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Abstract

We describe a model of grammar learning in which
all linguistic units are grounded in rich conceptual rep-
resentations, and larger grammatical constructions in-
volve relational mappings between form and meaning
that are built up from smaller (e.g., lexical) construc-
tions. The algorithm we describe for acquiring these
grammatical constructions consists of three separate but
interacting processes: ananalysisprocedure that uses
the current set of constructions to identify mappings be-
tween an utterance and its accompanying situation; a
hypothesisprocedure that creates new constructions to
account for remaining correlations between these two
domains; andreorganizationprocesses that generalize
existing constructions on the basis of similarity and co-
occurrence. The algorithm is thus grounded not only in
the twin poles of form and meaning but also, more im-
portantly, in the relational mappings between the two.

Introduction
Language is often branded as a prime example of the hu-
man capacity for abstract symbol manipulation, with formal
approaches to syntax in the forefront. Treating units of lan-
guage (typically words or parts of speech) as autonomous
and disembodied – that is, disregarding any conceptual ba-
sis or meaning with which they may be associated – has
yielded notable success in speech recognition and parsing
technology. As yet, however, this approach has made com-
paratively little headway toward effective natural language
understanding and learning systems.

This disparity is readily explained within the cognitive
linguistic tradition, which views linguistic knowledge at all
levels as consisting of mappings between the domains of
form and meaning (Langacker 1991), where form typically
refers to the speech or text stream and meaning refers to a
rich conceptual repertoire. Language use is therefore bipo-
lar, and linguistic representations are inherently grounded by
way of the meaning pole.

Meaning-free formal approaches to language retain an im-
portant advantage, however, in that they are amenable to
corpus-based techniques. While not grounded in concep-
tual structure, the sophisticated methods computational lin-
guists have developed for discovering statistical regularities
are nevertheless grounded in real linguistic data. In the terms
adopted here, they have focused on grounding the form pole.

In this paper, we describe an approach to language learn-
ing in which linguistic representations are grounded both in
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the conceptual world of the learning agent and in the statis-
tical properties of the data to which it is exposed. Although
models along these lines have previously been proposed for
learning individual words, such as terms for spatial relations,
objects and actions (Regier 1996; Roy & Pentland 1998;
Bailey 1997; Siskind 1997), we concentrate here on the ac-
quisition of larger grammatical constructions that can like-
wise be viewed as mappings between form and meaning.

We take as both inspiration and constraint the kinds of
constructions observed in studies of child language acquisi-
tion: such studies provide valuable clues from the only nat-
ural exemplar of the learning process in question, as well
as a standard by which we restrict our domain of inquiry.
Although we believe that the acquisition of the more com-
plex constructions found in adult language follows a similar
process, the key aspects of the learning process are easier to
unravel and illustrate at the stage of children’s earliest word
combinations. In this paper, we use acquisition of some sim-
ple English constructions as a case study, though our claims
are meant to apply crosslinguistically.

We first describe a number of assumptions we believe ap-
ply to language learning and use in general, and then discuss
some of the complexities introduced with grammatical con-
structions; these larger constructions usually involve multi-
ple entities in both form (e.g., multiple words and/or phono-
logical units) and meaning (multiple participants in a scene).
We then present an algorithm for learning such construc-
tions, using data from child-language studies as illustration.
Finally, we discuss some of the broader implications of the
model for language learning and use.

Prerequisites: Making Sense of the World
Our model of grammar learning makes several crucial as-
sumptions that acknowledge the significant prior knowledge
the language learner brings to the task. Above all, acquir-
ing grammatical constructions depends on largely the same
skills needed for acquiring ontological distinctions: the abil-
ity to form representations capturing regularities in the in-
put, and to use these representations to make sense of sub-
sequent stimuli. Learning ontological and linguistic knowl-
edge is uniform in this respect; the former involves regular-
ities within the conceptual domain, while the latter involves
regularities across the domains of form and meaning.

Prelinguistic Representations
Much of the difficulty in formulating language acquisition
in computational terms is representational: infants inhabit
a dynamic world with many continuous percepts, and how
they represent and process the fluid sensations that make up



their experiences remains poorly understood. Well before
the first recognizable words appear, however, a substantial
repertoire of concepts corresponding to people, objects, set-
tings and actions will have emerged from the chaos as the
beginnings of a stable ontology.

