattern used for articulation.
Thus we have

Pr(v|w) =
∑
u∈Σ∗

PrP(v|u)PrA(u|w) (6.10)

Suppose that according to the mental state of the perceiver agent, the word w
is uttered using the rule

Ω→ 〈ω0, pr0〉, 〈ω1, pr1〉, . . . , 〈ω2k−1, pr2k−1〉

Also, let ui be the string of phonemes obtained when the pronunciation pattern
ωi is used to articulate w. Then, the probability that the articulated string was
of the form ui is given by pri. Note that the value of PrA(u|w) is greater than
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0 only if u is a possible articulated pattern according to the rule Ω. Therefore,
we can rewrite the above equation as

Pr(v|w) =
2k−1∑
i=0

priPrP(v|ui) (6.11)

Estimation of PrP(v|u) is tricky, as there are several, possibly infinite, num-
ber of ways through which the string u could be perceived as v, and one needs
to find the sum of the probabilities of all these possible paths to compute the
value of PrP(v|u). However, since we are interested in finding out the word
w∗ for which Pr(v|w) is maximum (Eq. 6.9), an exact estimate of PrP(v|u) is
not necessary; rather it suffices to have a good approximation of the quantity,
so that the values of Pr(v|w) are comparable across the words in Λ. As it
turns out, the quantity εed(u,v), where ε is a positive constant less than 1 and
ed(u, v) is the edit distance between u and v, is a good estimate of PrP(v|u)
(see, e.g., Bailey and Hahn (2001) for a similarity metric definition and Ellison
and Kirby (2006) for an application of the same). Intuitively, this can be justi-
fied as follows. v can be obtained from u by making ed(u, v) errors (insertion,
substitution or deletion). If probability of making an error is ε, which is much
less than 1, and errors are made independent of each other, then the quantity
εed(u,v) approximates the probability of making ed(u, v) errors. Consequently,
the quantity provides a rough estimate of PrP(v|u).

Thus, we can write

Pr(v|w) ≈
2k−1∑
i=0

priε
ed(ui,v) (6.12)

The value of ε depends on the noise introduced during the articulation and
perception processes.

Note that equations 6.9 and 6.12 together imply that the cognition step
requires the computation of the edit distance of the perceived string v from
all words in Λ. This would make P linear in |Λ|, which is clearly undesirable.
Moreover, the estimation of Pr(v|w) as described by Eq. 6.12 is computationally
intensive, and ideally we would like to carry out this computation for only a
very small subset of Λ. Thus, if it is possible to define a set Λv ⊆ Λ, such that
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w∗ ∈ Λv, then we need to search for w∗ only in Λv. Furthermore, if |Λv| � |Λ|,
the cost of computation is significantly reduced, provided that there is a fast
construction procedure for Λv.

The problem at hand is closely analogous to that of spell-checking (see Ku-
kich (1992) for definition and review of different approaches to spell-checking),
where v can be identified with the misspelling and w∗ the correct or intended
spelling. Spell-checking is often modeled as a noisy channel process (Kernighan
et al. 1990; Brill and Moore 2000), and given a large lexicon Λ and the mis-
spelling v, there are techniques to define and construct the set Λv. Here, we use
a technique based on similarity-key (Odell and Russell 1918; Odell and Russell
1922; Kukich 1992; Zobel and Dart 1995) to define the set Λv, and construct
the set efficiently using the concept of Universal Levenshtein Automaton (Mi-
hov and Schulz 2004). The following subsections present the algorithm for the
cognition step, outlining the problem-specific modifications made to the afore-
mentioned concepts, but refrain from a general description of the techniques as
such, for which the reader might refer to the relevant citations.

6.2.2 Defining Λv

The concept of similarity-key was introduced in the Soundex algorithm (Odell
and Russell 1918; Odell and Russell 1922), where phonetically similar words get
mapped to the same string, known as the key. Since the scope of the current
work is limited to SDH, we do not consider a general mapping function that
takes into account the confusability between every possible pairs of phonemes.
Rather, we observe that a word w and a string v might be highly similar if one
can be obtained from the other by only deletion and/or insertion of schwas.
Stated differently, since only the schwas can be deleted during pronunciation,
the perceived string v corresponding to an articulated word w is expected to
share all phonemes with w, except for may be the schwas. This motivates us
to define the key function as follows.

Definition 6.2 Let w be a string of phonemes. We define a mapping key from
Σ∗
P to {ΣP − a}∗, such that in key(w) all the ‘a’ in w are mapped to null,

keeping the other phonemes unchanged.
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w tuma nAma bAI so kala

key(w) tum nAm bAI so kl

Table 6.2: The similarity-keys for the words in the lexicon shown in Example 6.2

Table 6.2 shows the keys for all the words in the lexicon described in Exam-
ple 6.2. Note that two different words, such as karma and krama, can have
the same key, i.e. krm. This definition of the similarity-key enables us to write
the following relations (ui is as defined in eq. 6.11).

ed(v, w) ≥ ed(key(v), ui) ≥ ed(key(v), key(w)) (6.13)

A possible definition of Λv can be the set of all words w ∈ Λ, such that
key(w) = key(v) or equivalently ed(key(w), key(v)) = 0. However, a little
inspection shows that we can construct practical examples, where w∗ /∈ Λv. For
instance, suppose v = “karm”, so that key(v) = “krm”. Further suppose that
Λ has words w1 = “karma” and w2 = “karo”. Let us also assume that the
pronunciation rules according to the current mental state of the agent are

CaCCa→ 〈CaCCa, 0.8〉, 〈CaCC, 0.0〉, 〈CCCa, 0.2〉, 〈CCC, 0.0〉

CaCV → 〈CaCV, 1.0〉, 〈CCV, 0.0〉

Then, Pr(v|w1) = 0.2ε(ε + 4) and Pr(v|w2) = ε. Since, ε < 1, we have
Pr(v|w1) < Pr(v|w2). However, by the definition of Λv, w1 is in Λv, and
w2 is not. Thus, in order to ensure that w∗ ∈ Λv, the definition of Λv must be
less stringent. For Hindi, we have observed that if Λ is sufficiently large (> 5000
words), then usually ed(key(v), key(w∗)) ≤ 1. This motivates us to define Λv
as follows.

Definition 6.3 For a given string of phonemes v and a lexicon Λ, Λv is the
set of all words w ∈ Λ, such that ed(key(v), key(w)) ≤ 1.

Although one can still construct examples with the above definition of Λv,
where w∗ /∈ Λ, such examples seldom occur in practical cases. In other words,
Def. 6.3 provides a heuristic description of the set Λv, which works quite well
in practice.
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Figure 6.2: The structure of the Levenshtein automaton of order 2 for a string
s = p1p2 . . . pn.

6.2.3 Levenshtein Automaton

In order to find out the set of all words w ∈ Λ, such that edit-distance between
w and v is 0 or 1, we construct a Levenshtein automaton (Ukkonen 1985; Wu
and Manber 1992; Baeza-Yates and Navarro 1999; Mihov and Schulz 2004)
for v. By definition, the Levenshtein automaton of order k for a string v is a
non-deterministic finite state automaton, which accepts a string s if and only
if ed(v, s) ≤ k. We describe the structure of the Levenshtein automaton with
the help of Fig. 6.2.

Let us try to construct the Levenshtein automaton of order k for the string
s = p1p2 . . . pn. The automaton can be visualized as a (k+1)×(n+1) rectangular
grid of states. The row indices run from 0 to k and the column indices run from
0 to n. Let us denote the state in the ith row and jth column as ji (refer to
Fig. 6.2)1. The 00 is the start-state of the automaton. There are three types of
transitions in the automaton.

• Horizontal or left to right transitions from a state ji to (j + 1)i are con-
ditioned on the character pj+1. These edges, when traversed, denote a
match of character between the input string and s.

1Note that here superscript i is not an exponent. This notation has been adopted from (Mi-

hov and Schulz 2004)



158 MAS Model II: Emergence of the Rule

• Vertical or upward transitions from a state ji to ji+1 are conditioned on
any character (denoted by Σ in Fig. 6.2). These edges denote the insertion
of a character.

• Diagonal transitions from a state ji to (j + 1)i+1 are conditioned on any
character as well as ε - the null transition marker. When the diagonal
transition is traversed for a character, it denotes a substitution; whereas
when the ε-transition is traversed, it denotes a deletion of character.

Thus, every move upward from a state in row i to row i+ 1 increases the edit
distance by 1. The row index of the states, therefore, stores the value of the
current edit-distance between the substring of the input seen from s. All the
states in the (n + 1)th column are the final states. Since the automaton is a
non-deterministic one, after traversing an input string x, the automaton can be
in more than one states; if any of these states is a final state then ed(s, x) ≤ k.
The exact edit-distance between s and x is given by the row index of the lowest
(the one with smallest superscript) state.

Fig. 6.3 shows the Levenshtein automaton of order 1 for the string “tuma”
and traces the state transitions of the automaton, when the input string is
“tum”. The states that are activated after traversing a part of the input are
shown in gray. After scanning the input string “tum”, the automaton can be in
one of the four states - 30, 21, 31 and 41, out of which 41 is a final state. Thus,
the edit-distance between “tum” and “tuma” is 1.

Note that in Fig. 6.3, the set of activated states at any point of time, except
for in the beginning, forms a triangular pattern, which shifts horizontally as the
input is scanned. The set of activated states after scanning the jth character of
the input are j0, (j − 1)1, j1 and (j + 1)1. On the basis of similar observations,
it is possible to define an automaton, where each state represents a subset of
states in the Levenshtein automaton and the transitions are conditioned on
string of phonemes of length k + 1. Here k is the order of the Levenshtein
automaton. A transition from state S to a state S′ on phonemes p1p2 . . . pk in
this automaton denotes that if the set of activated states of the Levenshtein
automaton is represented by S and the last k phonemes observed including the
current one are p1 to pk, then the next set of activated states in the Levenshtein
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Figure 6.3: Tracing the state transitions for the string “tum” on the Levenshtein
automaton of order 1 for “tuma”. The currently activated states are shown in
grey. $ separates the part of the input that has been scanned from the part to
be scanned.
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automaton is given by S′. This automaton that captures the traversal of a
general Levenshtein automaton of order k is called an Universal Levenshtein
Automaton (ULA) of order k (Mihov and Schulz 2004).

Thus, for a given string v, we can build a ULA of order 1, whose transitions
are defined based on the phonemes in v. The lexicon Λ can also be conceived as
an automaton. We can then construct the set Λv through a simultaneous traver-
sal of the ULA and the lexicon. In the following subsection, we describe the
data structures and algorithm that realize the aforementioned concept. Since
we are interested in the ULA of order 1 only, here we refrain from any discussion
on the general construction procedure of a ULA of order k; rather we describe
a simpler algorithm for simultaneous traversal of the Levenshtein automaton
of order 1. Nevertheless the basic idea is borrowed from the concept of ULA
presented in (Mihov and Schulz 2004).

6.2.4 Algorithm for Searching w∗

The search for w∗ consists of the following three distinct phases.

1. Preprocessing: The lexicon Λ is represented as an automaton. Since all
the agents share the lexicon, a common automaton is constructed before
the simulation begins. The automaton is accessible to all the agents during
the simulation.

2. Construction of Λv: Λv is constructed in the runtime for the perceived
string of phonemes - v through a traversal of the lexicon automaton.

3. Exhaustive search for w∗: For every word w ∈ Λv, the value of Pr(w|v)
is computed using Eq. 6.12 and the word for which Pr(w|v) is highest is
returned as w∗.

Each of these phases is detailed out in the following subsections.

Preprocessing

Recall that Λv is the set of all words in Λ for which the edit distance between
the keys of v and the word are no greater than 1. The search for the words in
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Λv, therefore, is performed in the domain of the key values of the words, rather
than the words themselves. We construct a lexical automaton, denoted by
MΛ : 〈ΣP−a,Q, q0, F, δM 〉, for the lexicon Λ, where Q is the set of states, q0 ∈ Q
is the start state, F ⊂ Q is the set of final states and δM : Q× {ΣP − a} → Q

is the transition function. Given a string s ∈ {ΣP − a}∗, the automaton MΛ

accepts s if and only if there exists a word w ∈ Λ, such that key(w) = s.

MΛ has the following properties.

1. For every state q ∈ Q, there is a unique sequence of transitions from q0

to q.

2. The sequence of transitions from q0 to q defines a string of phonemes, say
sq.

3. q ∈ F if and only if there exists a word w ∈ Λ, such that key(w) = sq.

4. For every final state q ∈ F , we also store a list of all the words wiq ∈ Λ,
such that key(wiq) = sq (i varying from 1 to the number of such words in
Λ).

Note that MΛ is essentially a forward trie (de la Briandais 1959; Fredkin
1960), that is used for efficient word search in Information Retrieval and other
NLP applications. The node q0 is the root of the trie. The construction of MΛ

is simple and we use the commonly used algorithm described in (Knuth 1997)
for this purpose. The following example illustrates the structure of the lexicon
automaton.

Example 6.5 Let us assume that the lexicon Λ = {sara, asara, so, saradAra,
krama, karma}. The corresonding keys for the words are sr, sr, so, srdAr,
krm, tum and krm respectively. Fig. 6.4 shows the structure ofMΛ that accepts
the keys corresonding to all the words in Λ. The final states of the automa-
ton are shaded and the list of the words associated with a final state are also
indicated in the diagram. ��
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Figure 6.4: The lexicon automaton MΛ for the lexicon shown in example 6.5

Construction of Λv

Given a string v and the lexicon automaton MΛ, we construct the set Λv by
simultaneous traversal of MΛ and the Levenshtein automaton of order one for
key(v). Starting from the node q0, we do a depth first traversal of MΛ. Before
presenting the algorithm, we introduce a few notations that will be used while
describing the algorithm.

• We denote the transition function of the Levenshtein automaton of order
1 for key(v) by δv and use the notation δv(ji, p) to denote the set of states
that can be reached from the state ji, when the input is the phoneme p.
Note that since the Levenshtein automaton is non-deterministic, δv(ji, p)
represents a set of states, which can also be null.

• We denote the transition function of MΛ by δM and use the notation
δM (q, p) to denote the state reached on input phoneme p, when the ma-
chine is in state q. Unlike the Levenshtein automaton, MΛ is deterministic
and therefore, δΛ(q, p) is unique, unless no transitions from q are defined
on p, for which we assume that δΛ(q, p) is some predefined trap state, say
qTS .

• The list of words associated with a state q of MΛ is denoted by wlist(q).
Note that if q /∈ F , then wlist(q) is empty.
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The algorithm consists of an initialization step – Init, followed by a call to
the recursive function – Traverse.

Init(MΛ, v)
1 v′ ← key(v)
2 Mv ← Levenshtein automaton of order 1 for v′

3 Λv ← null

4 la states← {00, 11}
5 Traverse(q0, la states)

The variable la states contain the list of active states of the Levenshtein
automaton Mv. Recall that in the beginning, that is before scanning any input,
the states 00 and 11 are active (refer to Fig. 6.3). Also, we assume that the
automata MΛ and Mv, as well as the set Λv are declared globally. The function
Traverse is as shown below.

Traverse(q, S)
1 if q = qTS or S = null

2 return
3 for each p ∈ {ΣP − a}
4 la states← null

5 for each s ∈ S
6 la states← la states ∪ δv(s, p)
7 Traverse(δΛ(q, p), la states)
8 for each s ∈ S
9 if s is a final state of Mv

10 Λv ← Λv ∪ wlist(q)
11 return
12 return

It can be shown that the number of active states in Mv for any input string
never exceeds 4. In other words, the size of the variable la states is bounded.
Moreover, it is not necessary to explicitly construct the automaton Mv in order
to formulate the transition function δv. The row and column indices of a state
can be readily computed from the current row and column indices of the current
state, say ji, by comparing the jth phoneme of the string key(v) with the input
phoneme p.
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Proof of Correctness

In order to prove that the set of words Λv constructed by the above algorithm
conforms to the definition 6.3 we first prove the following lemma.

Lemma. For every call of the function Traverse(q, S), S contains the set
of active states in Mv for the string sq (the unique string of phonemes defined
by the sequence of transitions from q0 to q).

Proof. This can be proved by induction on q as follows. The basis is when
q = q0, for which this is trivially true (see step 4 of procedure Init). For the
induction step, notice that in the steps 4, 5 and 6 of procedure Traverse, we
construct the set of active states of Mv, when p is the observed input and the
machine Mv is in one of the states in S. Thus, if on the input string sq the
set of active states of Mv is S (true by the induction hypothesis), then for the
input string sq · p, the active state in MΛ is δΛ(q, p) (by definition) and the set
of active states in Mv is stored in the variable la states after the completion of
the for-loop in step 4 (by construction). This completes the proof.

Step 10 in the procedure Traverse is the only place where Λv is updated.
By the above lemma, for the input string sq, in MΛ we reach the state q, which
implies that ∀w ∈ wlist(q), sq = key(w); and in Mv, we reach the set of states
S, which contains at least one final state to ensure that Λv is updated (condition
in step 9). If S contains a final state, then ed(sq, key(v)) ≤ 1) (by definition of
the Levenshtein automaton). Thus, we have

∀w ∈ wlist(q), ed(key(w), key(v)) ≤ 1

Hence, all the words in Λv satisfy the condition stated in Def. 6.3.

Similarly, if there is a word w satisfying the above condition, then by def-
inition of MΛ, there must be state q ∈ Q, such that sq = key(w). Since the
procedure Traverse explores all the transitions from a given state (step 3),
the state q must be eventually traversed. Again by the above lemma, when
Traverse is called on q, the set of active states S at that point must contain
at least one final state in Mv, because ed(sq, key(v)) ≤ 1. Therefore, all the
words in Λ whose keys are within one edit-distance of key(v) are included in
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Λv. Thus, Λv constructed by the algorithm described above indeed conforms
to the definition given in Def. 6.3.

Exhaustive Search for w∗

After the construction of the set Λv, we compute the value of Pr(v|w) for each
word w ∈ Λv using Eq. 6.12. Note that even though we could compute the
edit-distance between key(w) and key(v) while constructing Λv, it is not very
clear how one can obtain the edit distance between v and w from the above.
Therefore, we compute the exact edit-distance between the strings v and w

during calculation of Pr(v|w) and find out the word w∗, for which Pr(v|w) is
maximum. If there are more than one words with the maximum probability
value, one of them is chosen at random as w∗.

6.3 The Simulation Setup

The structure of the agent for MAS Model II is presented in sections 6.1 and 6.2;
the interaction between the agents takes place through imitation games, which
has been discussed in section 5.1.1. In this section we describe the simulation
setup for MAS Model II. The initialization of the mental model of the agents,
which includes selection of an appropriate Λ and choice of initial pronunciation
rules, is one of the most important issue in MAS Model II, and the same is
discussed below. We also present a comprehensive list of the model parameters
for MAS Model II, which help us design the various simulation experiments. To
complete the description of the simulation setup, we also present the details of
the simulation environment and some empirical results for the simulation time.

6.3.1 Lexicon Selection

The prime motivation behind the construction of MAS Model II lies in the fact
that though we observed that the emergent pattern for SDH is dependent on the
lexicon, we could not run the simulation experiments on a real lexicon for Model
I. Consequently, one of the most important issues in Model II is the selection
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of an appropriate lexicon that is representative of the real Hindi lexicon. As
is clear from the agent model described above and also substantiated in the
following section through empirical analysis of the model, the time required for
one imitation game as well as the number of games required for convergence
in MAS Model II are almost independent of the lexicon size. Nevertheless, we
must define a bound on the size of Λ as the vocabulary of the real languages are
never closed and it makes no sense to work with the “entire” lexicon of Hindi.

In order to choose an appropriate value of M – the size of Λ, we proceed
as follows. From a large corpus of Hindi, we enumerate the unigram (i.e. oc-
currence) frequencies of the words and sort the words in descending order of
the frequency. We define Λ to consist of the top M words from this sorted list.
Experimenting with different values of M (described in Sec. 6.4.4), we observe
that other parameters being fixed, the emergent pattern of SDH changes as M
increases from a very small value (say 1000) to 10000. However, as we further
increase the lexicon size there is hardly any change in the emergent pattern.
Therefore, for all of the experiments, excepting those meant for studying the
dependency of the emergent pattern on M , Λ is defined as the set of 10000
most frequent Hindi words.

In this context, a few points are worth noting. Firstly, here the unigram
frequencies have been estimated from the CIIL corpus2, which is a 3 million
word written corpus of standard Hindi. However, for the kind of experiments
described here, ideally one should use a historical spoken corpus of Hindi (or
some ancestor language of Hindi), which reflects the word usage patterns when
there was no schwa deletion. Unavailability of such data forces us to resort to
this alternative approach. Nevertheless, as discussed in Sec. 2.3, we assume that
the current orthography of Hindi reflects the spoken forms of the past. Another
important issue is that of inflectional and derivational morphology. Here, we
consider the different inflected and derived forms of a root as distinct words.

Several features associated with Λ (such as the number of distinct CV-maps
denoted by λ, words without any schwa (WWS) and states inMΛ) grow withM .

2Developed by Central Institute of Indian Languages, Mysore, India. Currently the corpus

is a part of a bigger set of language resources collectively known as EMILLE/CIIL corpus,

developed and distributed under the EMILLE project (Xiao et al. 2004)
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We describe below the behavior of these features as a function of M , because
the scalability of MAS Model II heavily depends on them. As a matter of fact,
for M = 10000, the values of λ, the number of WWS and the number of states
in MΛ are 352, 2682 and 16347 respectively.

Distinct CV-maps in Λ

Fig. 6.5 shows the variation of λ – the number of CV-maps with M . We observe
that when plotted on a doubly logarithmic scale, the growth pattern of λ can be
very well approximated by a straight line (indicated by the red line in Fig. 6.5).
Through regression analysis, we obtain the following relationship between M

and λ (on doubly logarithmic scales, the standard error for λ is 0.0235 and
F-statistic is 293.7).

λ = 10.315M0.387 (6.14)

Clearly, λ grows quite slowly with M . This sublinear growth supports the scal-
ability of MAS Model II, because, since the agents have to learn λ probability
distributions for the λ rules, the number of games required for convergence is
directly proportional to λ and not M .

Words Without any Schwa

Fig. 6.6 shows the variation of the number of WWS with M . The growth
pattern, in this case, cannot be approximated by any simple mathematical
function. We note an exponential rise in the number of WWS initially, which
grows at a much slower rate as M exceeds 10000. This is evident from Fig. 6.6,
where the growth curve is approximately linear on the sub-logarithmic scale
till M = 10000, after which it becomes nearly parallel to the x-axis. Although
this parameter has no direct relevance to our experiments, there is one point,
however, which calls for immediate attention. Recall that the emergent pattern
in the simulation experiments are found to be heavily dependent on M , till
M is 10000, but for M > 10000, we hardly observe any effect of M over the
SDH pattern. It is quite plausible that the two observations have some causal
connection, but further investigations are necessary before we can make any
firm conclusions regarding the same.
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Figure 6.5: The growth pattern of the number of CV-maps versus lexicon size
M for Hindi. The blue points corresond to emirical data, whereas the red line
is the fit according to Eq. 6.14.

Figure 6.6: The growth pattern of the number of words without any schwa
versus the lexicon size M for Hindi.
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Figure 6.7: The growth pattern of the number of states in MΛ versus the lexicon
size M for Hindi. The blue points correspond to empirical data, whereas the
red line is the fit according to eq. 6.15.

Number of States in MΛ

The number of states in the lexicon automaton MΛ grows almost linearly with
M . Fig. 6.7 plots the growth pattern on a doubly-logarithmic scale. The line
of regression, shown in red in the figure, represents the following function.

The number of states in MΛ = 3.754M0.912 (6.15)

The fit explains the data very well with a standard error less than 0.008 and F-
statistic greater than 15200. The exponent 0.912 shows that the growth is nearly
linear. The number of states in MΛ is an indirect estimator of the memory and
time required for the simulation. However, as we shall see shortly, although
there is a strong correlation between the simulation time and the number of
states, the former grows much more slowly than the latter.

6.3.2 Rule Initialization

The initialization of the mental models of the agent in MAS Model II involves
appropriate instantiation of the pronunciation rules. Since the lexicon is shared
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by the agents, the number of pronunciation rules is also fixed and common
among the agents. Rule instantiation in this case, therefore, boils down to
assignment of the probability values for the different pronunciation patterns.

In MAS Model I, the pronunciation rules are deterministic in nature and
the variation in pronunciation emerges due to a tendency towards reduction
of the duration of schwas during articulatory process. As a result, the initial
pronunciation rules in the model are shared by the agents, where all the schwas
are pronounced. To the contrary, in MAS Model II the articulation process does
not have any inherent bias towards deletion, even though it can add some noise
to the generated signal. Therefore, the variation of pronunciation as well as the
tendency towards vowel reduction must be captured through the probability
values assigned to the different pronunciation patterns. This makes the choice
of rule initialization far from trivial.

Let Ω be a particular CV-map with k schwas, whose associated pronuncia-
tion patterns are ω0 to ω2k−1 (see Sec. 6.1.1). There can be several strategies for
initialization of the probability values pr0 to pr2k−1. We list a few representative
strategies below and also discuss their psycholinguistic implications.

Random probability assignment: This is a simple strategy where the
values of pri are assigned randomly for every agent. Linguistically, this implies
that the language-users do not share a common pronunciation grammar to start
with. The tendency towards schwa deletion varies across the users as well as
across rules for the same user. Although this model can provide some insightful
results that can be used as a baseline for other models, its linguistic implications
are rather counterintuitive. Moreover, the random assignment strategy does
not allow us to systematically study the emergent behavior of the model with
respect to the bias towards schwa deletion.

Uniform probability assignment: According to the uniform probability
assignment strategy, all the probability values pri are assigned the same value
that is 2−k. Linguistically, this implies that the language-users agree on the
pronunciation model3 and there is no bias towards either retention or deletion

3Note that this does not mean that the speakers would agree on the pronunciation of a

word in a particular game.
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of the schwas. The strategy, though linguistically plausible, does not allow us
to study the effect of the bias towards deletion, and thus can serve as a good
baseline model.

Fixed schwa deletion probability based assignment: In this strategy,
we define a parameter π, that is the probability of deletion of a schwa. We
assume that every schwa is deleted with a probability of π (and consequently
retained with a probability of 1 − π) independent of the status of the other
schwas. Let |ωi|a be the number of schwas in the pronunciation pattern ωi.
Then, the probability values according to this model are assigned as follows.

pri = π|ωi|a(1− π)k−|ωi|a (6.16)

Note that when π = 0.5, the initial probability values assigned by this strategy
is identical to those by the uniform probability assignment stratey. The psy-
cholinguistic implications of the model are: 1) the language-users agree on the
pronunciation grammar, and 2) initially, the schwas are deleted with a fixed
probability independent of the pattern. The deletion pattern emerges due to
the successes and failures of the users encountered during the interactions with
other users.

Here, we choose the fixed schwa deletion probability based rule initialization
strategy, not because of the fact that it seems linguistically more plausible than
the other two, but for the single reason that this strategy allows us to control
and study the effect of the bias towards schwa deletion using a single parameter
π. Fig. 6.8 depicts the nature of the probability distributions obtained for
pronunciation rules with different CV-maps for different values of π.

6.3.3 Model Parameters

Like MAS Model I, there are several parameters associated with Model II that
might have a significant effect on the emergent pattern. These parameters or
free variables have already been defined and discussed in the previous sections.
Nevertheless, here we summarize them again in Table 6.3, which help us to
understand the complexity and degrees of freedom of the model. Furthermore,
this is important for the design of simulation experiments to systematically
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Figure 6.8: Initial probability distribution of the pronunciation rules for a few
different CV maps for different values of π. The bar charts in the top, middle
and bottom rows are for CV maps with 4, 3 and 2 schwas respectively. The
bar charts in the left, middle and right columns are for π = 0.2, 0.5 and 0.8
respectively. The CV maps on the left shows the pronunciation patterns (ωis)
and the assigned probabilities (pris) are shown by the horizontal bars. Note that
for π = 0.5, the assigned probabilities are same for all the patterns associated
with a CV map.
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Symbol Type Range Description

N integer [2,∞] number of agents

M integer [2,∞] number of words in the lexicon

δ real [0,2] duration reduction step

prd real [0,1] duration reduction probability

η real [0,∞] learning rate

π real [0,1] schwa deletion probability while
initialization

Table 6.3: Parameters of MAS Model II

study the effect of these parameters on the emergent SDH pattern and their
real life correlates.

Apart from the parameters listed in Table 6.3, two other important issues
governing a simulation experiment are: 1) the number of games for which the
simulation is run, and 2) initialization strategy. The effect of the parameters
N , prd and δ has been studied in details for MAS Model I, and we observe that
it is the number of games required for convergence, rather than the emergent
pattern, that is dependent on N . Unlike Model I, where prd and δ encode the
tendency and style of deletion for the agents, in Model II these parameters have
been introduced to incorporate some noise in the articulatory model. Therefore,
in our experiments with MAS Model II, we primarily focus on the effect of the
parameters M , η and π on the emergent pattern.

6.3.4 Simulation Environment and Time Analysis

All the simulation experiments, reported in this chapter, have been carried out
on the Windows XP running on a Pentium-4 1.6GHz processor having 256MB
RAM. The modules have been implemented in C. In order to estimate the
time required for simulation a set of two simulation experiments with 50000
and 100000 games has been carried out for five different values of M . For a
particular value of M , the time required for 50000 games has been computed
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Figure 6.9: The plot of time required for 50000 games (in seconds) versus the
lexicon size M for Hindi. The blue points correspond to empirical data, whereas
the red line is the fit according to eq. 6.17.

by averaging over the observations of the two simulation runs. The results are
plotted in Fig. 6.9. Note that by “time”, here we refer to the real time that
elapses between the beginning of the execution of the simulation code and the
end of the same. Therefore, apart from the system configuration, the reported
values of the run-time also depend on the system-load, that is the number of
other processes and applications running simultaneously during the simulation
experiments. It has been ensured that all the experiments are run under similar
system-load conditions so that the time estimates are directly comparable.

From Fig. 6.9, we observe that on a doubly logarithmic scale, simulation
time depends linearly on M . The empirical data can be very well approximated
by the following equation (the standard error and the F-statistic for the fit are
0.007 and 1538 respectively).

time per game = 53.37M0.267 µsec (6.17)

Thus, the time required for simulation grows much slowler than the size of the
lexicon. We have seen that for MAS Model I, the time required for one million
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games for a vocabulary size of 1800 is 12363 seconds. According to Eq. 6.17,
the time required for one million games when M = 1800 in MAS Model II is
397.3 seconds. This is a reduction of 96.8% over the time required in Model
I. However, when M = 8, the time required for Model II is less than that of
Model I by only 3.8%. Thus, Model II is far better than the Model I in terms
of scalability with respect to the size of the lexicon.

This drastic reduction of the simulation time for Model II is an outcome of
the modified perception algorithm; this is because the modifications made to
the other modules (e.g. articulatory process and learning) are too insignificant
to have some visible effect on simulation time. Therefore, it is worthwhile to
analyze the time-complexity of the perception algorithm. The time required
during the perception process is the sum of the time required for construction
of Λv and searching for w∗ in Λv. The former can be estimated by counting the
number of states in MΛ that are explored during the execution of Traverse,
while the latter is a linear function of the size of Λv.

Table 6.3.4 reports the average number of states explored during Traverse

for different lexicon sizes. The values have been obtained by counting the
number of calls to Traverse for each invocation of the perceptual procedure
over 1000 games with randomly selected words from the lexicon. Since each
game involves two invocations of the perceptual process, we have the data for
2000 perceptual experiments. We observe that unlike the number of states in
MΛ, which grows almost linearly with M , the number of states explored during
the construction of Λv grows sublinearly with M . This is also reflected in the
fraction of the total number of states explored, which significantly decreases
with M . Fig. 6.10 shows the distribution of the number of states explored
for the aforementioned experiments. It is evident from the histogram that
the number of states explored is normally distributed and the mean and the
standard deviation of the distribution increases with M .

In Table 6.3.4, we also report the average size of the set Λv as returned
by Traverse during the same set of experiments. The size of Λv is almost
independent of M , and varies from 2 to 3. However, unlike the distribution of
the number of traversed states, the distribution of the mean size of Λv is heavily
skewed. For instance, when M = 20000, in 37% of the experiments, |Λv| = 1,
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Size of the Number of average number of Percentage of average
lexicon - M states in MΛ states explored states explored size of Λv

4000 7383 829.2 11.23 1.95
10000 16347 1125.7 6.89 2.77
20000 31692 1450.7 4.56 3.04

Table 6.4: The number and the fraction (expressed in %) of states explored in
MΛ during Traverse and the average size of the set Λv for different M .

Figure 6.10: Distribution of the number of states explored for different values
of M . The blue, green and cyan bars represent the distributions for M = 4000,
10000 and 20000 respectively. The thin vertical lines denote the averages for
the distributions following the same color codes.
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and in more than 88% of the cases, |Λv| ≤ 5; nonetheless the maximum value
observed for |Λv| is 34.

These observations pertaining to the perceptual process can satisfactorily
explain the timing behavior of MAS Model II as represented by Eq. 6.17.

6.4 Experiments and Observations

In this section, we systematically explore the effect of the different model pa-
rameters on the emergent schwa deletion pattern. The experiments with MAS
Model I reveal that the parameter N has no effect as such on the emergent be-
havior, but it only affects the convergence time. The same is arguably true for
MAS Model II, and therefore, here we do not conduct any further experiments
to study the effect of N and for all other experiments, the value of N is fixed
at 4.

The effect of the parameters δ and prd has also been studied in details for
Model I. We have observed that realistic deletion patterns emerge for small
values of δ and prd. However, the lower the values of these parameters, the
higher is the time required for convergence. Since in Model II, these parameters
are representative of the articulatory noise4, we do not devote any elaborate
experimentation and discussion regarding the effects of these parameters. In all
the experiments, δ and prd are set to 0.1 and 0.6 respectively.

In the following subsections we focus on the effect of the parameters M ,
initialization strategy and π,and η on the emergent pattern. To begin with,
we define certain evaluation metrics and present the results of some baseline
experiments that will allow us to compare and comprehend the results of the
simulation experiments that follow.

Note that unlike in MAS Model I, where all the words in Λnormalized has at
least one schwa (by construction), in MAS Model II, a large number of words
in Λ do not contain any schwa (Fig. 6.6. The outcome of an imitation game

4Even though according to the current implementation of the model, it is the articulatory

process where the noise is being introduced, conceptually one may as well consider the noise

to be a part of the transmission channel or the perception process.
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with WWS is obvious, because there is only one rule rd that is used with a
probability 1, and such a game is always successful. Therefore, in order to
strip of any unnecessary computation during the simulation experiments, the
initiator always chooses a word that has at least one schwa. Nevertheless, as
the game proceeds, the imitator might perceive and consequently, articulate a
word, which does not have any schwa.

6.4.1 Evaluation Metrics

A simulation experiment can be thought to have the following three phases:

1. Initialization: The parameter values and the mental states of the agents
are initialized.

2. Execution: The agents play a preset number of games, which are either
successes or failures. At the end of a fixed number of games (one or more),
which we call a round of the simulation, the state of the system is noted
in a logfile.

3. Conclusion: At the end of the simulation, every agent is in a particular
mental state. In other words, every agent learns a specific set of schwa
deletion rules, which are reflected through the probabilities associated
with the pronunciation pattern.

Table 6.4.1 shows a few pronunciation rules that emerge during a typical
run of the MAS Model II. It is interesting to note that synchronic variation
(i.e., variation across agents) is observed for almost all the pronunciation rules,
despite a high communication success rate (94%). We also observe that for
frequent CV maps, such as aCVCa, the pronunciation rules have probability
of either 0 or 1. Thus, even though the agents may not converge to the same
pronunciation rule, they do learn strict individual pronunciation rules. In other
words, variation within an individual vanishes over time. The CV maps, such
as VCCaCaCCV, for which we do not observe the aforementioned trend are
infrequent, and very few games had been played with the words associated
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Antecedent Pronunciation Probabilities
Ω ω Agent 1 Agent 2 Agent 3 Agent 4

CaCaCV CCCV 0.0 0.0 0.0 0.003
CaCCV 1.0 1.0 1.0 0.990
CCaCV 0.0 0.0 0.0 0.003
CaCaCV 0.0 0.0 0.0 0.003

CaCaCaCa CaCCaC 0.0 0.0 0.0 1.0
CaCCaCa 1.0 1.0 1.0 0.0

aCVCa aCVC 1.0 0.0 1.0 1.0
aCVCa 0.0 1.0 0.0 0.0

aCVCaCa CVCC 0.014 0.006 0.014 0.0
aCVCC 0.014 0.006 0.014 0.0
CVCaC 0.014 0.96 0.014 0.0

aCVCaC 0.014 0.006 0.014 0.0
aCVCC 0.90 0.006 0.899 1.0
aCVCCa 0.014 0.006 0.016 0.0
CVCaCa 0.014 0.006 0.014 0.0
aCVCaCa 0.014 0.006 0.014 0.0

VCCaCaCCV VCCCCCV 0.54 0.54 0.0 1.0
VCCaCCCV 0.42 0.13 0.0 0.0

VCCCaCCV 0.20 0.24 1.0 0.0
VCCaCaCCV 0.19 0.09 0.0 0.0

Table 6.5: Examples of emergent rules taken from a typical run of the MAS
Model II. The probabilities associated with the pronunciation patterns of CV
Map Ω are shown for all the four agents. The pronunciation according to
standard Hindi is shown in bold font. The patterns for which all the agents
have a probability of 0.0 are not shown in the table (e.g., CVC for the antecedent
aCVCa). Values of the model parameters: N = 4, M = 10000, π = 0.8, δ = 0.1,
prd = 0.6, η = 0.1, number of games = 1 million, 〈SuccessRate〉 = 94%

with them. Consequently, the agents do not get sufficient time to converge to
a particular pronunciation.
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Since there is a large number of pronunciation rules, it is impossible to
evaluate and characterize the emergent schwa deletion pattern of MAS Model
II through manual inspection only, as we have done in the case of MAS Model
I. Therefore, in order to understand the nature of the emergent pattern as well
as the dynamics of the system, we define certain objective evaluation metrics
that help us to – (a) talk about the stability of the emergent linguistic system,
and (b) measure its similarity with its naturally occurring counterpart. Like
MAS Model I, we measure the stability of the emergent linguistic system in
terms of its success rate, which is defined as follows.

SuccessRate =
Number of successful games

Total number of games played
(6.18)

After a sufficiently large number of games, the higher the value of SuccessRate,
the higher is the stability of the emergent system. The SuccessRate of an ideal
linguistic system is 1.

In order to measure the similarity of the emergent pattern with the pattern
of SDH, we define four independent metrics based on the Ohala’s rule. Recall
that Ohala’s rule succinctly captures the Hindi schwa deletion pattern through a
regular expression for the context where a schwa can be deleted (see Sec. 2.3.2).
However, deletion of a schwa can change the context of another schwa so that it
cannot be deleted anymore, even if the deletion was supported by the context
previously (refer to the case of ajanabi in Example 2.1). Such cases are resolved
by the right-to-left rule application convention.

Thus, according to the context of deletion (as specified by Eq. 2.1), we can
classify the schwas occurring in a CV-map Ω as delible and indelible. However,
after applying the convention as well, the schwas get classified finally as either
deleted or retained. Note that a schwa that is indelible is always retained.
However, a schwa that is delible might be deleted or retained.

Let ω be a CV pattern obtained by deletion of zero or more schwas from
Ω. In other words, ω is a pronunciation pattern associated with the CV-map
Ω. Let us consider a particular schwa in Ω. The schwa may be deleted in Ω
according to Ohala’s rule as well as deleted in ω. Let us denote these types
of schwas as correct deletions. Similarly, the schwa may be retained in both Ω
and ω. We shall call such schwas as correct retentions. We define the following
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two quantities for a pair (Ω, ω), which reflect the similarity of ω to the deletion
pattern of Ω as predicted by Ohala’s rule.

CorrectDeletion(Ω, ω) =
No. of correct deletions

No. of deleted schwas in Ω
(6.19)

CorrectRetention(Ω, ω) =
No. of correct retentions

No. of retained schwas in Ω
(6.20)

The fractions of schwas in ω that are incorrectly retained or deleted are given
by the expressions 1−CorrectDeletion(Ω, ω) and 1−CorrectRetention(Ω, ω).
A schwa that is undelible in Ω, but deleted in ω, directly violates Ohala’s rule.
Such schwas will be referred to as erroneous deletions, for which we have the
following equation.

ErroneousDeletion(Ω, ω) =
No. of erroneous deletions

No. of undelible schwas in Ω
(6.21)

The above equations measure the similarity and error related to a single
pronunciation pattern. In order to generalize the equations over a pronunciation
rule of the type

Ω→ 〈ω0, pr0〉, 〈ω2, pr2〉, . . . , 〈ω2k−1, pr2k−1〉

we simply take a weighted sum of the respective quantities, where the weights
are the probabilities. Thus, if we denote the above rule as r, we have

CorrectDeletion(r) =
2k−1∑
i=0

pri × CorrectDeletion(Ω, ωi) (6.22)

CorrectRetention(r) =
2k−1∑
i=0

pri × CorrectRetention(Ω, ωi) (6.23)

ErroneousDeletion(r) =
2k−1∑
i=0

pri × ErroneousDeletion(Ω, ωi) (6.24)

For a particular simulation experiment, the similarity metrics can be further
averaged over all the rules in R and over all the agents in the system. While
averaging over all rules, we also weigh the quantity associated with each rule
by the fraction of words in the lexicon for which the rule is used. We shall
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denote these final averages for a particular simulation as 〈CorrectDeletion〉,
〈CorrectRetention〉 and 〈ErroneousDeletion〉.

Thus, to summarize, we use four evaluation metrics:

1. SuccessRate: Higher the value, higher is the stability of the emergent
system.

2. 〈CorrectDeletion〉: Higher the value, the closer is the emergent pattern
to Ohala’s rule and the pattern features proper deletion characteristics.

3. 〈CorrectRetention〉:Higher the value, the closer is the emergent pattern
to Ohala’s rule and the pattern features proper retention characteristics.

4. 〈ErroneousDeletion〉: Lower the value, the closer is the emergent pat-
tern to Ohala’s rule and the pattern does not violate the constraints on
deletion.

6.4.2 Baseline Measurements

We define a baseline experiment as the one where the learning rate η = 0.
Naturally, when η = 0, the pronunciation rules in the mental models of the
agents do not change over time, and as a result all the evaluation metrics
defined in the previous subsection remain fixed over time.

We conduct two sets of baseline experiments: the first one is for studying
the effect of initialization strategies and the second one for studying the effect of
lexicon size. Fig. 6.11 and 6.12 respectively shows the variation of the average
success rate and the other three evaluation metrics with π - the probability of
deletion of an individual schwa. All the results have been obtained by averag-
ing the respective values over 10000 games. The variation of 〈SuccessRate〉 is
reported for two different initialization strategies - fixed schwa deletion proba-
bility based assignment and random probability assignment. The significance
of π for the former initialization strategy has been described earlier. In the case
of latter, π denotes the average schwa deletion probability of all the rules for all
the agents. In other words, in the fixed probability based initialization strategy
the system has no synchronic variation in the sense that all the agents share
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Figure 6.11: The average SuccessRate for the baseline experiments with M =
10000, N = 4, δ = 0.1, prd = 0.6. The probability of deletion of an individual
schwa - π is plotted in the x-axis. FSDPBA and RPA denote fixed schwa
deletion probability based assignment and random probability assignment.

the same pronunciation rules, whereas with random assignment, the system
features synchronic variation.