The acquisition of these concepts from natural or natu-
ralistic input has been addressed by models in probabilistic,
connectionist, clustering and logical frameworks.1 For our
current spotlight on the acquisition of grammatical struc-
tures, we require only that conceptual representations ex-
hibit the kinds of category and similarity effects known to
be pervasive in human cognition (Lakoff 1987). That is,
concepts should cluster into categories with radial structure,
preferably with graded category membership. Representa-
tions should also facilitate the identification of similar con-
cepts and provide some basis for generalization.

An important additional requirement comes from the as-
sumption that many early concepts involve multiple enti-
ties interacting within the context of some unified event
(Tomasello 1992). Prelinguistic children are competent
event participants who have accumulated structured knowl-
edge about the roles involved in different events and the
kinds of entities likely to fill them. Again, although the for-
mation of such concepts is not our current focus, we assume
that biologically grounded processes such as those described
in the companion paper give rise to frame-based represen-
tations that capture the crucial relational structure of many
sensorimotor actions and events. Similar processes should
apply to conceptual knowledge of all kinds: while senso-
rimotor concepts presumably dominate the earliest stages
of concept formation, aspects of the surrounding social and
cultural context are also firmly in place prelinguistically;
frame-based social knowledge seems to underlie children’s
early grasp of basic interaction (e.g., turn-taking), as well as
more cultural frames associated with, for example, meals,
play and clothing.

Frames may be expressed using simple role-filler nota-
tion, e.g., throw [Thrower = Human. Throwee = Object.],
for an action-specificthrow frame with aHuman thrower
acting on anObject throwee. It will also be convenient
to represent frames in terms of individual role bindings:
Throw.thrower:Human andThrow.throwee:Object . Note that
although these representations highlight relational structure
and obscure lower-level features of the underlying concepts,
both aspects of prelinguistic knowledge will be crucial to
our approach to language learning.

Linguistic Units as Cross-Domain Correlations

Linguistic units are based on the same kinds of correlations
as those described above, where one domain happens to be
the acoustic signal in the learner’s environment. The other
domain ranges over the entire conceptual ontology, from

1Typically, input data corresponding to sensorimotor input is
described using a set of continuous and/or discrete features, and
standard machine learning techniques are used to acquire cate-
gories based on supervised or unsupervised training. See (Bailey
1997; Roy & Pentland 1998), as well as references in the compan-
ion paper (Maia & Chang 2001).

simple representations of people and objects to much more
complex actions and interactions whose physical referents
may be more transient and difficult to identify.

Not surprisingly, early words behave much like other cat-
egories, in both form and meaning poles.2 Lexical items are
initially tightly coupled with the specific events, contexts
and even purposes with which they have co-occurred. They
are also subject to polysemy effects, since the same form
may be encountered in multiple distinct (though possibly re-
lated) contexts, which may be diverse enough to resist a sin-
gle generalization. The wordup, for example, may initially
have several distinct uses: as a request to be picked up; as
a comment on an upward movement; as a remark about a
highly placed item; etc. (Bloom 1973).

As this example makes clear, children in the one-word
stage have already acquired a number of primitive speech
acts – remarkably enough, single words (often in conjunc-
tion with intonational cues) seem sufficient for expressing
toddlers’ requests, comments, refusals and even queries. It
is important, however, to distinguish such pragmatic sophis-
tication from the form-meaning associations we address in
this paper; despite their initial context-bound nature, most
word meanings eventually become generalized toward rep-
resentations that are neutral with respect to speech act.

Though less is known about children’s early language
comprehension abilities, general pragmatic skills play a sim-
ilarly dominant role early on, with simple lexical associa-
tions supplementing the complex reasoning children have
developed to behave successfully in social situations. As
the language learner amasses an increasing collection of rel-
atively stable form-meaning pairs, however, the linguistic
cues become better correlated with the environment and ac-
cordingly more informative.

To a large extent, we can characterize adult language in a
similar vein: mature users of language also rely on relatively
impoverished form cues that, in combination with extensive
pragmatic reasoning, evoke vastly more complex conceptual
structures. The larger theoretical framework in which the
current work is situated takes a simulation-based approach
to language understanding (Narayanan 1997; Bergen, Chang
& Paskin, to appear). Under such an approach, linguistic
constructions serve as a bridge between utterances and ac-
tive, embodied representations (see also submission by Feld-
man to this symposium). In other words, understanding an
utterance involves using constructional mappings between
form and meaning to specify parameters for a simulation,
and the inverse mapping holds for language production.

These claims are relatively uninformative in the case of
single-word constructions, but place strong requirements on
how larger constructions are represented. We now discuss
some of these representational complexities, before address-
ing how such constructions are learned.