It can be shown from the definitions of the baseline experiments and fixed
probability based initialization strategy that the values for 〈CorrectDeletion〉,
〈CorrectRetention〉 and 〈ErroneousDeletion〉 with this initialization strategy
(when the schwa deletion probability is set to π,) are π, 1 − π and π respec-
tively.Therefore, in Fig. 6.12, we report the variation of these evaluation metrics
only for the random assignment strategy.

The observations are summarized below.

• 〈SuccessRate〉 monotonically decreases with π. When π = 1, none of
the schwas are deleted. This condition refers to the case of Sanskrit, and
we observe that it is an ideal linguistic system with 〈SuccessRate〉 = 1.
〈SuccessRate〉 gradually falls to 50% as π increases to 1.

• As is expected, the system without synchronic variation exhibits better
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Figure 6.12: The average values of CorrectDeletion, CorrectRetention and
ErroneousDeletion for the baseline experiments with a random probability
assignment based initialization strategy. M = 10000, N = 4, δ = 0.1, prd = 0.6.

communicative success than the system with synchronic variation. A
maximum difference of 24% in the 〈SuccessRate〉 of the two cases is
observed when π = 0.5. This can be explained as follows. For π = 0 or
1, we cannot have any synchronic variation in the system. As one moves
away from these extremes, the scope of variation also increases. Therefore,
the difference between the two systems (with and without variation) and
consequently that in the value of 〈SuccessRate〉 is highest, when π = 0.5.

• The similarity of the rules to that of Ohala’s, as reflected by the quantities
〈CorrectDeletion〉, 〈CorrectRetention〉 and 〈ErroneousDeletion〉, is a
linear function of π and the results for the random assignment strategy
matches quite well with that of the fixed schwa deletion based probability
assignment strategy as discussed above.
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Figure 6.13: The plot of π versus 〈SuccessRate〉. The values of other model
parameters: N = 4,M = 10000, η = 0.1, δ = 0.1, prd = 0.6, number of games
= 10 million

6.4.3 Effect of Rule Initialization

We choose to experiment with the fixed schwa deletion probability based ini-
tialization strategy only, because it is equivalent to the uniform assignment
strategy for π = 0.5 and as is evident from the baseline experiments, the results
of random assignment strategy are not significantly different from that of this
strategy. We have only one parameter π associated with this strategy. Keeping
other model parameters fixed (N = 4,M = 10000, η = 0.1, δ = 0.1, prd = 0.6,
number of games = 10 million) we conduct experiments for different values of
π ranging from 0.0 to 1.0. The results are shown in Fig. 6.13 and 6.14.

In Fig. 6.13, we observe that after 10 million games 〈SuccessRate〉 is quite
high and varies slightly with π. Like the baseline experiments, the value of
〈SuccessRate〉 is highest for small values of π, but unlike the case of baseline
experiments, with learning communicative success also increases for large values
of π. For instance, with π = 0.8, the value of 〈SuccessRate〉 is 0.61 for the
baseline experiment, which increases to 0.95 when the agents are allowed to
learn. In general, the high communicative success for all π indicates the inherent
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Figure 6.14: The plot of π versus 〈CorrectDeletion〉, 〈CorrectRetention〉 and
〈ErroneousDeletion〉. The values of other model parameters: N = 4,M =
10000, η = 0.1, δ = 0.1, prd = 0.6, number of games = 10 million

stability of the linguistic system entailed by the MAS Model II.

Nevertheless, for all values π, the emergent pattern is not similar to the
one that is predicted by Ohala’s rule. It is evident from Fig. 6.14 that the
system undergoes a bifurcation at π = 0.5. When π < 0.5, the near-zero
values of 〈CorrectDeletion〉 and 〈ErroneousDeletion〉, and very high value of
〈CorrectRetention〉 indicate that hardly any schwas are deleted in the emergent
pattern. The pronunciation of the system, therefore, matches with Sanskrit. On
the contrary, when π > 0.5, we observe that the value of 〈CorrectDeletion〉
abruptly increases to around 0.8 and 〈CorrectRetention〉 drops from 1 to almost
the same level. The cases of errorneous deletion also increase to 20%. Thus,
the emergent pattern in this case shows around 80% match with Ohala’s rule.

In order to understand the nature of the erroneous deletions, we clas-
sify the deletion errors into three categories: (1) deletion of a schwa word
initially (eg. aCaCV → CaCV ), (2) deletion before a consonant cluster
(eg. CV CaCCV → CV CCCV , and (3) deletion in the first syllable (eg.
CaCV → CCV ). Fig. 6.15 shows the absolute fraction of these three types
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Figure 6.15: The histogram of π versus the absolute fraction of the different
types of deletion errors. “Word Initial” and “CC” indicates the incorrect dele-
tion of a schwa word initially and before a consonant cluster respectively.

of errors that sum up to 〈ErroneousDeletion〉. We observe that these three
types of deletion errors almost equally account for the erroneous deletions.

6.4.4 Effect of Lexicon Size

Next, we study the effect of the lexicon on the emergent pattern. For this we
conduct experiments, where all the parameters, but the lexicon size M , are kept
fixed. More precisely, we choose the values of N, η, π, δ and prd to be 4, 0.1,
0.8, 0.1 and 0.6 respectively. The value of π is so chosen, because it has been
observed from the experiments described in the last subsection that the emer-
gent pattern resembles best to Ohala’s rule for this particular value of π. Since
the number of games required for convergence is dependent on M , and since
it is difficult to define the convergence point, we choose to run the simulation
till the system has an average SuccessRate of 0.95. Table 6.6 summarizes the
number of games required to achieve this success rate for different M .

Fig. 6.16 shows the variation of the different evaluation metrics with M .
As M increases, the value of 〈CorrectDeletion〉 decreases, whereas that of
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M 1000 2000 4000 10000 20000

Number of games 0.5M 1M 2M 2M 2M

Table 6.6: Number of games required for different values of M such that
〈SuccessRate〈= 0.95. The values of other model parameters: N = 4,
η = 0.1, π = 0.8, δ = 0.1, and prd = 0.6.

Figure 6.16: The variation of 〈CorrectDeletion〉, 〈CorrectRetention〉 and
〈ErroneousDeletion〉 with lexicon size - M . The values of other parameters:
N = 4, η = 0.1, π = 0.8, δ = 0.1, prd = 0.6, 〈SuccessRate〉 ≈ 0.95. The scale
for 〈CorrectDeletion〉 and 〈CorrectRetention〉 are shown on the left, and the
scale for 〈ErroneousDeletion〉 is shown on the right. The x-axis is in logscale.

〈CorrectRetention〉 increases. The value of 〈ErroneousDeletion〉 initially de-
creases with M , but it achieves a minimum value for M = 10000, after which it
increases again. These observations can be explained as follows. As more and
more words are packed into the lexicon, the chance that an arbitrary deletion
leads to the loss of lexical distinctions increases and consequently, the deletions
are treated with a greater strictness (restrictions). Naturally, the cases of cor-
rect retention and erroneous deletions go up. As an unavoidable consequence
of the same, the cases of correct deletions are also reduced.

Nevertheless, asM increases from 1000 to 10000, the value of 〈CorrectDeletion〉
falls by around 0.07 (i.e. 7.7%), whereas the value of 〈ErroneousDeletion〉 re-



6.4 Experiments and Observations 189

duces by 0.12 (i.e. 36.2%). Thus, the net effect of increasing the lexicon size on
the emergent pattern is positive in the sense that the loss incurred in correct
deletions is by far compensated by the gain with respect to erroneous deletions.
In other words, with an increase in M , the number of deletions gets reduced,
but majority of the deletions that are prevented are those which were erroneous
according to Ohala’s rule. However, we cannot explain the increase in the value
of 〈ErroneousDeletion〉 as M increases from 10000 to 20000. Due to the lowest
error rates observed, M has been set to 10000 for the experiments with fixed
lexicon.

Fig. 6.17 shows the detailed break-up in the different types of deletion er-
rors. We observe that the reduction in the number of erroneous deletion with
increasing M is primarily due to the reduction in the number of deletion errors
in the word initial position. The fraction of deletions accounted for by the two
other types of errors, namely deletion before consonant cluster and deletion in
the first syllable, are more or less independent of M . This observation further
corroborates our aforementioned claim that as the lexicon gets larger, deletion
of a word initial schwa leads to the loss of lexical distinctions.

6.4.5 Effect of Learning Rate

The parameter η (learning rate) affects the dynamic behavior as well as the
emergent pattern of the system to a large extent. η determines the relative
weightage an agent pays to its previous experiences and the outcome of the
most recent game. A high value of η signifies that the outcome of the last game
is what is more important. Stated differently, the agents do not have a strong
memory, and as a result pays least importance to the past experiences. This
corresponds to a greedy strategy. To the contrary, when η is very small, the
overall history is more important than just the outcome of the current game.
In such a case, the aim of the agents is to optimize the success rate over a long
period of time.

Fig. 6.18 shows the growth pattern of 〈SuccessRate〉 with time for three
different values of η. The other model parameters are same for the three cases.
We observe that the for a very small η (=0.01), the average communicative suc-
cess of the system increases slowly with time (read number of games) and thus,
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Figure 6.17: The histogram of M versus the absolute fraction of the differ-
ent types of deletion errors. “Word Initial” and “CC” indicates the incorrect
deletion of a schwa word initially and before a consonant cluster respectively.
The values of other parameters: N = 4, η = 0.1, π = 0.8, δ = 0.1, prd = 0.6,
〈SuccessRate〉 ≈ 0.95

a large number of games are required for convergence. The final communicative
success of the system, however, is quite high. On the other hand, when η is
large (= 1.0), 〈SuccessRate〉 grows and stabilizes quickly. Nevertheless, this
fast stabilization is obtained at the expense of a lower communicative success
eventually. For medium values of η ( = 0.1), we have both fast stabilization
and high value of 〈SuccessRate〉.

The fact that learning rate also has a significant effect on the emergent
pattern, is substantiated in Fig. 6.19. Quite strangely, 〈CorrectRetention〉
increases steadily with η, whereas 〈CorrectDeletion〉 decreases sharply with
η. This can be explained as follows. When η is large, the system cannot
achieve high communicative success rate due to the greedy decisions made by
the agents during learning. Consequently, the agents try to retain the schwas
to maintain a high communicative success. Thus, 〈CorrectDeletion〉 decreases
and 〈CorrectRetention〉 increases with an increase in η. However, the value of
〈ErroneousDeletion〉 does not decrease monotonically with η, because when
the learning rate is high, the agents do not learn much from the errors made
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Figure 6.18: The plot of time (measured in number of games) versus
〈SuccessRate〉 for different learning rates - η. The values of other parame-
ters: N = 4, M = 10000, π = 0.8, δ = 0.1, prd = 0.6

earlier in the history. The schwas that are deleted or retained are merely an
outcome of random chance!

The high deletion error rate for η = 0.01 as compared to that when η = 0.1,
is due to the fact that with such a slow learning rate, the system requires more
time to converge. This is also evident from the fact that the curve of average
success rate of the system (Fig. 6.18) for η = 0.01 shows a positive slope after 1
million games, which indicates that the system (and consequently the pattern)
is yet to converge.

6.5 Analysis and Interpretation

The observations made from the experiments with MAS Model II (as discussed
in the previous section) agree with those made for MAS Model I. We see that
in both the cases, under suitable conditions, the emergent pattern closely re-
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Figure 6.19: The plot of learning rate η versus the values of the evaluation met-
rics 〈CorrectDeletion〉, 〈CorrectRetention〉 and 〈ErroneousDeletion〉. The
values of other parameters: N = 4, M = 10000, π = 0.8, δ = 0.1, prd = 0.6,
number of games = 1 million

sembles the context of SDH. Furthermore, the conditions necessary for the
emergence of the pattern, such as non-greedy deletion and learning strategies,
dependence of the emergent pattern on the lexicon and a tendency towards
reduction of vowel deletion, are also comparable for the two models. Thus, the
explanations offered by MAS Models I and II are similar in nature. As we have
argued in Sec. 5.4 that MAS Model I entails a phonetically-based explanation
for SDH, in the same lines it can be argued that the explanation offered by
MAS Model II is also based on phonetic factors.

Apart from the fact that in MAS Model II we propose a more efficient
computational method for realizing the perceptual process, the articulatory
and perceptual processes of both the models are identical in essence. Since a
phonetically-based account of sound change primarily banks on the nature of
articulatory and perceptual errors to explain a phonological change, it is not
surprising that the two models yield similar results.
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Plausibility of MAS Model II

However, the main difference between the MAS Models I and II resides in the
definition of the mental model M and the learning process Learn of an agent.
While in Model I, the pronunciations are stored and learnt explicitly for each of
the words in Λ, in Model II, the agents learn generalized pronunciation rules,
which are probabilistic in nature. In the context of this thesis, there are two
important advantages of the latter representation:

• Plausibility: Since almost all of the popular schools of phonology (e.g.,
generative phonology (Chomsky and Halle 1968), optimality theory (Prince
and Smolensky 1993; Prince and Smolensky 1997), functional phonol-
ogy (Boersma 1998)) argue in favor of phonological generalizations, men-
tal model for MAS Model II is linguistically much more plausible than
that of Model I.

• Computability: Generalization of pronunciations over words solves the
problem of pronunciation-rule explosion, and consequently, makes the
model scalable. The obvious advantage of this is the possibility of ex-
perimentation with large and realistic lexica. This, in turn, places the
model as well as its results on a firmer linguistic ground.

Lexicon and the Emergent Pattern

In Sec. 5.4, we have already discussed the various issues related to the perceptual
and articulatory processes of the MAS model. Therefore, here we focus on the
effect of the lexicon on the emergent pattern, which could not have been studied
for MAS Model I.

Let us analyze the results presented in Sec. 6.4.4 and more specifically,
those shown in Fig. 6.16. As we increase the size of the lexicon, the accuracy of
the emergent pattern increases, primarily due to the decrease in the number of
erroneous deletions and a corresponding rise in the number of correct retentions.
This observation can be explained as follows. As we increase the size of the
lexicon, the acoustic distinctiveness constraints become stringent, because, now
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there is a higher chance that the deletion of a schwa leads to the loss of lexical
distinctions (i.e., after deletion, the word “maps to” or “sounds like” another
word in Λ). Since this reduces the communicative success of an agent, deletions
that lead to the loss of lexical distinctions are prohibited. As a result, with an
increase in the size of Λ, the context of deletion becomes more stringent and in
turn, leads to the emergence of the correct pattern.

Phase-transition and S-shaped Dynamics

We conclude our analysis of MAS Model II with some comments on its behavior
from the perspective of an adaptive dynamical system. In Fig. 6.13, we see that
the average SuccessRate of the system varies slowly with π – the initial bias
towards deletion. Thus, whatever may be the initial bias, the system always
stabilizes at a high communication success rate (> 90%). However, as shown
in Fig. 6.14, the nature of the emergent pattern shows a sharp transition at
π = 0.5. For π < 0.5, there is no deletion, and thus, the emergent pronunciation
resembles that of Sanskrit or Old-Hindi. On the other hand, for π > 0.5, the
emergent pattern resembles that of modern Hindi (i.e., the context for SDH as
predicted by Ohala’s rule). A sharp transition takes place at π = 0.5; stated
differently, the system undergoes a bifurcation or equivalently, a phase-transition
at π = 0.5.

The S-shaped curve observable for all the three metrics, and more promi-
nently for 〈CorrectDeletion〉 (Fig. 6.14), is a direct consequence (as well as
evidence) of the bifurcation. Note that the S-shaped curve shown in Fig. 5.3 is
for the duration of a single schwa, whereas the curve currently under consider-
ation is for the whole pattern. Thus, we conclude that the S-shaped dynamics
is an inherent feature of language change and is observed at every level.

From the perspective of sound change, this particular dynamics implies
that prediction of the occurrence of a sound change is impossible, even if the
prediction of its direction is possible. In the context of schwa deletion, one can
say that if there is a phonological change leading to schwa deletion, then the
deletion pattern is expected to be like that of SDH. However, it is not possible
to predict whether the change will ever take place, because that depends on
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the critical value of π – the propensity towards deletion. Note that this is
a very simplistic analysis of the problem, as we do not consider here several
other factors, including socio-economic issues, that might trigger or inhibit
a particular case of change. Nevertheless, the basic dynamics of the change
remains the same, as observed in the MAS experiments.

6.6 Conclusion

In this chapter, we have presented a MAS model for explaining the SDH pattern
of Hindi. The model captures the real world scenario to a good extent as it
supports experimentation with real world lexicon. The emergent behavior of
the model resembles that of the real world, leading us to believe that it indeed
offers a plausible explanation for SDH.

It is worthwhile to discuss the relationship between MAS Models I and II.
While we have already discussed the benefits of MAS Model II over I in the pre-
vious section, one cannot ignore the importance of Model I. Model I makes far
less assumptions regarding the mental representations and cognitive processes
of human beings. In other words, Model I is more general, and consequently,
more powerful than Model II. For every pattern or dynamics that emerge in
Model II, there is a possibility that they also emerge in Model I. However, the
reverse is not true. For example, in Model I, an agent might learn to pronounce
katarA as katrA and kadali as kadali, which is impossible for Model II.

Nevertheless, this extra power for Model I comes with a cost – the model
is computationally intensive. On the other hand, the extra assumptions made
in Model II are not baseless. In fact, most of them are directly based on the
findings from Model I (Sec. 6.1). This we refer to as the hierarchical abstraction
methodology towards modeling of real world language change, and is an impor-
tant contribution of this thesis. The methodology can be stated as follows:

The findings of a more general, but computationally intensive, model
are used to abstract out the details in the subsequent phases of
modeling. This in turn leads to models that are not as general as
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their precursors, but computationally more tractable and linguisti-
cally equally plausible.

In the last three chapters, including this one, we have presented three mod-
els for explaining the pattern of SDH. Schwa deletion, nevertheless, is a simple
phonological phenomenon, where only a single vowel is deleted in specific con-
texts. Phonological changes, in general, take place simultaneously over the
words of a lexicon such that the resulting lexicon (or lexica) is significantly dif-
ferent from its original counterpart. To complicate things further, other strata
of the language, such as morphology, syntax and semantics, influence and get
influenced by the phonological changes.

In the next chapter, we attempt to model the changes that affected the
morpho-phonology of Bengali verb-inflections by utilizing the aforementioned
hierarchical abstraction methodology. We presume that a simple phonological
changes, such as deletion or insertion of a vowel, are explainable by more gen-
eral models similar to the MAS models presented here, and take them as the
basic units of change. These abstract units of change are used to develop a
constrained optimization model for the problem of Bengali verb morphology.



Chapter 7

Phonological Change of

Bengali Verb Inflections

In the last three chapters we have dealt with the problem of SDH. SDH, however,
is a simple case of phonological change. In general, several phonological changes
take effect in sequence, giving rise to one or more than one language or dialects
of a language. The objective of this chapter is to develop computational models
of more complex phonological changes, where at the end of the process of change
we have a set of dialects rather than a single emergent language.

In the past, researchers have shown that dialect diversity emerges through
the process of language change in MAS-based models (Fyfe and Livingstone
1997; Livingstone 2002; Livingstone 2003), especially when the agents are
grounded in a social network (Nettle 1999; Gong et al. 2004). In fact, we
have observed synchronic variations among the agents in both the MAS Mod-
els, even though there were no linguistic communities, precisely due to the
uniform probability of interaction between any pair of agents. However, none
of the aforementioned works pertaining to dialect diversity are based on real
languages.

Modeling a case of emergence of dialects in the real world is difficult for
several reasons. Language can evolve along infinitely many different paths,
giving rise to infinitely many dialects. Nevertheless, in reality, only some of
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these paths are manifested and we can observe only a very small fraction of the
possible dialects. Therefore, it is impossible to validate a model satisfactorily,
even when one has a large amount of real world data.

In this chapter, we present an initial attempt towards modeling and valida-
tion of dialect diversities in the real world. For this purpose, we choose the case
of phonological change affecting the Bengali Verb Inflections (BVI), which has
been discussed in Sec. 2.4. The chapter is organized as follows. In Sec. 7.1, a
computational formulation of the problem is presented, followed by a functional
explanation for the same. Sec. 7.2 describes a multi-objective genetic algorithm
(MOGA) based model for capturing the functional explanation. Sec. 7.3 details
out the experiments and their results. The analysis and interpretations of the
results are presented in Sec. 7.4. Sec. 7.5 discuss a potential application of the
diachronic model. Sec. 7.6 summarizes the findings of the MOGA models and
enumerates some of the future works.

7.1 Problem Formulation

We choose the classical Bengali forms, i.e. the dialect that was spoken around
1200 AD, as our starting point. It is observed that a sequence of simple phono-
logical changes, which we shall call the Atomic Phonological Operators or APO
for short, when applied over the classical Bengali lexicon gives rise to the mod-
ern dialects. Our objective here is to model the emergence of the BVIs in the
modern dialects from their classical counterparts through appropriate sequence
of APOs. Note that the derivations of the BVIs can be constructed manually, as
has been done in (Chatterji 1926), or automatically using language reconstruc-
tion tools such as (Lowe and Mazaudon 1994; Nakhleh et al. 2005). However,
our aim is not limited to the derivations of a few dialects; rather, we want to
show that certain sequences of APOs, and consequently, the resultant dialects
are preferred and observed in nature, among the myriads of possibilities.

We shall attempt to encode this “preference” as a functional selection, where
there are several conflicting functional pressures over the evolving language.
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7.1.1 Dialect Data

Several dialects of Bengali are spoken allover Bangladesh and parts of India.
Since early 1900, there has been some effort to collect and classify the dialects.
Azad (2001), a collection of several scholarly essays on Bengali published be-
tween 1743 and 1983, contains 11 articles related to dialectology and dialect data
of Bengali. Among these, Grierson (1903) is one of the earliest and most com-
prehensive collection of the different Bengali dialectal forms; Chatterji (1927)
emphasizes on the collection and preservation of rural dialectal forms and at-
tempts to construct the etymological information of the rural dialects; Maniruz-
zaman (1974) analyzes the dialect spoken in Dhaka and identifies interesting
phonological transformation rules between SCB and the Dhakan dialect.

Traditionally, the Bengali dialects are classified into four groups (Islam
1979):

• North Bengali (spoken in Dinajpur, Rajshahi, Bagura and Pabna)

• Rajbanshi (spoken in Rangpur)

• East Bengali – further classified into the dialects of the three regions

a. Dhaka, Maimansing, Tangail, Kumilla, Barishal, Patuwakhali

b. Faridpur, Jessore, Khulna

c. Sylhet

• South Bengali (spoken in Chittagong and Nowakhali)

Although a few previous studies report some of the verbal inflections used
in the different dialects (see, e.g., Chatterji (1926) for list of inflections in SCB,
Classical Bengali and a few other dialects, and Islam (1979) for very brief dis-
cussion on some of the inflected forms), we do not know of any previous study,
during which the different dialectal forms for BVI were collected and systemat-
ically listed. In the absence of any comprehensive dialect data for Bengali, we
choose to work with primary data for three modern dialects, which have been
collected during this work. The dialects are
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Feature Possible Attributes

Person 1st, 2nd, 3rd, honorific∗

Tense past, present
Aspect simple, continuous, perfect, habitual∗∗

Table 7.1: Subset of attributes for BVI used in the model. ∗ refers to the formal
form in the 2nd and 3rd persons. ∗∗ Only in the past tense.

• Standard Colloquial Bengali (SCB) spoken in a region around Kolkata,
the capital of West Bengal,

• Agartala Colloquial Bengali (ACB) spoken in and around Agartala, the
capital of Tripura, and

• Sylheti, the dialect of the Sylhet region of Bangladesh.

The corresponding verb forms for these three dialects have been obtained
by enquiring the näive informants and are listed in Appendix E.1. The geo-
graphical locations of the above places are shown in Appendix E.3.

Note that the alignment of the corresponding forms in the four dialects (the
classical and 3 modern dialects) is straightforward: the inflections uniquely
determine the morphological attributes of the form, such as tense, aspect and
person (see Sec. 2.4.2 and Appendix D for details). Thus, we shall denote
the meaning of a particular form by a subset of the morphological attributes
as described in Table 7.1. We do not consider all the attributes, but only
a subset of them, because in classical Bengali certain attributes are realized
using separate words rather than inflections (e.g., the second familiar person
or the negative polarity). Similarly, the future tense has been omitted as it
features only one of the aspects (i.e., simple); moreover, the inflections for first
person in the future tense in ACB and Sylheti – um and mu respectively, are
not derivable from the classical Bengali inflection ba and the inflections have to
be derived directly from Sanskri or Prakrit (mi or mah).

As described in Sec. 2.4.2, SCB has 19 morphological paradigms, which are
also an outcome of the phonological change that affected the inflections. Neither
classical Bengali, nor ACB or Sylheti feature those morphological paradigms. In
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other words, except for SCB, in all the other dialects, the verbs inflect uniformly
irrespective of the structure of the root. Therefore, in our model we restrict
our study to the various (28 to be precise) inflected forms of a single verb root,
i.e., kar. This is not to say that the emergence of the morphological paradigms
in SCB is uninteresting to study. We deem this to be a future extension of this
work.

Thus, to summarize, every dialect is represented by a lexicon of 28 inflected
forms of the root kar, where the meaning of each of the form is to be interpreted
as the set of its morphological attributes.

7.1.2 Atomic Phonological Operators

We conceive a complex phonological change as a sequence of several basic phono-
logical changes or APOs. We define four basic types of APOs:

• Del or Deletion of a phoneme

• Met or Metathesis of a string of two phonemes

• Asm or Assimilation of a phoneme in the context of another

• Mut or Mutation of a phoneme

The complete specification of an APO includes the specification of its type,
the phoneme(s) that is(are) affected by the operation and the left and right con-
text of application of the operator specified as regular expressions on phonemes.
Thus, if LC and RC are two regular expressions denoting the left and right con-
texts respectively, then the semantics of the basic APOs in terms of rewrite rules
are as shown in Table 7.2.

Here, p, p′, pi and pj represent phonemes. In case of assimilation, p′ is
determined on the basis of assimilation of a particular phonological feature of
p with respect to the neighboring phoneme (i.e. LC or RC). Therefore, the
feature with respect to which the assimilation takes place must also be specified.
However, since in Bengali, only vowel height assimilation is observed, we assume
the feature to be the “height of the vowel”. Also note that the operator Mut
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APO Semantics

Del(p, LC,RC) p→ φ/LC—RC

Met(pipj , LC,RC) pipj → pjpi/LC—RC

Asm(p, LC,RC) p→ p′/LC—RC

Mut(p, p′, LC,RC) p→ p′/LC—RC

Table 7.2: Semantics of the basic APOs in terms of rewrite rules

can capture both Del and Asm, but we assume that Mut only refers to the
change of a particular phonological feature of a phoneme such as devoicing or
nasalization. We do not consider epenthesis or insertion as an APO, simply
because epenthesis is not observed for the case of the change affecting BVI.

The motivation behind defining APOs rather than representing the change
in terms of rewrite rules is as follows. Rewrite rules are quite expressive and
therefore, it is possible to represent complex phonological changes using a single
rewrite rule. Nevertheless, we have not explained the emergence of complex
phonological changes. The models of SDH described so far, provide plausible
explanations for a simple phonological change. SDH can be represented as an
APO as shown below.

Del(a, V CC?, C{V, $})

This leads us to believe that the emergence of APOs can be explained through
appropriate computational models. Given this assumption, our objective is to
explain more complex changes.

An important point of consideration is the complexity of the contexts LC
and RC. Using our experiences from SDH, we define LC and RC to be short
strings over the alphabet ΣP ∪ {C, V,−, $} (− and $ represent morpheme and
word boundary respectively). The length of the contexts is restricted to two
symbols. Table 7.3 shows the derivation of the SCB verb forms from classical
Bengali in terms of APOs. The derivations are constructed based on the data
provided in (Chatterji 1926).

Note that in Table 7.3, Rule 3 has no effect on the pronunciation, however
the restrictions imposed by the APOs as well as the generality of the derivations
over all verb roots necessitates the use of this extra rule. Since we shall be
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Rule APO Example Derivations
No. kar − iteChe kar − iten kar − iAChi
1 Del(e, φ, Ch) kar − itChe NA NA
2 Del(t, φ, Ch) kar − iChe NA NA
3 Met(−i, φ, φ) kari− Che kari− ten kari−AChi
4 Met(Ci, φ,−) kair − Che kair − ten kair −AChi
5 Mut(A, e, φ, Ch) NA NA kair-eChi
6 Mut(A, e, φ, $) NA NA NA
7 Asm(a, i, φ, φ) koir − Che koir − ten koir − eChi
8 Mut(a, o, φ, $) NA NA NA
9 Del(i, o, φ) kor − Che kor − ten kor − eChi

Table 7.3: Derivations of the verb forms of SCB from classical Bengali using
APOs. The rule number denotes the order of application of the operators. NA:
The rule is not applicable for the form.

modeling only the 28 forms for one root verb, we can ignore Rule 6, which is
applicable only for future tense. Similarly, Rule 3 and 4 can be combined as
Met(ri, φ, φ), where we ignore the morpheme boundary. Thus, it suffices to
have only 7 APOs for derivation of the SCB forms. Derivations of ACB and
Sylheti require 6 and 4 APOs respectively.

7.1.3 Functional Explanation for Change of BVI

Let Λ0 be the lexicon of classical Bengali verb forms. Let Θ : θ1, θ2, · · · θr be a
sequence of r APOs. Application of an APO on a lexicon implies the application
of the operator on every word of the lexicon. Note that an APO θ can also be
conceived of as a mapping from Σ∗

P to Σ∗
P . The sequence of operators Θ, thus,

represent a dialect obtained through the process of change from Λ0, which can
be represented as follows.

Θ(Λ0) = θr(· · · θ2(θ1(Λ0)) · · · ) = Λ′

The derivation of the dialect Λ′ from Λ0 can be constructed by following the
APOs in the sequence of their application.



204 Evolutionary Model

We propose the following functional explanation for the change of BVI.

A sequence of APOs, Θ is preferred if Θ(Λ0) has some functional
benefit over Λ0. Thus, all the modern Bengali dialects have some
functional advantage over the classical dialect.

We would like to re-emphasize the term “some functional benefit”, because
it is quite possible that the modern dialects are inferior to Λ0 with respect to
“some other functional pressures”.

Note that the above hypothesis is silent about the precise nature of the
functional benefits, which we shall try to formulate in the next section. It
only states that under certain realistic formulation of the functional forces as
constraints and objectives, the present dialects of Bengali (and most probably
classical Bengali as well) are expected to lie on the Pareto-optimal front of this
constrained multi-objective optimization problem (see Fig. 4.1 and Sec. 4.1).
We do not expect to see, however, a single optimum dialect that has advantages
over all other dialects with respect to all the functional forces.

In order to validate the aforementioned hypothesis, we carry out a multi-
objective and multi-constrained optimization of the possible dialectal forms of
Bengali, thereby obtaining the Pareto-optimal front of the possible optimal
dialects. We obtain the Pareto-optimal front using multi-objective genetic al-
gorithm (MOGA) for various choices of functional objectives and constraints.
The MOGA model is described in the subsequent sections.

7.2 The MOGA Model

Genetic algorithm (GA) is a special type of evolutionary algorithm that tries
to mimic the biological evolution of species to compute optimal solutions for a
problem. In a single objective GA, the objective is specified as a fitness function,
which, without loss of generality, can be assumed to be minimizing in nature.
A possible solution is represented as an individual, which has a genotype and a
phenotype. A set of individuals constitute a population.
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The phenotype of an individual is nothing but the solution that it represents,
whereas the genotype is an underlying representation, over which the genetic
operators act. The fitness function is defined for the phenotype, and there is a
unique mapping from the genotype to the phenotype, though the converse may
not be true.

There are three basic operators that act on the individuals: crossover, mu-
tation and selection. Crossover refers to fragments of chromosomes (i.e., geno-
types) being exchanged between two individuals. Mutation refers to a random
change in a single gene (a part of the chromosome) and selection is the process
of choosing a set of individuals that represent the next generation of the pop-
ulation. The selection process takes into account the fitness of an individual,
which is computed using the fitness function. There are several variants of GAs
differing mainly in the implementation of the selection process.

The output of a GA is a population, i.e., a set of solutions. Although it is
not possible to provide a theoretical upper bound on the number of generations
required for convergence to the optimum solution or even to a certain approxi-
mation of the optimum solution, GAs are known to perform very well (i.e., get
quite close to the optimal solution) and converge quite fast for several real life
problems.

In a multi-objective multi-constrained optimization problem, usually there
is set of solutions that are non-dominated, rather than a single best solution.
The aim of a multi-objective optimization problem is, therefore, to find out the
non-dominated or Pareto-optimal solutions, which lie on the Pareto-optimal
front. There are several techniques for multi-objective optimization. However,
in the absence of any prior knowledge regarding the nature of the Pareto-optimal
front, MOGAs are the best bets.

The basic challenge in formulating a problem in the MOGA framework is
the appropriate choice of the genotype, so that the genetic operators such as
crossover and mutation make sense. The rest of this section presents a MOGA
formulation for the functional explanation of the change in BVI.
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7.2.1 Phenotype and Genotype

We define the phenotype of a dialect d to be the lexicon of the dialect, Λd con-
sisting of the 28 inflected forms of the root verb kar. This choice of phenotype
is obvious because, at the end of the optimization process, we would like to
obtain the Pareto-optimal dialects of Bengali and compare them with their real
counterparts.

The genotype of a dialect d can also be defined as Λd, where the word
forms are the genes. However, for such a choice of genotype, crossover and
mutation lead to counter-intuitive results. For example, mutation would affect
only a single word in the lexicon, which is against the regularity hypothesis of
sound change. Similarly, exchanging a set of words between a pair of lexica, as
crossover would lead to, seems insensible.

Therefore, considering the basic properties of sound change as well as the
genetic operators used in MOGA, we define a chromosome (and thus the geno-
type) as a sequence of APOs. The salient features of a chromosome are de-
scribed below.

• Gene: A gene is defined as an APO. Since in order to implement the
MOGA, every gene (read APO) must be mapped to a number, we have
chosen an 8-bit binary representation for a gene. This allows us to specify
256 distinct genes or APOs. However, for reasons described below, we use
the first bit of a gene to denote whether the gene (i.e., the APO) is active
(the bit is set to 1) or not. Thus, essentially we are left with 128 distinct
choices for APOs. Since the number of words in the lexicon is only 28, the
APOs for Del, Asm and Met are limited, even after accounting for the
various contexts in which an APO is applicable. Nevertheless, there are
numerous choices for Mut. To restrain the possible repertoire of APOs
to 128, we avoided any APO related to the mutation of consonants. This
allowed us to design a comprehensive set of APOs that are applicable on
the classical Bengali lexicon or its modified versions.

• Chromosome: A chromosome is a sequence of g genes. Since the number
of APOs invoked during the course of language change is variable, all the
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g genes need not be fired. Therefore, the first bit of every gene is used for
specifying the status of the gene. If the bit is set to one, the corresponding
APO is active, otherwise the APO is assumed to be inactive. Note that
the genes are ordered in a chromosome.

• Genotype to phenotype mapping: For a given chromosome, let the set of
active APOs in sequence be θ1, θ2, · · · , θr. Then the phenotype corre-
sponding to this chromosome is the lexicon Λ′ = θr(· · · θ2(θ1(Λ0)) · · · ). In
other words, the phenotype is the lexicon obtained by successive appli-
cation of the active APOs on the chromosome on the lexicon of classical
Bengali.

The concepts of gene, chromosome and the mapping from genotype to the
phenotype are illustrated in Fig. 7.1. It is easy to see that the regularity hy-
pothesis regarding the sound change holds good for the aforementioned choice
of genotype. Moreover, according to this formulation, a chromosome not only
models a dialect, but also the steps of its evolution from the classical forms.

In the next subsection, we discuss the significance of the genetic operators
for the above choice of genotype in the context of language change.

7.2.2 Significance of Crossover and Mutation

Crossover and mutation are two basic genetic operators used in a GA. Figs. 7.2
and 7.3 graphically illustrate these processes. During crossover between two
chromosomes (known as parents), certain fragment(s) of the chromosomes are
exchanged leading to the formation of two new chromosomes (referred to as
children). In the present context, a crossover can be interpreted as follows.
Suppose there are two different sequences of APOs, representing two possible
courses of language change. A crossover between these two courses of change
gives rise to two different, possibly new, courses of change, where some part of
the course of the change comes from one of the parents and rest of it is from
another parent.

Thus, the resultant dialects (i.e., the phenotypes) of a crossover reflect a
situation where there is a sudden change or bifurcation in the course of change
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Figure 7.1: Schematic of genotype and phenotype. The chromosome shown
here has 4 genes, two of which are switched off, because the first bit (in bold)
is 0. The APOs corresponding to the genes are also shown. The mapping from
genotype to phenotype is illustrated in the bottom, where the lexicon has only
3 forms. The final phenotype for the gene shown is the shaded lexicon Λd.

of the language. Note that the site(s) of a crossover can be in the middle of a
gene, rather than its ends (as shown in Fig. 7.2). In such a case, the structure
of the particular genes might change considerably giving rise to new genes that
correspond to altogether different APOs. Nevertheless, the rest of the genes are
unaffected as far as their internal structure is concerned.

The process of mutation refers to a random change in the chromosome.
Since according to the current description of the genotype, a chromosome is a
binary string, mutation maps a 0 to 1 and vice versa. In the current context,
there are three possible contexts and consequent effects of mutations, as enlisted
below.

• If the mutation affects the first bit of a gene (odds are 1/8), then it turns
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Figure 7.2: Crossover between two chromosomes

on (off) a gene, which was earlier switched off (on). Thus, such a mutation
leads to the introduction (removal) of an APO from the course of change.
This phenomenon is illustrated in Fig. 7.3 for the first and the second
gene.

• If the mutation affects any other bit of a gene that is turned off (odds
are 7/16), then there is no visible effect on the course of language change,
and consequently the phenotype.

• However, when the mutation affects one of the non-first bits of a gene that
is turned on (odds are 7/16), the APO corresponding to that location of
the chromosome changes. This happens for the last gene in Fig. 7.3. It
is counterintuitive that a case of deletion, say of t, suddenly changes to
the metathesis of a sequence, say ri. However, it is quite possible in the
real world, that an unconditioned metathesis of ri becomes conditioned
over a t in the right (as shown in Fig. 7.3). In other words, generalization
or specialization of the context of a phonological change is a common
phenomena observed in the nature. Therefore, we assign the gene codes in
such a way that APOs with same function, but conditioned over different
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Figure 7.3: Mutation in a chromosome may switch on or off a gene or change the
context of application of an APO. The gray cells indicate the sites for mutation.

contexts vary only over one bit-position. Nevertheless, it is impossible to
come up with a coding scheme where mutation over a single bit only leads
to the generalization or specialization of the context1. As a result, there
is small probability (5/16 to be precise), when mutation would transform
an APO to a completely unrelated one.

It is worth mentioning that since we are using MOGA as a multi-objective
optimization tool, it is really not necessary to provide reasonable physical inter-
pretations of the genetic operators. Nevertheless, such an interpretation helps
us visualize the process of optimization to a good extent.

7.2.3 Objectives and Constraints

The formulation of the objective functions and constraints is crucial to the
model because the linguistic plausibility, computational tractability and the
results of the model are overtly dependent on them. We shall define here three

1We enumerate the 128 binary representations under a 7-bit gray code scheme. Successive

bit strings are assigned similar APOs, so that there are two specific bit-positions in the rep-

resentation of any APO, where mutation will result in similar APOs. However, for the rest of

the five bit-positions, the aforementioned condition does not hold true.
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basic objectives of ease of articulation, perceptual contrast and learnability,
which can be expressed either as objective functions or constraints or both.

Several models have been proposed in the past for estimating the articu-
latory effort and perceptual distance between phonemes and/or syllables. See
Chapters 2, 5 and 7 of (Boersma 1998) and references therein for an overview
of the models estimating articulatory effort, and Chapters 3, 4 and 8 of the
same for perception models. Since here we are interested in modeling the effort
and contrast of the whole lexicon rather than a syllable, we choose to work
with simpler formulations similar to those described in (Redford et al. 1998;
Redford 1999; Redford and Diehl 1999; Redford et al. 2001). Nevertheless,
the objective of the models presented in Redford et al. (1998; 2001), i.e., the
emergence of universal syllable typologies, is different from ours because we
are interested in emergence of “real dialects” rather than any arbitrary dialect
with some desired property. Moreover, unlike Redford et al. (1998; 2001), which
model the problem as a single objective optimization, we model the problem as
a multi-objective optimization.

Estimation of learnability of a lexicon is difficult and debatable. Here we
assume that a regular pattern is easier to learn and define learnability in terms
of regularity of the lexicon. It must be emphasized, however, that it is easy and
straightforward to extend the MOGA model for more complex and realistic
estimates of these functions. Moreover, as we shall see shortly, despite the
crude estimates of effort, contrast and learnability, the MOGA model yields
encouraging results. Also note that we define the objective functions to be
minimizing in nature as is required by the NSGA II (Deb et al. 2002) algorithm.

fe: Articulatory Effort

Articulatory effort of a lexicon Λ is a positive real number that gives an estimate
of the effort required to articulate the words in Λ in some unit. We define the
sum of the effort required to pronounce the words in the lexicon as the effort
associated with the lexicon. Thus, if fe denotes the effort function, then

fe(Λ) =
∑
w∈Λ

fe(w) (7.1)
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Note that the above definition presumes that all the words in the lexicon
are used equally frequently. Furthermore, normalization with respect to the
number of words is not necessary as all the lexica under consideration have the
same number of words.

The term fe(w) depends on three parameters: 1) fe1(w) – the length of w in
terms of phonemes, 2) fe2(w) – the structure of the syllables, and 3) fe3(w) – the
features of adjacent phonemes, as it controls the effort spent in co-articulation
or equivalently the phoneme to phoneme transitions. We define fe(w) to be a
weighted sum of these three.

fe(w) = α1fe1(w) + α2fe2(w) + α3fe3(w) (7.2)

Here, α1, α2 and α3 are the relative weights. Note that it is not necessary
to constrain the sum of the three weights to 1, because we are defining fe in
an arbitrary unit. Initial experimentation with different combinations of the
weights revealed that the following assignment leads to comparable estimates
of the different effort parameters, and thereby, realistic dialectal patterns in the
model.

α1 = 1, α2 = 1, α3 = 0.1

The value of fe1 is simply the length of the word, that is

fe1(w) = |w| (7.3)

Suppose ψ = σ1σ2 · · ·σk is the usual syllabification of w, where the usual or
optimal syllabification for Bengali is defined similar to that of Hindi as described
in Sec. 4.2.2. Then, we define fe2 as follows.

fe2(w) =
k∑
i=1

hr(σi) (7.4)

hr(σ) measures the hardness of the syllable σ and is a function of the syllable
structure of σ (Def. 4.8). The values of hr(σ) for different syllable structures
are enumerated in Table 7.4. The values have no absolute significance and are
indicative of only the relative order of hardness. The values are arrived at by
observing the frequency distribution of the different syllable types in Bengali.
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CVMap(σ) hr(σ) CVMap(σ) hr(σ)

CV 0 CV V 4
CV C 1 CCV C 4
V 2 CCV V 5
V C 3 V V C 6
CCV 3 CV V C 6

Table 7.4: The hardness of different syllable structures

Note that the definition of hr(σ) differs from that of Hσ(σ) as described in
Def. 4.10. However, it can be shown that the strategy for optimal syllabification,
which is presented in the proof of Theorem 4.1, does not change for the new
definition of hardness provided in Table 7.4.

The effort spent in transitions, measured by fe3, is dependent on several
factors, a detailed modeling of which is beyond the scope of the present work.
Since vowel height assimilation is the primary co-articulation phenomenon ob-
served across the dialects of Bengali, we define fe3 so as to model only the effort
required due to the difference in the heights of the adjacent vowels.

Let there be n vowels in w represented by Vi, where 1 ≤ i ≤ n. Then fe3 is
defined by the following equation.

fe3(w) =
n−1∑
i=1

|ht(Vi)− ht(Vi+1)| (7.5)

The function ht(Vi) is the tongue height associated with the vowel vi. The
value of the function height(vi) for different vowels is enumerated in Table 7.5.
Again note that the values are indicative of the ordering of the vowels with
respect to tongue height, and do not reflect the absolute height of the tongue
in any sense.

Table7.6 illustrates the process of computation of the articulatory effort for
a lexicon Λ = {kara, karite, koriAChi}.
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Vowel V ht(V )

A 0
a 1
e 2
o 2
i 3

Table 7.5: The tongue height associated with the different vowels of Bengali.
The values are shown only for the vowels that are there in the lexicon of the
verb forms and not for all the vowels of Bengali.

Partial Λ
estimates ka-ra ka-ri-te ko-riA-Chi

fe1(w) 4 6 7
fe2(w) 0 + 0 = 0 0 + 0 + 0 = 0 0 + 4 + 0 = 4
fe3(w) |ht(a)− ht(a)| |ht(a)− ht(i)| |ht(o)− ht(i)|

= 0 +|ht(i)− ht(e)| +|ht(i)− ht(A)|
= 2 + 1 = 3 +|ht(A)− ht(i)|

= 1 + 3 + 3 = 7

fe(w) 4 + 0 + 0.1× 0 6 + 0 + 0.1× 3 7 + 0 + 0.1× 7
= 4 = 6.3 = 7.7

fe(Λ) 4 + 6.3 + 7.7 = 18

Table 7.6: Computation of effort for an example lexicon
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fd: Acoustic Distinctiveness

We define the acoustic distinctiveness between two words wi and wj as the edit
distance between them, which is denoted as ed(wi, wj). While computing the
edit distance, the cost of insertion and deletion of any phoneme is assumed to
be 1; the cost of substitution of a vowel (consonant) for a vowel (consonant)
is also 1, whereas that of a vowel (consonant) for a consonant (vowel) is 2,
irrespective of the phonemes being compared. Since languages are expected to
increase the acoustic distinctiveness between the words, we define a minimizing
objective function fd over a lexicon Λ as the sum of the inverse of the edit
distance between all pair of words in Λ.

fd(Λ) =
∑
ij,i6=j

ed(wi, wj)−1 (7.6)

If for any pair of words wi and wj , ed(wi, wj) = 0, we redefine ed(wi, wj)−1

as 20 (a large penalty).

Cd: Distinctiveness constraint

We say that a lexicon Λ violates the acoustic distinctiveness constraint Cd, if
there are more than two pairs of identical words in Λ. The motivation behind
the constraint is as follows. The functions fe and fd are conflicting in nature.
Theoretically, one can obtain a lexicon Λ by deleting all the phonemes, such
that fe(Λ) = 0 and fd(Λ) = 10M(M − 1), where M is the number of words
in Λ. Such a lexicon is a part of the Pareto-optimal front, because it has the
minimum possible value of fe, but clearly, it is absurd and uninteresting. Thus,
the constraint Cd has been introduced in order to restrict the search space of
the MOGA model to realistic lexica, thereby reducing the computation time.

The allowance of two non-distinct pairs per lexicon is motivated by the fact
that in the observed dialects, BVIs have one non-distinct pair. We allow one
more to explore further possibilities.



216 Evolutionary Model

Cp: Phonotactic constraints

A lexicon Λ is said to violate the constraint Cp if any of the words in Λ violates
the phonotactic constraints of Bengali. As described in Sec. 4.2.1, the PCs are
defined at the level of syllable onsets and codas and therefore, syllabification
is a preprocessing step before evaluation of Cp. Since no dialect of Bengali is
known to allow a complex coda (i.e., more than one consonant in the coda),
the allowable codas are null (no consonant) or a single consonant. However,
some of the consonant clusters comprising of upto two consonants (i.e., CC)
are allowable in the onset. We manually enumerate the legality of the complex
onsets that might emerge due to the process of change for the model under
consideration.

fr and Cr: Regularity

Although learnability is a complex notion, one can safely equate the learnability
of a system to the regularity of the patterns within the system. In fact, in the
context of morphology, it has been observed that the so called learning bottleneck
has a regularizing effect on the morphological structures, thereby leaving out
only the most frequently used roots to behave irregularly (Hare and Elman
1995; Kirby 2001; Kirby 2002).

In the present context, we define the regularity of the verb forms in a lexicon
as the predictability of the inflectional suffix on the basis of the morphological
attributes. For example, the inflections pertaining to the past tense have the
phoneme l, and those pertaining to the continuous aspect have the phoneme
Ch; similarly, n at the end is indicative of formal person. This fact can be
restated as follows:

If a lexicon is regular, two word forms are expected to be more
similar if they share a larger number of morphological attributes.

Brighton et al. (2005) discuss the use of Pearson correlation between phono-
logical edit distance and semantic/morphological hamming distance measures
as a metric for learnability. On a similar note, we define the regularity function
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fr as follows: For two words wi, wj ∈ Λ, the (dis)similarity between them is
given by ed(wi, wj). Let ma(wi, wj) be the number of morphological attributes
shared by wi and wj . Since there are three distinct features – tense, aspect and
person, the value of ma(wi, wj) can be 0, 1 or 2. We define the regularity of Λ,
fr(Λ), as the Pearson correlation coefficient between ed(wi, wj) and ma(wi, wj)
for all pairs of words in Λ. Note that for a regular lexicon, ed(wi, wj) decreases
with an increase in ma(wi, wj). Therefore, fr(Λ) is negative for a regular lex-
icon and 0 or positive for an irregular one. In other words, fr(Λ) is also a
minimizing objective function.

Nevertheless, fr(Λ) is a very crude measure of regularity. Rather than
formulating it as an objective function, we can formulate a regularity constraint
Cr, such that a lexicon Λ violates Cr if fr(Λ) > minreg, where minreg is some
constant greater than −1.

Cu: Constraint on Useless Genes

The functions and constraints described till now are computed for the lexicon,
i.e., the phenotype. Cu is a constraint, which is defined on the genotype and
has no relation to the functional forces as such. Rather, the constraint Cu
helps to prune the search space by removing the chromosomes that encode
useless information. Consider, for example, a chromosome that has θ1θ2 · · · θr
as the active APOs, such that after the application of the APOs θ1 to θi on Λ0,
an intermediate lexicon Λint is obtained. Suppose that θi+1 is inapplicable to
any of the words in Λint. In other words, despite being switched on, the gene
corresponding to θi+1 is useless. We shall refer to them as useless genes.

There can be a lot of chromosomes that map to the same phenotype, but
with several useless genes on it. If the phenotype they encode for is a non-
dominated solution for the model, then the chromosomes will be selected as
“good” individuals, generation after generation. On the contrary, these chro-
mosomes do not provide us with any extra information and neither do they
lead to better individuals, which would not have been obtainable from other
chromosomes. Thus, in order to prune such useless chromosomes we introduce
the constraint Ca. A chromosome is said to violate Cu, if it has a useless gene.
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7.3 Experiments and Observations

In the previous section, we have presented several objective functions and con-
straints. In this section, we describe several experimental setups developed
using different combinations of these functions. We begin with a brief sketch of
NSGA II, the package that has been used for optimization in the MOGA frame-
work. This is followed by the description of some general experiments designed
to determine the number of generations required for convergence, population
size and length of the chromosome g. Next, the experiments conducted for dif-
ferent combinations of objectives and constraints are discussed at length, and
finally we attempt to design some objective evaluation metrics for the problem
at hand.

7.3.1 Experimental Setup: NSGA - II

We use the Non-dominated Sorting GA-II or NSGA-II (Deb et al. 2002), which
is a multi-objective, multi-constraint and elitist GA. The NSGA-II package is
available online. The salient features of the package and their utilizations in
the present context are enlisted below.

• NSGA-II is implemented in C, runs on the Linux platform, and uses
GNUPlot for visualization.

• It can deal with both binary and real-valued genes. For the problem at
hand, we have only one binary variable of length 8g bits.

• The population size, number of generations, number of objective functions
and constraints are specified as inputs.

• The probability of crossover and mutation are also specified a priori by
the user. In the present case, the probability of crossover has been set
to 0.9 and that of mutation has been set to 0.1 for all the experiments.
These values are arrived at through some amount of parameter space
exploration.
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• The package requires the specification of the objective functions and con-
straints in the form of modules in C. As stated earlier, the objectives are
assumed to be minimizing and the constraints are violated if they eval-
uate to a negative value. Note that in the present context, computation
of the objective functions and constraints require the genotype to pheno-
type mapping (i.e., application or the APOs or rewrite rules on Λ0) and
syllabification of the resulting lexicon.

• The output of NSGA-II is the set of best solutions (genotypes) obtained
after running the algorithm till the number of generations specified. The
algorithm also outputs the fitness of the chromosomes at the end of the
process. The fitness is the values of the objective functions, which can
be plotted using GNUPlot or otherwise to visualize the Pareto-optimal
front.

• The package also provides option for visualizing the fitness plot of the
individuals after every k generations (where k is an input parameter).

Thus, at the end of the optimization process, we obtain a set of Pareto-
optimal dialects and a corresponding Pareto-optimal front. Fig. 7.4 shows the
Pareto-optimal front obtained at the end of a typical run of NSGA-II. fe and
fd are plotted on the x and y axes respectively. A dot on the x − y plane
corresponds to an individual and represents its fitness values. As one moves
from the right to the left over the Pareto-optimal front, the dialects tend to loose
distinctiveness between the verb forms, but in the process the articulatory effort
is minimized.

Note that as the objectives are minimizing in nature, the area on the plot
below and left of the Pareto-optimal front represents impossible languages,
whereas the area to the right and top of the curve shows unstable or suboptimal
languages. This is opposite of what has been shown in Fig. 4.1, because the
objectives f1 and f2 in Fig. 4.1 are both maximizing in nature.
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Figure 7.4: Pareto-optimal front obtained from a typical run of NSGA-II

7.3.2 Population, Generation and Chromosome length

The optimality of the solutions obtained through GA is dependent on the pop-
ulation size (larger population ensures variability) and the number of genera-
tions for which the algorithm is run (large number of generation ensures closer
approximation of the Pareto-optimal front). However, the time complexity
of NSGA II is quadratic in the population size and linear in the number of
generations. Our aim is to strike the best trade-off between population size,
generations and the quality of the Pareto-optimal front.

For this purpose, we have conducted a pilot experiment with different pop-
ulation sizes (100, 500, 1000, 2000, 5000) and number of generations (100, 500,
1000). The value of the other parameters for all the experiments were held fixed
at g = 7, objective functions: fe and fd, no constraints, probability of crossover
= 0.9, probability of mutation = 0.1, |Λ| = 18. The results of the experiments
are shown in Fig. 7.5

We observe that the Pareto-optimal front obtained after 100 generations
is not satisfactory, but the one obtained after 500 generations are reasonably
good when the population size is more than or equal to 500. Therefore, for
most of the experiments that we have conducted, both population and number
of generations have been set to 500.
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Figure 7.5: The Pareto-optimal front for the pilot experiments. The values
of fe and fd are plotted on x and y axes respectively. The plots in the rows,
from top to bottom, are for population sizes 100, 500, 1000, 2000 and 5000.
The plots in the columns, from left to right, are for generations 100, 500 and
1000 respectively. Experiments could not be run for 1000 generations with
population sizes of 2000 and 5000 as the time required is very large. For other
details, see the text.
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Figure 7.6: Pareto-optimal fronts for different lengths of the chromosome – g.
The values of fe and fd are plotted on x and y axes respectively. Population =
500, generation = 500

We also carry out experiments to determine a suitable value for g, the
number of genes on a chromosome. The results are presented in Fig. 7.6. The
values of the other parameters are same as in the previous experiment. We
observe that as g increases from 5 to 15, there is significant improvement in
the Pareto-optimal front. However, we observe no further improvement of the
front as g increases to 20. Thus, we infer that 15 is a suitable value for g, with
which we conduct the other experiments.

Since the probability of any gene being switched off is 0.5, the expected
number of active APOs on a chromosome with 15 genes is 7.5. It is interesting
to note that this value is almost equal to the number of APOs required (7 to
be precise) for derivation of the SCB verb forms.

7.3.3 Observations for Different Models

We formulate different MOGA models by various combinations of the objective
functions and constraints described in Sec. 7.2.3 and closely inspect the emer-
gent dialects. In fact, the motivation behind the incorporation of new objective
or constraints comes from the observations made on the previous models. We
start with the simplest possible model, which we shall refer to as MOGA Model
1, and refine it subsequently to construct five other models. Table 7.7 shows
the set of objectives and constraints incorporated in each of these six models.
Apart from the different combinations of the objectives and constraints, the
models also differ in the size of the lexicon, length of the gene, and the number
of APOs in the repertoire.
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Model No. |Λ0| g APOs fe fd fr Cp Cd Cr Cu

1 18 10 64
√ √

2 18 10 64
√ √ √ √

3 18 10 64
√ √ √ √ √

4 18 10 64
√ √ √ √ √

5 28 10 128
√ √ √ √ √

6 28 15 128
√ √ √ √ √ √

Table 7.7: Description of the six MOGA Models. APOs refer to the total
number of APOs in the repertoire. A

√
indicates the presence of a particular

objective or constraint in the model.

Each of the models and observations made from them are described below.
In order to compare the Pareto-optimal fronts obtained for these models, we
have appropriately normalized the values of fe and fd, as in Models 4 and 5,
|Λ| = 28, whereas for the other four models, |Λ| = 18. The details of the
emergent dialects for each of the models are reported in Appendix E. However,
to have a feel of the realistic dialects that emerge in the system, in Table 7.8 we
present some of the verb forms from MOGA Model 6 (described subsequently)
vis-à-vis their real counterparts. Note that the phone /Ch/ in SCB or classical
Bengali corresponds to /s/ in ACB. However, this change from /Ch/ to /s/ is
not reflected in the emergent dialect because we have deliberately excluded any
APO related to the mutation of consonants in the repertoire of genes.

MOGA Model 1

The simplest of the MOGA models, Model 1 has only two objective functions
and no constraints. The Pareto-optimal front obtained for this model is shown
in Fig. 7.7. Manual inspection of the dialects emerging in Model 1 reveals that
although some of them resembles their real world counterparts loosely, quite
a big fraction of the dialects are implausible because – 1) they violate the PC
of Bengali, or 2) several forms are indistinguishable. See Appendix E.2.1 for
examples of realistic as well as unrealistic dialects emerging in Model 1.

The fitness of the four real dialects are also plotted in Fig. 7.7, all of which lie
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Classical SCB ACB
Bengali Real Emergent Real Emergent

kari kori kor kori kori
kara karo kora kara kora
kare kare kore kare kore
karen karen koren karen koren

kariteChi korChi karChi kartAsi karteChi
kariteCha korCho karCha kartAsa karteCha
kariteChe korChe karChe kartAse karteChe
kariteChen korChen karChen kartAsen karteChen

kariAChi koreChi korChi korsi koriChi
kariACha koreCho korCha karsa koriCha
kariAChe koreChe korChe karse koriChe
kariAChen koreChen korChen karsen koriChen

karilAm korlAm korlAm karlAm karlAm
karile korle korle karlA karle
karila korlo korla karla karla
karilen korlen korlen karlen karlen

kariteChilAm korChilAm karChilAm kartAslAm karteChilAm
kariteChile korChile karChile kartAslA karteChile
kariteChila korChilo karChila kartAsla karteChila
kariteChilen korChilen karChilen kartAslen karteChilen

Table 7.8: Few example verb forms from the lexica of two real and emergent di-
alects. The emergent dialects are chosen from the Pareto-optimal set of MOGA
Model 6 on the basis of their resemblance to the real dialects. The correspond-
ing classical Bengali forms are also shown for reference.
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Figure 7.7: Pareto-optimal fronts obtained from MOGA Models 1 and 2. fe

and fd are plotted on x and y-axes respectively. The triangles show the position
of the real dialects in the plot: 0 – Classical Bengali, 1 – SCB, 2 – ACB, 3 –
Sylheti. The vertical and horizontal lines marked Cp and Cd respectively, show
the effects of these constraints in restraining the extent of the front for Model
2. Note that the y-axis is in logarithmic scale for better visualization.

below the Pareto-optimal front. This clearly reveals that the dialects obtained
in Model 1 are suboptimal or inferior to the real dialects.

MOGA Model 2

In Model 2, we incorporate two constraints, Cp and Cd, to alleviate the problems
of illegal clusters and indistinguishable forms in the emergent dialects. The
Pareto-optimal front for Model 2 is plotted over that of Model 1 in Fig. 7.7. The
effects of the constraints are clearly visible from the Pareto-optimal sets of the
two models. While Cp restrains the Pareto-optimal front from having dialects
with very high effort (shown by the vertical line marked Cp in Fig. 7.7), Cd
restrains the front from having dialects with very low acoustic distinctiveness,
i.e., high fd (shown by the vertical line marked Cd in Fig. 7.7). Thus, the two
constraints restrain the Pareto-optimal front to the left of the Cp line and below
the Cd line.
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Figure 7.8: Pareto-optimal fronts obtained from MOGA Models 2 and 3. fe

and fd are plotted on x and y-axes respectively. The triangles show the position
of the real dialects in the plot: 0 – Classical Bengali, 1 – SCB, 2 – ACB, 3 –
Sylheti.

Figure 7.9: Pareto-optimal fronts obtained from MOGA Models 2 and 4. fe

and fd are plotted on x and y-axes respectively. The triangles show the position
of the real dialects in the plot: 0 – Classical Bengali, 1 – SCB, 2 – ACB, 3 –
Sylheti.
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Figure 7.10: Pareto-optimal fronts obtained from MOGA Models 4 and 5. fe
and fd are plotted on x and y-axes respectively. The triangles show the position
of the real dialects in the plot: 0 – Classical Bengali, 1 – SCB, 2 – ACB, 3 –
Sylheti (green and red for lexicon of size 18 and 28 respectively).

Figure 7.11: Pareto-optimal fronts obtained from MOGA Models 4 and 5. fe
and fd are plotted on x and y-axes respectively. The triangles show the position
of the real dialects in the plot: 0 – Classical Bengali, 1 – SCB, 2 – ACB, 3 –
Sylheti
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Although the constraints help to eliminate some of the implausible dialects,
manual inspection reveals that several dialects emerging in Model 2 are irregu-
lar. See Appendix E.2.2 for examples of such dialects.

MOGA Model 3

In order to resolve the problem of irregular dialects, we introduce a new ob-
jective function of regularity, fr, in Model 3. Note that Model 3 has three
objectives and therefore, the Pareto-optimal front is a surface in 3-dimensional
space, rather than a curve in a 2-dimensional plane. Nevertheless, for the sake
of comparison, in Fig. 7.8 we plot the Pareto-optimal set of Model 3 with re-
spect to only two of the objective functions. Although this results in existence
of a few dots (i.e., solutions) in the middle of the fe − fd plane, away from the
Pareto-optimal curve of Model 2, still majority of the solutions flock towards
the Pareto-optimal front obtained from Model 2.

This indicates that the new objective fr plays an insignificant role in the
optimization process. In fact, a closer look at the solutions emerging from
Model 3 reveals that 90% of the individuals in the Pareto-optimal set has fr
values ranging from −0.39 to −0.84. On the other hand, we also observe that
fr of a reasonably regular dialect should be less than −0.8. Appendix E.2.3
enlists some of the dialects from Model 3.

MOGA Model 4

In Model 4, the objective function fr has been replaced by the constraint Cr,
where a lexicon Λ violates Cr, if fr(Λ) > −0.8. Fig. 7.9 compares the Pareto-
optimal fronts of Models 4 and 2. We observe that the constraint Cr, in effect,
pushes the vertical limb of the front towards right. Indeed, the solutions with
very low effort have been found to violate the regularity of the pattern. See
Appendix E.2.4 for examples of dialects emerging in Model 4.
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MOGA Model 5

In the previous four models, we have successfully restrained the Pareto-optimal
front by incorporation of appropriate constraints and objectives, such that the
emergent dialects are as plausible as possible. Nonetheless, in all the models,
the Pareto-optimal set seems to be inferior to the real dialects. Therefore, we
extend the previous models by increasing the size of the lexicon as well as the
repertoire of APOs, so that the search space is extended. In Model 5, Λ = 28
and the number of APOs has been doubled to 128.

Fig. 7.10 compares the Pareto-optimal fronts of Model 4 and 5. The exten-
sion of the search space, due to increase in the repertoire of APOs, has pushed
the front in Model 5 towards a more optimal configuration. As a result, two of
the real dialects, namely SCB and ACB now lie on the front, whereas classical
Bengali and Sylheti are suboptimal with respect to the front of Model 5. Some
of the best solutions of Model 5 are listed in Appendix E.2.5

MOGA Model 6

In Model 6, we increase the length of the gene from 10 to 15, which in effect,
further extends the search space. Initial experiments with this model show
that several genes in the emergent solutions are useless, but they clutter the
search space and in turn, negatively affect the convergence and variation of the
population. Therefore, we also introduce the constraint Cu to eliminate the
chromosomes with useless genes.

Fig. 7.11 compares the Pareto-optimal fronts obtained for Model 5 and 6.
We observe that the fronts are almost similar, except for the fact that the larger
search space now helps the algorithm to find out solutions with very low effort,
but bad distinctiveness. A few emergent solutions from Model 6 are listed in
Appendix E.2.6.

7.3.4 Objective Evaluation Metrics

Unlike the case of SDH, where Ohala’s rule provides a basis for evaluating the
emergent patterns of the MAS Models, quantifying the validity of the MOGA
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Models is quite a difficult task. In the last subsection, we have compared the
dialects obtained for different combinations of constraints and objectives with
data from real dialects. Nevertheless, emergence of dialects in the experiments
that lie on the Pareto-optimal front and closely resemble one of the modern
dialects is hardly a measure of plausibility of the model. This is because we
have data from only four real dialects, whereas the number of dialects that
belong to the Pareto-optimal set is of the order of a several hundreds.

Thus, in the absence of any concrete and objective evaluation criterion, we
have resorted to manual inspection of the dialects in the Pareto-optimal set,
during which the plausibility of the dialects have been adjudged on the basis
of linguistic features. The seemingly absurd dialects have helped us to further
improve the model by incorporating appropriate constraints and/or objectives.

In order to automatically identify the solutions in the Pareto-optimal set
that are closest to the real dialects, we introduce two metrics of similarity: one
based on the phenotype and another based on the genotype. The first met-
ric, simp(Λ,Λ′), computes the average dissimilarity between the corresponding
word forms in the lexica Λ and Λ′ and is defined as follows.

simp(Λ,Λ′) =
1
|Λ|

|Λ|∑
i=1

ed(wi, w′
i) (7.7)

Here wi and w′
i are the corresponding word forms in Λ and Λ′ respectively. The

lower the value of simp(Λ,Λ′), the higher is the similarity between Λ and Λ′.

The second metric, simg(Θ,Θ′), compares two sequences of APOs and is
defined as follows:

simg(Θ,Θ′) =
r∑
i=1

r′∑
j=1

δθi,θ′j
(7.8)

where, δθi,θ′j
, is the Kronecker’s delta, which is 1 if and only if θi = θ′j . We

assume that in Θ or Θ′, any APO θ occurs atmost once. Thus, in words,
simg(Θ,Θ′) counts the number of APOs shared by the sequences Θ and Θ′.
The higher the value of simg(Θ,Θ′), the higher is the similarity between the
dialects.

It may be noted that although the two measures are correlated, they are
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Figure 7.12: Resemblance to real dialects according to the metric simp. The
model numbers are shown in the horizontal axis and the value of simp is plotted
along the vertical axis. D0 – Classical Bengali, D1 – SCB, D2 – ACB, D3 –
Sylheti

not equivalent because, even a small difference between Θ and Θ′ might lead
to a large value of simp(Θ(Λ0),Θ′(Λ0)).

Fig. 7.12 and 7.13 show the minimum value of simp and maximum value
of simg respectively for the emergent dialects in the six MOGA Models, where
the comparisons are made with respect to each of the four real dialects. We
observe that for both the metrics, dialects closest to the real ones emerge in
Model 6. Note that despite the limitations of Model 3 with respect to Model
4, the former is better than the latter as far as the similarity to the four real
dialects are concerned.

7.4 Analysis and Interpretations

Several inferences can be drawn from the aforementioned experiments and ob-
servations. We discuss at length three such issues, which we deem to be the
most significant findings of the MOGA Model.



232 Evolutionary Model

Figure 7.13: Resemblance to real dialects according to the metric simg. The
model numbers are shown in the horizontal axis and the value of simg is shown
along the vertical axis. The first second and the third column for every model
correspond to SCB, ACB and Sylheti respectively.

The first one is regarding the distribution of real dialects over the Pareto-
optimal front. We have observed that the Pareto-optimal front for all the
MOGA Models look like rectangular hyperbolas that can be expressed as fol-
lows.

fd(Λ) = afe(Λ)−b (7.9)

We shall not attempt to solve for the values of a and b for the different models,
because the values are dependent on the formulation of the objective functions
and their precise linguistic significance is unclear. However, from the plots,
it seems that both a and b are large. In other words, for all the models, the
Pareto-optimal front has a horizontal and a vertical limb, with a sharp angular
transition between the two. The limbs are almost parallel to the axis. This
means that it is possible to minimize the effort for a lexicon, without com-
promising with its distinctiveness upto a certain critical value of fe(·). Once
this critical value is crossed, even a very small reduction in the effort seriously
hampers the distinctiveness. Similar is the case for fd(·).

Interestingly, all the real dialects lie on the horizontal limb of the Pareto-
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optimal front, Classical Bengali being placed at the extreme right. We also note
the negative correlation between the value of fe(·) for the real dialects, and the
number of APOs invoked during derivation of these dialects from Classical Ben-
gali. These facts together imply that the natural direction of language change
in the case of BVIs has been along the horizontal limb of the Pareto-optimal
front, leading to the formation of dialects with higher and higher articulatory
ease. Among the four dialects, SCB has the minimum value for fe(·) and it is
positioned on the horizontal limb of the front just before the beginning of the
vertical limb (see e.g., Fig. 7.11).

Therefore, it is natural to ask whether there are any real dialects of modern
Bengali that lie on the vertical limb of the Pareto-optimal front. And if not,
what may be the possible reasons behind their inexistence? In the absence
of any comprehensive collection of Bengali dialects, we do not have a clear
answer to the above questions. Nevertheless, it may be worthwhile to analyze
the emergent dialects of the MOGA Models that lie on the vertical limb. As
discussed earlier, in Model 1 the emergent dialects at the extreme regions of the
vertical limb severely violate the distinctiveness criterion by featuring repetition
of several word forms in the lexicon. The incorporation of the distinctiveness
constraint Cd in Model 2 helped us eliminate such implausible dialects (refer to
Fig. 7.7). The introduction of the regularity constraint Cr in Model 4 further
shifted the vertical limb towards right (see Fig. 7.9). Thus, the vertical limb
of the Pareto-optimal front has always featured implausible dialects that have
been eradicated by incorporation of suitable constraints.

The emergent dialects of Model 6 with low fe(·) and high fd(·) are no ex-
ceptions. As shown in Appendix E.2.6, they feature repetition of forms as well
as deletion of vital tense/aspect marking affixes (e.g. /Ch/). Thus, it is likely
that the vertical limb of the Pareto-optimal front does not contain any real
dialect of modern Bengali. The reason, perhaps, is the strong linguistic con-
straints imposed on the lexicon and morphology by the pressure of regularity
and distinctiveness, which restrict any event of phonological change that pushes
the lexicon upwards towards the vertical limb.

Note that the presensce of a strong distinctiveness constraint also implies
that the system of BVIs have redundant phonemes that could be deleted to
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obtain dialects with smaller fe(·). However, there seems to be a strong bias to-
wards maintainance of this redundancy across all the dialects. It is a well known
fact that redundancy is observed in all linguistic systems. It is often refered to
as “Linguistic junk” (Lass 1997) that allows the speakers of different dialects
to communicate more successfully because of the availability of more number
of supplementary clues pertaining to what is being said. Furthermore, through
agent-based simulations Livingstone (2003) shows that redundancy helps the
agents to easily learn conflicting lexicons. Hence, redundancy seems to be ben-
eficial to the speakers in the sense that it helps them improve their capability to
learn a language from conflicting and contradictory evidences. This is perhaps
one of the primary reasons for the redundancy in the BVIs of the modern Ben-
gali dialects, and consequently, the absence of any real dialect on the vertical
limb of the Pareto-optimal front.

The second inference we would like to draw is regarding the relative mer-
its and demerits of the constraints and objective functions. The nature of the
functional forces, as in whether they are binary or real valued functions, has
been the subject matter of a long debate in synchronic as well as diachronic
linguistics. Note that a binary valued function is equivalent to a constraint in
the MOGA Model, whereas a real valued function is similar to the objective
functions. While the proponents of Optimality theory claim that linguistic func-
tions are always binary in nature (Prince and Smolensky 1993; Boersma 1997a),
several other researchers (e.g., proponents of phonetically based phonology
Ohala (1983a; 1990b), functionalists such as Liljencrants and Lindblom (1972)
and Schwartz et al. (1997)) have postulated real valued linguistic functions.

In the context of MOGA models, we observe that multi-objective optimiza-
tion with a set of real-valued objective functions give rise to a large variety of
possible dialects, most of which are implausible (Model 1 and 3). Incorporation
of suitable constraints however, restricts the set of possibilities to more plausi-
ble dialects. Indeed, the aforementioned discussion regarding the concentration
of the real dialects on the horizontal limb further points to the fact that distinc-
tiveness also acts as a constraint rather than a real valued function. Of course,
it does not follow from the aforementioned facts that linguistic functions are
always manifested as constraints. Nonetheless, the fact that the relaxation of
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the constraints does not beget richer models support the hypothesis, at least in
the context of BVIs, that linguistic functions are binary valued in nature.

The third interesting aspect emerging out of the experiments is about the
richness of the search space. The sudden shift of the Pareto-optimal front
towards the origin, i.e., towards more optimal solutions, in MOGA Model 5 as
compared to Models 1 to 4 (refer to Fig. 7.10), is arguably an effect of doubling
the set of APOs. Note that, on the other hand, increase in the number of genes
on a chromosome does not have any significant effect on the Pareto-optimal
set (see Fig. 7.11). In fact, as is apparent from Fig. 7.6, for a given repertoire
of APOs, there is an optimum value for g, after which increase in the length
of the chromosome do not beget better solutions. Furthermore, increase in g

does not shift the Pareto-optimal front towards origin, rather it has a visible
effect of extending the vertical limb of the front further up. Nevertheless, the
best solutions emerging in Model 6 resemble the real dialects much more closely
than those from Model 5 (see Fig. 7.12).

We have not conducted any systematic experiment to study the effect of
increase in the size of the repertoire of APOs on the front. However, it is likely
that as we increase the size of the repertoire, the front shifts towards more
optimal solutions up to a certain point. Clearly, the choice of the repertoire,
in effect, defines the shape and extent of the search space or the set of possible
courses of language change. Therefore, it follows from the above discussion
that in the MOGA model, the appropriate choice of the APOs is as important
as formulation of the objectives and constraints. Ideally, the repertoire should
contain all possible APOs, but the set of all possible APOs can be infinite. Thus,
it becomes necessary to restrict the set of APOs to some selected candidates.

The MOGA model can be interpreted in various ways. For instance, since a
sequence of APOs can be equivalently represented using an FST (Kaplan and
Kay 1994), the evolving chromosomes can be viewed as evolving FSTs. Al-
though in the specific context of BVIs, FSTs would represent historical deriva-
tions, it is not difficult to imagine a case where the FSTs stand for synchronic
grammar rules. Stating differently, the present MOGA framework can as well
be thought of as a competition between synchronic grammars. Another in-
terpretation could be that each individual in one instantiation of the MOGA
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model represents a meme or collection of memes (Dawkins 1976; Blackmore
1999), and the GA mimics the evolution of the memes. According to this in-
terpretation, the objectives and constraints capture the goodness of the memes
in terms of their imitability. Nevertheless, we would like to emphasize that the
evolutionary algorithm or GA in the current MOGA framework has been used
as a multi-objective optimization tool, and it should not be taken for simulation
of the process of evolution, be it linguistic or memetic.

7.5 An Application

As an aside we describe a potential application of the model presented in this
chapter. While studying the dialect data for Bengali, we observed that the
verb forms of the modern dialects can be obtained through the application of
a sequence of APOs, Θ, on the classical Bengali verb forms (see Sec. 7.1.2).
This provides us with a noble method for natural language generation in a
multi-dialectal scenario, which is described below.

Suppose we want to build a natural language generator (NLG) as a part
of an automatic Question Answering system. It is expected that the answers
are framed in the dialect of the end-user. We can choose a common ancestor
of the dialects, say classical Bengali, and develop an NLG for that language.
Any sentence generated by this NLG can then be converted to the required
dialect through a set of transformations. As a first step towards this goal,
we can conceive of a morphological generator as follows: given a verb root,
a set of morphological attributes and a dialect d, the task is to generate the
corresponding verb form in d. This task can be accomplished in two steps:

1. Generate the required verb form in classical Bengali using an appropriate
morphological generator.

2. Apply a set of phonological transformation rules Θd to obtain the corre-
sponding form in dialect d.

Such a system will be advantageous in a multi-dialectal scenario because de-
velopment of morphological generators for n dialects is expected to be costlier
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(in terms of development effort) than developing a single generator for classical
Bengali along with n transducers implementing the sequence of transforma-
tions. Furthermore, since verb morphology of classical Bengali is more regular
compared to that of SCB and other modern dialects that feature several mor-
phological paradigms, both the time and structural complexity of the generator
for classical Bengali is lower than that of other dialects. Thus, the method
provides an elegant and scalable framework for multi-dialectal morphology syn-
thesis.

It should be mentioned, however, that to implement a complete NLG system
it is not enough to transform the verb forms, and the framework needs to
be extended to capture the morpho-syntactic as well as semantic variations
observed across the dialects. Thus, implementation of the proposed framework
and extension of the same to syntactic and semantic changes are interesting
and challenging research problems that can be explored in the future.

7.6 Conclusions

In this chapter we have described a MOGA framework for modeling the morpho-
phonological change of BVIs. The salient features and contributions of the work
are

• The concept of atomic phonological operators has been defined. We as-
sume that like the case of SDH, the emergence of an APO can be explained
through the MAS Models.

• The problem has been looked upon from a functionalist perspective, whereby
we have attempted to provide appropriate quantification of the functional
forces, namely articulatory effort and acoustic distinctiveness, and several
other constraints.

• The definition of a chromosome as a sequence of APOs is a novel and
significant contribution of this chapter. The formulation helps us to si-
multaneously search for optimal dialects (i.e., phenotypes) and the courses
of change leading to those dialects (i.e., genotype).
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• We incrementally construct six MOGA models by introducing the differ-
ent objectives and constraints, and thereby study the effect of the con-
straints on the emergent dialects.

• The comparison of the Pareto-optimal sets with a few real dialects reveal
that not only the real dialects lie close to the front, but we also observe
emergence of dialects in the system that are close to the real dialects.

The current framework can be extended in many ways. For instance, one
can explore the emergence of the morphological paradigms of Bengali verbs in
SCB in the MOGA model. For this, it is necessary to start with a lexicon Λ0

that has the inflected forms of several verb roots. One can also explore other
phonological changes that have in general affected the Bengali words. Here, we
have evaluated the fitness functions for a sequence of APOs Θ = θ1θ2 · · · θr on
Θ(Λ0). This ignores the cases where the intermediate lexica, such as θ1(Λ0) or
θ2(θ1(Λ0)), are suboptimal. Therefore, a possible extension of the model can
be to evaluate the fitness at every step of the derivation, the final fitness being
a composition of all the intermediate ones. Such a definition of fitness is also
capable of measuring the goodness of the course of change than just the dialects
that finally emerge.

It is important to point out that the results of the experiments with the
MOGA Models must be interpreted with caution. This is because the results
are very much dependent on the formulation of the fitness functions and the
choice of the constraints. The selection of the APOs in the repertoire also plays
a major role in shaping the Pareto-optimal front of the models. This, in fact,
is a general drawback of any computational model, which we discuss at length
in the next and the last chapter of the thesis.
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Conclusion

Explaining and describing the dynamics of human language is a hard prob-
lem that has bedazzled the human minds over the centuries. The advent of
sophisticated mathematical tools and powerful computers enabled present day
researchers to explore newer computational and formal models of language evo-
lution and change. Nevertheless, as described in Chapter 3, modeling of real
world language change turns out to be a notoriously difficult problem. In this
thesis, we set out to crack this hard nut by building formal as well as compu-
tational models for cases of real world phonological change.

The previous four chapters are essentially dedicated to the aforementioned
theme, where we have attempted to build formal models for two cases of real
language change – schwa deletion in Hindi and morpho-phonological change of
the verb inflections in Bengali, through which we have been able to demonstrate
“the thesis” that

with suitable abstractions and computational tricks, it is indeed pos-
sible to develop formal and/or computational models of real world
language change.

We believe that our thesis makes sense in the context of the fact that almost
all the present day computational models of language evolution and change
are built for artificial toy languages – a limitation that has been identified and
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criticized by several researchers (Hauser et al. 2002; Poibeau 2006) despite the
otherwise well accepted advantages of such models.

A little reflection would reveal that the models presented in this thesis are
also based on numerous simplifying assumptions. We have tried to justify our
assumptions in the respective chapters, wherever possible. Nevertheless, it is
worthwhile to ask whether the models developed during this work (and com-
putational models of language change in general) qualify as valid explanations
of language change. Similarly, one can ask which properties of a model and an
experiment make them more plausible than some other model. Furthermore,
since it is impossible to develop a model of language change without making
any assumptions, it is also worth pondering what kind of assumptions are fairly
reasonable or may be even necessary to build a model of real world language
change.

In this concluding chapter, we discuss some of these meta-issues regarding
the subject matter of the thesis analyzed in the light of the models described
here. Since the contributions of this thesis have been summarized in Chapter 1,
and the contributions and future works related to each of the models have been
discussed at length in the respective chapters, we do not devote any further
space on these.

8.1 Need for Abstractions

A model is an “abstraction of a real world scenario” and therefore, any model of
language change, and any scientific model for that matter, is based on a series
of abstractions. Abstractions, in turn, are based on simplifying assumptions.
Hence, the predictions of an abstract model hold good as long as the underlying
assumptions are valid. Stated differently, a model is as good as the assumptions
are, on which it is based.

In Chapter 3 (Sec. 3.2.4) we have seen that the basic difference between
the macroscopic and microscopic models of language is that unlike the latter,
the macroscopic models assume that the behavior of a linguistic system can
be derived from the average behavior of the speakers. Moreover, in order to
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analytically solve the macroscopic models so obtained, one usually makes as-
sumptions of infinite population (of speakers) and non-overlapping generations.
Although apparently these assumptions sound reasonable, some initial inves-
tigations have shown that the predictions made by some of the macroscopic
models are qualitatively different from their microscopic counterparts (Briscoe
2000c; Stauffer and Schulze 2005).

In Chapter 4, we attempted to develop an optimization model for SDH,
which is based on a functional explanation. The amount of reverse-engineering
that has undergone behind the formulation of the model is quite obvious. Nev-
ertheless, we have been able to arrive at a falsifiable prediction that according
to the proposed model, Ohala’s rule is equivalent to the optimal pattern if and
only if the syllabification of the language does not follow the onset-maximization
principle. In other words, our model predicts that there is no language in
which the syllabification follows onset maximization and schwa deletion pat-
tern matches that of Hindi’s.

Similarly, the observations related to the MOGA model presented in Chap-
ter 7 are overtly dependent on the formulation of the objective functions and
constraints. However, we make three important remarks regarding the formu-
lation of the MOGA models.

• The functional forms of the objectives and constraints have been kept as
simple as possible.

• The introduction of new constraints or functions were always motivated
by the failures associated with the previous models. Thus, in essence,
we have attempted to build the “simplest possible” MOGA model that
can explain the emergence of the real Bengali dialects – a strategem often
referred to as Occam’s razor.

• We also observe that the model parameters (such as the weights α1, α2, α3)
have minimal effect on the emergent pattern.

Thus, the MOGA model provides a simple and robust explanation of the
morpho-phonological change of BVI. In the two MAS models described in Chap-
ter 5 and 6, a series of abstractions have been made to facilitate computational
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tractability. The utmost importance of the abstractions can be appreciated
from the fact that experiments with a large Hindi lexicon have been possible
only with MAS Model II, which is based on much stronger assumptions about
the human cognitive faculty, compared to MAS Model I.

Thus, assumptions are necessary for building any model of language change.
Moreover, for any model the stronger the assumptions are, the higher the level of
abstraction, and consequently, the simpler the explanation. If the assumptions
are stated clearly, the model can be used to make falsifiable predictions, which
in turn makes the model as well as the underlying assumptions scientifically
acceptable.

8.2 Principle of Hierarchical Abstraction

Can there be a formal technique of incorporating assumptions in a model that
ensures the plausibility of the model and its predictions? If so then such a
technique would be extremely helpful in computational modeling of language
change and evolution, and more so in the context of real languages, because
these models demand several strong assumptions to be made.

In this thesis, we have put forward the principle of hierarchical abstraction
(Sec. 6.6), which can be stated as follows. Starting from an extremely detailed
model that is based on fewer assumptions, more general and simpler models
are incrementally built by introducing stronger assumptions that are based on
the observations of the previous models. For instance, the optimization model
presented in Chapter 4 provides us with the insight that SDH is possibly an
outcome of an urge towards faster communication through reduction of the
durations of schwas, which we incorporate as the primary bias in MAS Model I.
Experiments with MAS Model I reveal that upon convergence, the schwas are
either completely deleted or fully pronounced. This motivated us to incorporate
the CV-pattern based mental model in MAS Model II. Finally, on the basis of
the fact that SDH can be explained through computational models, we assumed
that similar models can be constructed for other simple problems of phonological
change and took them for granted. Based on this assumption, we built the
MOGA model for BVI.
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Thus, hierarchical abstraction seems to be a useful approach towards model-
ing of real language change. Nevertheless, while experimenting with the MOGA
models, we have chosen just the reverse strategy. We started with the most gen-
eral model and tried to move towards more specific models by incorporation of
new assumptions. This difference between the two approaches crop up from the
opposite nature of the two problems tackled. The aim of the models of SDH
has been to explain Ohala’s rule – a unique pattern. To the contrary, in the
problem of BVI there are several solutions (dialects) that are observed in real
life and therefore, our aim has been to eliminate the seemingly implausible di-
alects. Thus, in the former case, we move from the most specific model towards
a general model of SDH, whereas in the latter case the reverse is true.

8.3 Plausibility of a Model

Throughout this thesis, we have been arguing in favor of the computational
models of language change that are constructed for and validated against real
linguistic data. Therefore, it is natural to ask whether and why the models of
real language change are more plausible compared to those built for artificial
languages.

As a final remark to this thesis, we would like to make a few comments
regarding the above question. Consider the problem and models of SDH pre-
sented in this thesis. Our aim has been to explain the schwa deletion pattern of
Hindi in the light of language change. For this purpose, we have proposed three
models that attempt to explain the fact that starting from a state of no schwa
deletion (i.e., Sanskrit or Vedic Sanskrit pronunciations) one can indeed arrive
at the pronunciation patterns of modern Hindi. Nevertheless, only the initial
(Sanskrit pronunciations) and final (Hindi pronunciations) states of the system
have been compared with real language data. There are infinitely many paths
through which Sanskrit could have given way to Hindi pronunciations. The
models proposed here describe only one or some of those paths. In the absence
of any further information regarding the nature of this path, is it possible to
assert or comment upon the plausibility of the models?

In the case of BVI, the intermediate stages for the real dialect data are
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known. This information, nevertheless, does not alleviate the aforementioned
problem. Classical Bengali has evolved through several historical paths giving
rise to the modern dialects of Bengali. We have compared our model with a
very few (only 3) of these dialects. Furthermore, classical Bengali could have
evolved in many other ways giving rise to other dialectal patterns. In nature,
we observe only a handful of those possibilities. Given these facts, what is the
plausibility of the MOGA models?

In either case, we have to resort to an “inference to the best explanation”. It
is impossible to empirically prove the correctness of a computational model, and
any linguistic explanation for that matter. However, when it comes to empirical
validation of the models, diachronic linguistics is hardly different from the other
branches of natural and social sciences. Niyogi (2006) summarizes this fact as
follows:

“. . . in a historical discipline like evolution, controlled experiments
are difficult to design and so the kind of success one wishes is not
the sort that one sees in certain areas of physics or engineering.
Rather, . . . one hopes that one will be able to separate plausible
from implausible theories, sort out inconsistencies in reasoning, and
generally obtain a deeper qualitative understanding of the phenom-
ena.”

In spite of the aforementioned methodological issues and philosophical problems
related to their empirical validation, models that attempt to explain real data
are more reliable and perhaps, also more plausible than those which explain
only qualitative trends. Computational modeling of real world language change,
therefore, seems to be a fruitful way of doing research in diachronic linguistics;
this thesis shows that the process of modeling is hard, but not impossible.
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Chong, E. K. P. and Żak, S. H. 2001. An introduction to optimization. Wiley-

Interscience.

Chopde, A. 2001. Itrans version 5.30: A package for printing text in indian languages

using english-encoded input. http://www.aczoom.com/itrans/ .



248 REFERENCES

Christiansen, M. H. and Dale, R. 2003. Language evolution and change. In Handbook

of brain theory and neural networks (2nd ed.), M. Arbib, Ed. MIT Press, Cambridge,

MA, 604–606.

Christiansen, M. H. and Devlin, J. T. 1997. Recursive inconsistencies are hard to

learn: A connectionist perspective on universal word order correlations. In Proceedings

of the Nineteenth Annual Conference of the Cognitive Science Society. Lawrence Erlbaum

Associates, Mahwah, NJ, 113–118.

Christiansen, M. H. and Kirby, S. 2003a. Language evolution: Consensus and contro-

versies. Trends in Cognitive Sciences 7, 7 (7), 300–307.

Christiansen, M. H. and Kirby, S. 2003b. Language evolution: The hardest problem in

science? In Language Evolution: The States of the Art, M. Christiansen and S. Kirby,

Eds. Oxford University Press.

Clark, R. and Roberts, I. 1993. A computational model of language learnability and

language change. Linguistic Inquiry 24, 299–345.

Clements, G. N. 1990. The role of sonority cycle in core syllabification. In Papers in

laboratory phonology I: Between the grammar and physics of speech, J. Kingston and

M. Beckman, Eds. Cambridge University Press, New York, 283 – 333.

Comrie, B. 1981. Language Universals and Linguistic Typology. Basil Blackwell.

Croft, W. 2000. Explaining Language Change: An Evolutionary Approach. Longman Lin-

guistic Library.

Crothers, J. 1978. Typology and universals of vowel systems. In Universals of Human

Language (Phonology), J. H. Greenberg, Ed. Vol. 2. Stanford University Press, California,

93 – 152.

Dall’Asta, L., Baronchelli, A., Barrat, A., and Loreto, V. 2006a. Agreement dy-

namics on small-world networks. Europhysics Letters 73, 6, 969–975.

Dall’Asta, L., Baronchelli, A., Barrat, A., and Loreto, V. 2006b. Non-equilibrium

dynamics of language games on complex networks. Physical Review E 74, 036105.

Dawkins, R. 1976. The Selfish Gene. Oxford University Press.

de Boer, B. 1997. Self organisation in vowel systems through imitation. In Computational

Phonology, Third Meeting of the ACL SIGPHON, J. Coleman, Ed. 19–25.

de Boer, B. 1998. Emergence of sound systems through self-organisation. In Proceedings

of the Tenth Netherlands/Belgium Conference on Artificial Intelligence NAIC’98, H. L.

Poutre and J. van den Herik, Eds. CWI, Amsterdam, The Netherlands, 37–46.

de Boer, B. 1999a. Evolution and self-organisation in vowel systems. Evolution of Com-

munication 3, 1, 79–103.

de Boer, B. 1999b. Self-organisation in vowel systems. Ph.D. thesis, Vrije Universiteit

Brussel AI-lab.

de Boer, B. 2000a. Emergence of vowel systems through self-organisation. AI Communi-

cations 13, 1, 27–39.



REFERENCES 249

de Boer, B. 2000b. Self-organization in vowel systems. Journal of Phonetics 28, 4 (Octo-

ber), 441–465.

de Boer, B. 2001. The Origins of Vowel Systems. Oxford University Press.

de Boer, B. 2005. Infant-directed speech and evolution of language. In Language Origins:

Perspectives on Evolution, M. Tallerman, Ed. Oxford University Press, Chapter 5.

de Boer, B. 2006. Computer modeling as a tool for understanding language evolution. In

Studies in Linguistics companion series, N. Gontier, Ed.

de la Briandais, R. 1959. File searching using variable length keys. In Proceedings of the

Western Joint Computer Conference. 295 – 298.

de Oliveira, V. M., Campos, P. R., Gomes, M., and Tsang, I. 2006. Bounded fitness

landscapes and the evolution of the linguistic diversity. Physica A: Statistical Mechanics

and its Applications 368, 1 (August), 257–261.

de Oliveira, V. M., Gomes, M., and Tsang, I. 2006. Theoretical model for the evolution

of the linguistic diversity. Physica A: Statistical Mechanics and its Applications 361, 1

(February), 361–370.

de Saussure, F. 1916. Cours de linguistique générale. Payot, Lousanne and Paris.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. 2002. A fast and elitist multi-

objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-

tion 6, 182–197.

Dircks, C. and Stoness, S. C. 1999. Effective lexicon change in the absence of population

flux. In ECAL99, D. Floreano, J. Nicoud, and F. Mondada, Eds. Springer-Verlag, Berlin,

720–724.

Dorogovtsev, S. N. and Mendes, J. F. F. 2001. Language as an evolving word web.

Proceedings of The Royal Society of London. Series B, Biological Sciences 268, 1485

(December), 2603–2606.

Dras, M., Harrison, D., and Kapicioglu, B. 2003. Emergent behavior in phonological

pattern change. In Artificial Life VIII. MIT Press.

Dutoit, T. 1997. An introduction to text-to-speech synthesis. Kluwer Academic Publishers.

Ellegard, A. 1953. The auxiliary do: the establishment and regulation of its use in English.

Almqvist & Wiksell.

Ellison, T. M. 1994. Phonological derivations in optimality theory. In Proceedings of 15th

International Conference on Computational Linguistics (COLING). Vol. 1. 1007–1013.

Ellison, T. M. and Kirby, S. 2006. Measuring language divergence by intra-lexical com-

parison. In Proceedings of COLING/ACL. 273–280.

Ewens, W. J. 2004. Mathematical Population Genetics. Springer-Verlag Inc.

Ferrer-i-Cancho, R. 2003. Language: universals, principles and origins. Ph.D. thesis.

Ferrer-i-Cancho, R. 2005a. Decoding least effort and scaling in signal frequency dis-

tributions. Physica A: Statistical Mechanics and its Applications 345, 1-2 (January),

275–284.



250 REFERENCES

Ferrer-i-Cancho, R. 2005b. The structure of syntactic dependency networks: insights

from recent advances in network theory. In Problems of quantitative linguistics, L. V.

and A. G., Eds. 60–75.

Ferrer-i-Cancho, R. and Sole, R. V. 2001. The small world of human language. Pro-

ceedings of The Royal Society of London. Series B, Biological Sciences 268, 1482 (Novem-

ber), 2261–2265.

Ferrer-i-Cancho, R. and Sole, R. V. 2004. Patterns in syntactic dependency networks.

Physical Review E 69, 051915.
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Fontana, J. M. 1985. Application phrase structure and the syntax of clitics in the history

of spanish. Ph.D. thesis, University of Pennsylvania.

Fredkin, E. 1960. Trie memory. Communications of the ACM 3, 9, 490 – 499.

Fyfe, C. and Livingstone, D. 1997. Developing a community language. In ECAL97.

Brighton, UK.

Gell-Mann, M. 1992. Complexity and complex adaptive systems. In The Evolution of

Human Languages, J. A. Hawkins and M. Gell-Mann, Eds. Addison-Wesley, Reading,

MA.

Gell-Mann, M. 1995. What is complexity? Complexity 1, 1, 16–19.

Gell-Mann, M. 2005. Language and complexity. In Language Acquisition, Change and

Emergence: Essays in Evolutionary Linguistics, J. W. Minett and W. S.-Y. Wang, Eds.

City University of Hong Kong Press.

Gibson, E. and Wexler, K. 1994. Triggers. Linguistic Inquiry 25, 4, 407–454.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley.

Goldsmith, J. A. 1990. Autosegmental and metrical phonology. Blackwell, Cambridge,

MAS.

Gong, T., Ke, J., Minett, J. W., and Wang, W. S.-Y. 2004. A computational frame-

work to simulate the co-evolution of language and social structure. In Artificial Life IX.

Boston, MA, U.S.A.

Gong, T. and Wang, W. S.-Y. 2005. Computational modeling on language emergence: A

coevolution model of lexicon, syntax and social structure. Language and Linguistics 6, 1,

1–41.

Goslin, J. and Frauenfelder, U. H. 2000. A comparison of theoretical and human

syllabification. Language and Speech 44, 4, 409–436.

Greenberg, J. H. 1963. Some universals of grammar with particular reference to the

order of meaningful elements. In Universals of Language, J. H. Greenberg, Ed. MIT

Press, Cambridge, MA, 73–113.

Grierson, G. A. 1903. Upabhashar namuna. In Linguistic Survey of India, Vol V: part 1:

Indo-Aryan family, Eastern Group, Bengali and Assamese languages.



REFERENCES 251

Hare, M. and Elman, J. L. 1995. Learning and morphological change. Cognition 56, 1

(July), 61–98.

Harrison, D., Dras, M., and Kapicioglu, B. 2002. Agent-based modeling of the evo-

lution of vowel harmony. In Proceedings of North East Linguistic Society 32 (NELS32).

New York, 217–236.

Hauser, M. D. 1997. The Evolution of Communication. MIT Press/BradfordBooks.

Hauser, M. D., Chomsky, N., and Fitch, W. T. 2002. The faculty of language: What

is it, who has it, and how did it evolve? Science 298, 1569–1579.

Hawkins, J. A. 1983. Word Order Universals. Academic Press.

Hayes, B., Kirchner, R., and Steriade, D. 2004. Phonetically Based Phonology. Cam-

bridge University Press.

Hockett, C. F. and Altmann, S. A. 1968. A note on design features. In Animal com-

munications: techniques of study and results of research, T. A. Sebeok, Ed. Indiana

University Press, Bloomington, 61–72.

Holanda, A. D., Pisa, I. T., Kinouchi, O., Martinez, A. S., and Ruiz, E. E. S. 2004.

Thesaurus as a complex network. Physica A 334, 530–536.

Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. The University of

Michigan Press, Ann Arbor.

Hooper, J. 1978. Constraints on schwa-deletion in american english. In Recent Develop-

ments in Historical Linguistics, J. Fisiak, Ed. Mouton, Hague, 183–207.

Hooper, J. B. 1972. The syllable in phonological theory. Language 48, 525–540.

Hudson, R. 2006. Language Network: The New Word Grammar. Oxford University Press.

Hurford, J. 1989. Biological evolution of the saussurean sign as a component of the

language acquisition device. Lingua 77, 187–222.

Hurford, J. 1991a. The evolution of the critical period for language acquisition. Cogni-

tion 40, 3, 159–201.

Hurford, J. R. 1991b. Nativist and functional explanations in language acquisition. In

Logical Issues in language Acquisition, I. Roca, Ed. Holland Foris publications, Dor-

dretch, 85–136.

Islam, R. 1979. Upabhashatatta o bangladesher upabhasha bishleshan. Sahitya Pa-

trika 22, 1, 83–96.

Itoh, Y. and Ueda, S. 2004. The ising model for changes in word ordering rules in natural

languages. Physica D: Nonlinear Phenomena 198, 3-4 (11), 333–339.

Jim, K.-C. and Giles, C. L. 2000. Talking helps: Evolving communicating agents for the

predator-prey pursuit problem. Artificial Life 6, 3, 237–254.

Joanisse, M. F. 1999. Exploring syllable structure in connectionist networks. In Proceed-

ings of the 14th International Congress of the Phonetic Sciences (ICPhS-99). 731–734.

Joanisse, M. F. and Seidenberg, M. 1997. [i e a u] and sometimes [o]: perceptual and

computational constraints on vowel inventories. In Proceedings of the 15th Conference of

the Cognitive Science Society. Stanford, CA.



252 REFERENCES

Jurafsky, D. and Martin, J. H. 2000. Speech and Language Processing: An Introduc-

tion to Natural Language Processing, Computational Linguistics and Speech Recognition.

Prentice Hall.

Jusczyk, P. W. and Luce, P. A. 2002. Speech perception and spoken word recognition:

Past and present. Ear & Hearing 23, 2–40.

Kahn, D. 1976. Syllable-based generalizations in English phonology. Indiana Univ. Linguis-

tics Club, Bloomington, IN.

Kaira, S. 1976. Schwa-deletion in Hindi. Language forum (back volumes). Bhari publica-

tions, New Delhi, India.

Kapatsinski, V. 2006. Sound similarity relations in the mental lexicon: Modeling the

lexicon as a complex network. Speech research Lab Progress Report 27, 133 – 152.

Kaplan, R. M. and Kay, M. 1994. Regular models for phonological rule systems. Com-

putational Linguistics 20, 3, 331–378.

Ke, J. 2004. Self-organization and language evolution: System, population and individual.

Ph.D. thesis, Department of Electronic Engineering, City University of Hong Kong.
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Appendix A

Publications from the Thesis

Publications on the work of the thesis : In chronological order with the
comments within parenthesis.

Choudhury, M. and Basu, A. 2002. A rule-based schwa deletion algorithm
for Hindi. In Proceedings of the International Conference on Knowledge-
based Computer Systems (KBCS). Navi Mumbai, India, 343–353. (The
algorithm for SDH, Chapter 4)

Choudhury, M., Basu, A. and Sarkar, S. 2004. A diachronic approach
for schwa deletion in Indo-Aryan languages. In Proceedings of the Seventh
Meeting of the ACL Special Interest Group in Computational Phonology
(SIGPHON). ACL, Barcelona, Spain, 20–26. (A preliminary version of
the constrained optimization framework for SDH, Chapter 4)

Choudhury, M., Basu, A. and Sarkar, S. 2006. Multi-agent simulation
of emergence of the schwa deletion pattern in Hindi. Journal of Artificial
Societies and Social Simulation (JASSS). 9(2).
http://jasss.soc.surrey.ac.uk/9/2/2.html (MAS Model I, Chapter 5)

Choudhury, M., Alam, M., Sarkar, S. and Basu A. 2006. A rewrite
rule based model of Bangla morpho-phonological change. In Proceedings
of the International Conference on Computer Processing of Bangla (IC-
CPB). Dhaka, Bangladesh, 64–71. (Application of computational model
of language change in natural language generation, Chapter 7)
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Choudhury, M., Jalan, V., Sarkar, S. and Basu, A. 2007. Evolution,
optimization and language change: the case of Bengali verb inflections.
To be published in the Proceedings of ACL SIGMORPHON9. Prague,
Czech Republic. (MOGA Model, Chapter 7)

Other related publications : In chronological order with comments in paren-
thesis.

Choudhury, M. and Basu, A. 2002. A rule-based grapheme to phoneme
mapping for Hindi. In Abstracts of the Presentations by the Young Sci-
entists: 90th Indian Science Congress of ISCA. Bangalore, India. (Al-
gorithms for SDH, syllabification in Hindi and other related issues. The
paper won the ISCA Young Scientist Award)

Bansal, B., Choudhury, M., Ray, P. R., Sarkar, S. and Basu, A.

2004. Isolated-word error correction for partially phonemic languages
using phonetic cues. In Proceedings of the International Conference on
Knowledge-based Computer Systems (KBCS). Allied Publishers, Hyder-
abad, India, 509–519 (Application of grapheme-to-phoneme converter for
Bengali/Hindi in spell-checking.)

Bhattacharya, B., Choudhury, M., Sarkar, S. and Basu, A. 2005.
Inflectional morphology synthesis for Bengali noun, pronoun and verb sys-
tems. In Proceedings of the National Conference on Computer Processing
of Bangla (NCCPB). Dhaka, Bangladesh, 34–43. (Describes in detail the
morphological characteristics of Bengali, including verb inflections and
their synthesis.)

Choudhury, M., Sarkar, S. and Basu, A. 2005. Affects of inflectional
and derivational morphology in Bengali phonology and its implications
in speech technology. In Proceedings of the Workshop on Morphology.
Mumbai, India. (Describes the nature of schwa deletion in Bengali)

Mukhopadhyay, A., Chakraborty, S., Choudhury, M., Lahiri, A.,

Dey, S. and Basu, A. 2005. Shruti – an embedded text-to-speech
system for Indian languages. IEE Proceedings on Software Engineering,
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153, 2, 75–79. (An application of the grapheme-to–phoneme converters
for Hindi and Bengali)

Banerjee, A., Choudhury, M., Sarkar, S. and Basu, A. 2005. Learning
schwa pronounceability rules in Bengali compound words using decision
trees. In Proceedings of the Second Symposium on Indian Morphology,
Phonology and Language Engineering (SIMPLE). Mysore:CIIL, Kharag-
pur, India, 49–55. (Interaction of schwa deletion and morphology in Ben-
gali)

Choudhury, M., Mukherjee, A., Basu, A. and Ganguly, N. 2006.
Analysis and synthesis of the distribution of consonants over languages:
a complex network approach. In Proceedings of the COLING/ACL 2006
Main Conference Poster Session. ACL, Sydney, Australia, 128–135 (Mod-
eling language change in the context of sound inventories using complex
networks.)

Choudhury, M., Saraf, R., Jain, V., Sarkar, S. and Basu, A. 2007.
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Appendix C

The ITRANS Notation

The ITRANS notation has been designed to represent Indian language graphemes
in ROman script (Chopde 2001). Since Indian languages are partially phonemic
in nature, ITRANS can be used for transcribing the phonemes as well.

We provide the reference table for ITRANS and the corresponding default
phonemes for each sympol in International Phonetic Alphabet (IPA)1. The
first two columns of the table shows the graphemes of Hindi and Bengali in the
Devanagari and Bengali scripts respectively. The graphemes are arranged ac-
cording to the Indian language alphabet. The third column shows the ITRANS
options for the grapheme. Note that there are multiple possibilities for repre-
senting some graphemes. In the last column, the default pronunciation of the
graphemes in the two languages are shown in IPA.

Note that since the basic pronunciation of a is different in Bengali and Hindi,
in the phonetic representation, the phonetic value of the symbol a has to be
interpreted in the context of the language.

1http://www.arts.gla.ac.uk/IPA/
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Appendix D

Bengali Verb Morphology

Bengali is an agglutinative language, and nouns and verbs inflect for a large
number of attributes. The inflections are in the form of suffixes; suffixation
usually does not change the structure of the root. In Bengali, a verb inflects
for the following attributes.

• Tense: There are three basic tenses – past, present and future.

• Aspect: In past and present tenses, there are three aspects – simple,
continuous and perfect. In future tense, only the simple aspect is realized
by suffixation, whereas the other two are realized by auxilaries. There is
also a specific habitual marker for the past tense, which we treat as an
aspect of the past tense.

• Modality: Modality is realized by auxilaries and modal verbs. However,
the imperative mood has dedicated inflections.

• Person: For every combination of tense, aspect and mood, Bengali has
five different suffixes to mark for the person. There are three basic persons
– first, second and third. However, there are three subcases of the second
person, traditionally referred to as familiar, normal and formal. Third
person also has two subcases – honorofic or formal and non-honorofic or
normal. Nevertheless, the suffixes marking the formal cases for third and
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second persons are identical, and need not be treated separately. Thus,
we are left with five cases of persons.

• Polarity: The negative polarity is usually realized by the use of the par-
ticle “nA”. However, in the cases of present perfect and past perfect, the
negativizer is realized by the suffix “ni”.

Thus, there are 10 × 5 = 50 inflectional suffixes for the finite forms of a
verb. There are also four non-finite forms of a verb – conjunctive, conditional,
infinitive and gerund. Furthermore, the nominal form of a verb or the gerund
also takes the noun inflections. There are two emphasizer suffixes “i” (only)
and “o” (also), that can be appended at the end of any inflected or uninflected
noun, pronoun or verbs. In the two subsequent sections, we enlist the verb
forms for the verb root “kar” (to do) in SCB and Classical Bengali. The last
section discusses the morphological paradigms of Bengali verbs.

D.1 Verb Inflections in SCB

TAM, Person
Pol., 1st 2nd Fam. 2nd Norm. 2nd Form. 3rd

Pr-S. kor-i kor-ish kar-o kar-en kar-e
Pr-C. kor-Chi kor-Chish kor-Cho kor-Chen kor-Che
Pr-Pf. kor-eChi kor-eChish kor-eCho kor-eChen kor-eChe
Pa-S. kor-lAm kor-li kor-le kor-len kor-lo
Pa-C. kor-ChilAm kor-Chili kor-Chile kor-Chilen kor-Chila
Pa-Pf. kor-eChilAm kor-eChili kor-eChile kor-eChilen kor-eChilo
Pa-H. kor-tAm kor-tish kor-te kor-ten kor-to
Fut. kor-bo kor-bi kor-be kor-ben kor-be
Imp. – kar karo kor-un kor-uk
Pf-N. kor-ini kor-ishni kar-oni kar-enni kar-eni

Legends: Pol: polarity, Pr: present tense, Pa: past tense, Fut: future tense, S:
simple, C: continuous, Pf: perfect, H: habitual, Imp: Imperative, N: negative,
Fam: familiar, Norm: normal, Form: formal. Note that except for the case
of imperative mood, all other inflections are for the indicative mood. Fut. is
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for simple aspect, and Pf-N. is for the past and present tenses. ‘-’ indicates
morpheme boundary.

All the forms are in phonetic representation. Note that although the root
form is kar, and is represented as kar in orthography, in most of the cases, the
root is modified as kor, which is the reminiscent of vowel height assimilation
that took place during the evolution of these suffixes from classical Bengali
forms. The non-finite forms of the verb are mentioned below.

• Conjunctive: kor-e

• Conditional: kor-le

• Infinitive: kor-te

• Nominal forms: kar-A, kar-A-r (oblique or possesive form), kar-A-ke (ac-
cusative form), kar-A-te (locative form)

D.2 Verb Inflections in Classical Bengali

TAM, Person
Pol., 1st 2nd Norm. 2nd Form. 3rd

Pr-S. kar-i kar-a kar-ena kar-e
Pr-C. kar-iteChi kar-iteCha kar-iteChena kar-iteChe
Pr-Pf. kar-iYAChi kar-iYACha kar-iYAChena kar-iYAChe
Pa-S. kar-ilAma kar-ile kar-ilena kar-ila
Pa-C. kar-iteChilAm kar-iteChile kar-iteChilena kar-iteChila
Pa-Pf. kar-iYAChilAma kar-iYAChile kar-iYAChilena kar-iYAChila
Pa-H. kar-itAma kar-ite kar-itena kar-ita
Fut. kar-iba kar-ibA kar-ibena kar-ibe
Imp. – kar-aha kar-auna kar-auka
Pf-N. kar-i nAi kar-a nAi kar-ena nAi kar-e nAi

Legends: As above. Note that Classical Bengali makes a distinction between
four persons. The second familiar form is absent. Moreover, since the exact
pronunciations of these forms are debatable and variable over time and place,
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we have provided the orthographic forms used during the 19th century. Also
note that there was no negative marking suffix in Classical Bengali; rather the
negative particle “nAi” was used to denote negative polarity.

The non-finite forms of the verb are as follows.

• Conjunctive: kar-iYA

• Conditional: kar-ile

• Infinitive: kar-ite

• Nominal forms: kar-A, kar-ibAr (oblique or possesive form), kar-A-ke
(accusative form), kar-A-te (locative form)

D.3 Verb Paradigms in SCB

Although all the verbs in Classical Bengali inflected uniformly for all the suf-
fixes, the verb roots of SCB undergoes differential orthographic and phonolog-
ical changes during suffixation. On the basis of these changes, the verb roots
of SCB can be classified into 19 morphological paradigms. In fact, the verbs
having similar syllable structure belong to the same paradigm.

We can classify a verb root into a paradigm based on the final and penul-
timate vowels (if any) in its orthographic form. The classes for the roots with
at least two vowels are shown below. (All the roots cited as examples are in
orthographic forms.)

Penultimate Final vowel(s)
vowel a A oYA

a kara (do) karA (do, caus.) saoYA (bear, caus.)
A jAna (know) jAnA (inform) khAoYA (feed)
i likha (write) ni∼NrA (twist) –
e dekha (see) dekhA (show) deoYA (give, caus.)
o tola (pick) tolA (pick, caus.) so;oYA (lie, caus.)

u/au – ghumA (sleep) –
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‘–’ indicates that there is no known verb root pertaining to the paradigm.
Apart from the 15 paradigms shown above, there are monosyllabic verb roots
that can be classified into four paradigms based on the vowel. The representa-
tive roots for these paradigms are sa (bear), khA (eat), de (give), and so (lie
down). There are also a few irregular verbs, which cannot be categorized in
any of the 19-classes. These are ha (happen), jA (go) and Asa (come).





Appendix E

Data related to the MOGA

Models

E.1 The Real Dialects

The inflected forms for the verb root kar is presented below for three modern
dialects of Bengali along with the corresponding classical forms. Legends: Pr –
present, Pa – Past, S – Simple, C – Continuous, P – Perfect, H – Habitual, 1 –
first person, 2 – second normal person, 3 – third person, F – formal (in second
and third persons)

Attributes Classical (Λ0) SCB ACB Sylheti

PrS1 kari kori kori kori
PrS2 kara karo kara kara
PrS3 kare kare kare kare
PrSF karen karen karen karoin

PrC1 kariteChi korChi kartAsi koirtrAm
PrC2 kariteCha korCho kartAsa koirtrAe
PrC3 kariteChe korChe kartAse koirtAse
PrCF kariteChen korChen kartAsen koirtAsoin
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Attributes Classical (Λ0) SCB ACB Sylheti

PrP1 kariAChi koreChi korsi koirsi
PrP2 kariACha koreCho karsa koirsa
PrP3 kariAChe koreChe karse koirse
PrPF kariAChen koreChen karsen koirsoin

PaS1 karilAm korlAm karlAm koirlAm
PaS2 karile korle karlA koirlAe
PaS3 karila korlo karla koirlA
PaSF karilen korlen karlen koirlAin

PaC1 kariteChilAm korChilAm kartAslAm koirtesilAm
PaC2 kariteChile korChile kartAslA koirtesilAe
PaC3 kariteChila korChilo kartAsla koirtesilA
PaCF kariteChilen korChilen kartAslen koirtesilAin

PaP1 kariAChilAm koreChilAm korsilAm koirsilAm
PaP2 kariAChile koreChile korsilA koirsilAe
PaP3 kariAChila koreChilo korsila koirsilA
PaPF kariAChilen koreChilen korsilen koirsilAin

PaH1 karitAm kortAm kartAm koirtAm
PaH2 karite korte kartA koirtAe
PaH3 karita korto karta koirtA
PaHF kariten korten karten koirtAin

E.2 Emergent Dialects

In this section, we provide examples of emergent dialects for the different
MOGA models. Two sets of examples are selected for every model: the set
A that best resembles the real dialects in terms of simp metric, and the set of
B that seems linguistically implausible or are not known to exist. The fitness
values for the dialects are also mentioned.
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Note that for Models 1 to 4, the lexicon of each dialect consists of 18 forms,
which are, in sequence, the corresponding forms for the following classical Ben-
gali words.

kari, kara, kare, kariteChi, kariteCha, kariteChe, kariAChi, kari-
ACha, kariAChe, karilAm, karile, karila, kariteChilAm, kariteChile,
kariteChila, kariAChilAm, kariAChile, kariAChila

The lexicon for Models 5 and 6 consists of 28 forms that are counterparts
of the following Classical Bengali words (again, in sequence).

kari, kara, kare, karen, kariteChi, kariteCha, kariteChe, kariteChen,
kariAChi, kariACha, kariAChe, kariAChen, karilAm, karile, karila,
karilen, kariteChilAm, kariteChile, kariteChila, kariteChilen, kari-
AChilAm, kariAChile, kariAChila, kariAChilen, karitAm, karite,
karita, kariten

Also note that in all the experiments, we do not distinguish between the
phonemes /Ch/ and /s/. This is because, a functional explanation of the change
from /Ch/ (an affricate) to /s/ (a fricative) is based on the minimization of the
number of gestures during articulation, modeling which is beyond the scope of
this work.

Λ1, Λ2 and Λ3 stand for the lexica of SCB, ACB and Sylheti respectively.

E.2.1 MOGA Model 1

Set A

Example A1.1
Closest to SCB, simp(Λ1,Λ) = 2.44
fe(Λ) = 104, and fd(Λ) = 57.1

kor karo krae koreCh koreCho kore karACh karACho karAe ko-
rAm karle karlo koreChAm koreChle koreChlo karAChAm karAChle
karAChlo



284 Data related to the MOGA Models

Example A1.2
Closest to ACB, simp(Λ2,Λ) = 2.61
fe(Λ) = 116, and fd(Λ) = 47.6

kar kara krae karetCh karetCha karete korChA korACha korAe karAlm
karle karla karetChAlm karetChle karetChla korChAlm korChAle ko-
rChAla

Example A1.3
Closest to Sylheti, simp(Λ3,Λ) = 3.72
fe(Λ) = 141, and fd(Λ) = 38.1

koir kara krae koirteChi koirtChea koirteChe karChAi karACha karAChe
koirAlm koirle koira koirteChiAlm koirteChile koirteChia karChA-
iAlm karChAile karChAia

Set B

Example B1.1
fe(Λ) = 80, and fd(Λ) = 418.9

kor kara kare kore korea kore kor kora kore korAm kore kora koreAm
kore korea korAm kore kora

Example B1.2
fe(Λ) = 95, and fd(Λ) = 65.2

kor kara kar kore korea kore karA karAa karA korAlm korl korla
koreAlm korel korela karAlm karAl karAla

Example B1.3
fe(Λ) = 141, and fd(Λ) = 38.1

kori kara krae koirteChi koirtChea koirteChe karChAi karACha karAChe
koirAlm koirle koira koirteChiAlm koirteChile koirteChia kraChA-
iam karChAile karChAia
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E.2.2 MOGA Model 2

Set A

Example A2.1
Closest to SCB, simp(Λ1,Λ) = 2.78
fe(Λ) = 102, and fd(Λ) = 60.4

kor kara kare koreCh koreCha koreChe karA karACha karAChe ko-
rAm korle korla koreChAm koreChle koreChla karAm karAle karAla

Example A2.2
Closest to ACB, simp(Λ2,Λ) = 3.83
fe(Λ) = 128, and fd(Λ) = 43.2

kor karo kare karteCh karteo karteChe koriCh koriCho koriAe ko-
rilAm korile korio karteChilAm karteChile karteChio koriChilAm
koriChile koriChio

Example A2.3
Closest to Sylheti, simp(Λ3,Λ) = 3.72
fe(Λ) = 111, and fd(Λ) = 51.7

kor kara kare korteCh korteCha korte karChA karACha karAe ko-
rAm korle korla korteChAm korteChle korteChla karChAm karChAle
karChAla

Set B

Example B2.1
fe(Λ) = 99, and fd(Λ) = 62.9

kor kara kare korte kortea korte karA karAa karAe korAm korle
korla korteAm kortele kortela karAAm karAle karAla
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Example B2.2
fe(Λ) = 96, and fd(Λ) = 70.6

kor kara kare kore korea kore karA karAa karAe korlAm korle korla
korelAm korele korela karAlAm karAle karAla

Example B2.3
fe(Λ) = 145, and fd(Λ) = 38.0

kor karo kare koritChe korietCho korietChe kairACh kairACho kairAe
koriAm korile korilo koritCheiAm koritCheile koritCheilo kairAChiAm
kairAChile kairAChilo

E.2.3 MOGA Model 3

Set A

Example A3.1
Closest to SCB, simp(Λ1,Λ) = 1.83
fe(Λ) = 108, fd(Λ) = 59.1 and fr(Λ) = −0.674

kor karo kare koreCh koreCho koreChe karACh karACho karAChe
korlAm korle korlo koreChlAm koreChle koreChlo karAChlAm karAChle
karAChlo

Example A3.2
Closest to Sylheti, simp(Λ2,Λ) = 2.78, simp(Λ3,Λ) = 2.56
fe(Λ) = 132, fd(Λ) = 47.5 and fr(Λ) = −0.808

kari kara kare kairtei kairteCha kairteChe koirChi koirCha koir-
ChAe karilAm karile karila kairteilAm kairteile kairteila koirChilAm
koirChile koirChila
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Set B

Example B3.1
fe(Λ) = 87, fd(Λ) = 118.4, fr(Λ) = −0.389

kor kara kare kore korea kore kar kara kare korAm korle korla ko-
reAm korele korela karAm karle karla

Example B3.2
fe(Λ) = 98, fd(Λ) = 63.5, fr(Λ) = −0.427

kor kara kare kore koreCha koreChe karACh karACha karAe korAm
korle korla koreAm korele korela karAChAm karAChle karAChla

Example B3.3
fe(Λ) = 124, fd(Λ) = 51.1, fr(Λ) = −0.810

kar kara kare kairt kairta kairte karA karAa karAe korilAm korile
korila kairtilAm kairtile kairtila karAilAm karAile karAila

E.2.4 MOGA Model 4

Set A

Example A4.1
Closest to SCB, simp(Λ1,Λ) = 2.44, simp(Λ2,Λ) = 3.16, simp(Λ3,Λ) = 3.61
fe(Λ) = 124, and fd(Λ) = 45.5

kor kara kare korteCh kortea korteChe karChA karACha karAChe
korilAm korile korila korteChilAm korteChile korteChila karChAilAm
karChAile karChAila
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Set B

Example B4.1
fe(Λ) = 109, and fd(Λ) = 61.3

kori kara kare kairti kairta kairte kari kara kare korim korile korial
kairtim kairtile kairtial karim karile karial

Example B4.2
fe(Λ) = 131, and fd(Λ) = 42.9

kor kar kare koirte koirteCh koirteChe karACh karACh karAChe ko-
rilAm korile koril koirteilAm koirteile koirteil karAChilAm karAChile
karAChil

Example B4.3
fe(Λ) = 143, and fd(Λ) = 39.3

kor kara kare koirte koirteCha koirte koriACh koriChAa koriAe kar-
liAm karlie karlia koirteilAm koirteile koirteila koriAChilAm kori-
AChile koriAChila

E.2.5 MOGA Model 5

Set A

Example A5.1
Closest to SCB, simp(Λ1,Λ) = 1.96
fe(Λ) = 192, and fd(Λ) = 89.4

kori kora kore koren karChi karCha karChe karChen koriChi ko-
riCha koriChAe koriChAen korilAm korile korila korilen karChilAm
karChile karChila karChilen koriChilAm koriChile koriChila koriChilen
kartAm karte karta karten
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Example A5.2
Closest to ACB, simp(Λ2,Λ) = 2.43
fe(Λ) = 181, and fd(Λ) = 94.6

kor kora kore koren karte karteCha karteChe karteChen karACh
karACha karChAe karChAen korlAm korle korla korlen kartelAm
kartele kartela kartelen karAChlAm karAChle karAChla karAChlen
kartAm karte karta karten

Example A5.3
Closest to Sylheti, simp(Λ3,Λ) = 4.07
fe(Λ) = 209, and fd(Λ) = 80.5

koir kora kore koren kairChi kairCha kairChe kairChen koriAi ko-
riChAa koriAChe koriAChen korilAm korile korila korilen kairChilAm
kairChile kairChila kairChilen koriAilAm koriAile koriAila koriAilen
kairtAm kairte kairta kairten

Set B

Example B5.1
fe(Λ) = 228, and fd(Λ) = 75.9

koir kora kore koren kairteChi kairteCha kairteChe kairteChen ko-
riAi koriChAa koriAChe koriAChen korliAm korlie korlia korlien
kairteChilAm kairteChile kairteChila kairteChilen koriAilAm kori-
Aile koriAila koriAilen kairtAm kairte kairta kairten

Example B5.2
fe(Λ) = 163, and fd(Λ) = 118.5

kari kara kare karen kori kora kore koren karAi karAa karAe karAen
karlAm karle karla karlen korlAm korle korla korlen karAlAm karAle
karAla karAlen kortAm korte korta korten
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E.2.6 MOGA Model 6

Set A

Example A6.1
Closest to SCB, simp(Λ1,Λ) = 1.21
fe(Λ) = 165, and fd(Λ) = 114.3

kor kora kore koren karChi karCha karChe karChen korChi kor-
Cha korChe korChen korlAm korle korla korlen karChilAm karChile
karChila karChilen korChilAm korChile korChila korChilen kartAm
karte karta karten

Example A6.2
Closest to ACB, simp(Λ2,Λ) = 1.71
fe(Λ) = 191, and fd(Λ) = 89.7

kori kora kore koren karteChi karteCha karteChe karteChen koriChi
koriCha koriChe koriChen karlAm karle karla karlen karteChilAm
karteChile karteChila karteChilen koriChilAm koriChile koriChila
koriChilen kartAm karte karta karten

Example A6.3
Closest to Sylheti, simp(Λ3,Λ) = 2.46
fe(Λ) = 224, and fd(Λ) = 76.8

kori kora korA koren kairteChi kairteCha kairteChA kairteChen ko-
riChAi koriACha koriAChA koriAChen kairlAm kairlA kairla kairlen
kairteChilAm kairteChilA kairteChila kairteChilen koriChAilAm ko-
riChAilA koriChAila koriChAilen kairtAm kairtA kairta kairten

Set B

Example B6.1
fe(Λ) = 160, and fd(Λ) = 128.9



E.3 Map Showing the Geographical Locations of the Real Dialects 291

kar kora kore koren kari kara kare karen karAi karAa karAe karAen
karlAm karle karla karlen karilAm karile karila karilen karAilAm
karAile karAila karAilen kartAm karte karta karten

Example B6.2
fe(Λ) = 157, and fd(Λ) = 206.3

kar kara kare karen kartA kartAa kartAe kartAen karA karAa karAe
karAen karA karle karla karlen kartAA kartAle kartAla kartAlen
karAA karAle karAla karAlen kartA karte karta karten

Example B6.3
fe(Λ) = 197, and fd(Λ) = 85.9

kari kara karA karen korteChi korteCha korteChA korteChen kariChi
kariCha kariChA kariChen karliem karliA karlia karlien korteChilem
korteChilA korteChila korteChilen kariChilem kariChilA kariChila
kariChilen kortem kortA korta korten

E.3 Map Showing the Geographical Locations of the

Real Dialects
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concatenative speech synthesis, 111
connectionist model, 58
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D

deletion, 199
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drift, 27
Dutch, 29
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E
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expectation maximization, 59
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F

finite state transducer, 97
fitness function, 202

Fokker-Plank equation, 49
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Functional Optimality Theory, 73
functional phonology, 69
functionalism, 5, 25

G

Galician, 48
gene, 203, 204
generative phonology, 140
genetic algorithm, 53, 202
genotype, 202, 204
German, 20
grapheme, 73
grapheme-to-phoneme converter, 69, 74
Great vowel shift, 20

H

Hamiltonian, 51
hierarchical abstraction methodology,

193
High Germanic consonant shift, 20
Hindi, 20, 23, 28, 136
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hypercorrection, 21

I

I-language, 4, 7
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imitation game, 103
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initiator, 60
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Japanese, 6
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Kronecker’s delta, 228

L

language change, 2, 3
paradox of, 5
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learning, 58, 117

as mental state change, 106
by rule generalization, 59

learning phase, 104
legality principle, 75
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lexical distinction, 191
lexicon, 120
linguistic agent, 57
linguistic junk, 231
logistic curve, 22

M

macroscopic model, 55
Magadhi, 34
Magadhi-apabhramsha, 34
Maori, 56
meme, 233
memoryless agent, 118
memoryless learner, 59

mental lexicon, 121
mental model, 58
metathesis, 26, 199
microscopic model, 55
Middle Indo-Aryan, 30
minimum edit distance, 114
model, 61
morpheme-sequential constraint, 75
morphological analyzer, 35, 96
morphological generator, 35, 233
multi-objective genetic algorithm, 53,

203
mutation, 199
mutation (in GA), 203

N

nativism, 4
natural language generator, 233
natural selection, 5
noisy channel, 104, 150
non-deterministic finite state automa-

ton, 155
normalized lexicon, 121
nucleus, 75, 111

O

obverter, 59
Ohala’s rule, 30
Ohala, John J., 27
Ohala, Manjari, 29
Old English, 64
onset, 75
onset maximization, 77
optimal syllabification

uniqueness, 81



INDEX 295

optimality theory, 140
optimization, 52
Oriya, 136

P

P-map, 85
Pali, 20
Pareto-optimal front, 202, 203
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Pearson correlation coefficient, 214
perception, 57, 112
perceptual contrast, 25
phase transition, 22
phase-transition, 192
phenotype, 202, 203
phoneme, 73
phonetically-based phonology, 102, 133
phonological change, 19
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phonology

evolutionary, 27
phonetically based, 26

phonotactic constraint, 30, 75
phylogenetic tree, 40
population (in GA), 202
Portuguese, 48
Prakrit, 20, 36, 198
pronunciation model, 113
Punjabi, 23, 136

Q

Quecha, 47
question answering system, 233

R

receiver, 60

reconstruction, 40
reductionism, 79
redundancy, 231
regularity, 204
rule-based system, 58
Russian, 29

S

S-shaped curve, 126, 192
Sadhubhasha, 34
Sanskrit, 20, 24, 122, 198
Saussurean convention, 151
schwa, 29, 73
schwa deletion, 13, 29

in Hindi, 69
pattern, 69

Scottish Gaelic, 47
self-organization, 5
shift, 20, 33
signal, 104, 109
similarity-key, 153
simulation

round, 119
setup, 119

simulation framework, 102
situatedness, 56
sonority cycle, 76
sonority scale, 76, 111
sound change, 19

directionality of, 21
predictability of, 132
regularity of, 21
S-shaped dynamics of, 22

Soundex, 153
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Spanish, 22
spell-checking, 153
sporadic change, 21
stable attractor, 72
Standard Colloquial Bengali, 34
stops, 111
structuredness, 56
supra-segmental features, 107
surface form, 73
Sylheti, 198
syllabification, 75

optimal syllabification, 78
syllable, 75, 112
syllable minimization, 32
symbolic model, 58
synchronic evidence, 23
synchronic linguistics, 3
synchronic variation, 130

T

text-to-speech system, 70
Tikopia, 56
trie, 159
trigger learning algorithm, 59, 117

U

underlying form, 73
unigram frequency, 164
Universal grammar, 4
Universal Levenshtein Automaton, 158
utterance selection model, 28, 49

V

variation, 2
diachronic, 2

synchronic, 2
Vedic Sanskrit, 34, 136
vowel, 73
vowel height assimilation, 199, 211
vowel inventory, 99

W

Welsh, 47
word, 106

orthographic, 73
phonetic, 73
realization of, 106

Z

Zipf law, 51
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