2Some researchers have modeled the acquisition of word form
categories, using data from the acoustic domain (Brent 1999). This
issue, and that of how children learn to correlate articulatory ges-
tures with auditory signals, will not be discussed here; discovering
these regularities requires the same ability to detect intra- and inter-
domain regularities assumed in the previous section.



Grammatical Constructions
We base our representations of grammatical knowledge on
ideas from Construction Grammar (Goldberg 1995) and
Cognitive Grammar (Langacker 1991). In these approaches,
larger phrasal and clausal units are, like lexical construc-
tions, pairings of form and meaning. A key observation in
the Construction Grammar tradition is that the meaning of
a sentence may not be strictly predictable from the meaning
of its parts; the syntactic pattern itself may also contribute a
particular conceptual framing. For example, theCaused-
Motion construction underlyingPat sneezed the napkin off
the tableimposes a causative reading on the typically non-
causative verbsneeze, and the need for an agentive recipient
in theDitransitive construction rendersHarry kicked the
door the ballsomewhat anomalous.

On this account, syntactic patterns are inextricably linked
with meaning, and grammaticality judgments are rightly in-
fluenced by semantic and pragmatic factors. That is, the in-
terpretation and acceptability of a particular utterance de-
pends not only on well-formedness conditions but also on
the structure of the language user’s conceptual ontology and
on the situational and linguistic context.

The main representational complexity introduced with
these multi-word constructions is the possibility of struc-
ture in the form pole. That is, although single words can
evoke complex frames with multiple participant roles (e.g.,
bye-bye, baseball), the actual mapping between the form and
meaning pole is necessarily straightforward. With multiple
form units available, however, additional structures arise,
both within the form pole itself and, more significantly, in
the relation between the form and meaning poles.

In addition to the sound or stress patterns of individual
words, the form pole includes intonational contours, mor-
phological inflections and word order. As with single words,
the meaning pole encompasses the much larger set of frame-
based conceptual knowledge. The constructional mapping
between the two domains typically consists of a set of form
relations (such as word order) corresponding to a set of
meaning relations (in the form of frame bindings). Fig-

constructional

HROWT

ALLBHE-T

MEANING

SpeakerI

FORM

I

m
eaningfo

rm

m
eaningfo

rm

fo
rm

m
eaning

m
eaningfo

rm

Throw

HROW-T TRANSITIVE

throw
throwee

thrower

Ballthe ball

t1 t2 t3

Figure 1: A constructional analysis of the sentence,I throw
the ball, showing elements of form on the left, elements of
meaning on the right and constructions linking the two do-
mains in the center. We assume a verb-specificThrow-
Transitive construction, as well as some lexical construc-
tions that serve as its constituents; see text for details.

ure 1 gives an iconic representation of some of the possi-
ble constructions involved in an analysis ofI throw the ball.

The lexical constructions forI, throw and the-ball3

all have simple poles of both form and meaning. But be-
sides the individual words and concepts involved in the ut-
terance, we have a number of word order relationships (not
explicitly represented in the diagram) that can be detected in
the form domain, and bindings between the roles associated
with Throw and other semantic entities (as denoted by the
double-headed arrows within the meaning domain). Finally,
the larger clausal construction (in this case, a verb-specific
one) has constituent constructions, each of which is filled by
a different lexical construction.4

A more formal representation of theThrow-
Transitive construction is given in Figure 2. Further
details about the formalism employed here can be found
in Bergen, Chang & Paskin (to appear). For our current
purposes, it is sufficient to note that this representation
captures the constituent constructions, as well as constraints
on its formal, semantic and constructional elements. Each
constituent has an alias used locally to refer to it, and
subscriptsf andm are used to denote the constituent’s form
and meaning poles, respectively. A designation constraint
specifies a meaning type for the overall construction.

construction Throw-Transitive

constituents:
construct t1 of meaning type Human
construct t2 of type Throw

construct t3 of meaning type Object
formal constraints:

t1f before t2f
t2f before t3f

semantic constraints:
t2m.thrower ! t1m
t2m.throwee ! t3m

designates t2m

Figure 2: Formal representation of theThrow-
Transitive construction, with separate blocks listing
constituent constructions, formal constraints (e.g., word
order) and semantic constraints (role bindings).

Although this brief discussion necessarily fails to do jus-
tice to Construction Grammar and related work, we hope
that it nevertheless manages to convey the essential repre-
sentational demands on the structures to be learned.

Learning Constructions
Given the nature of constructions – mappings linking rela-
tions in form and meaning – it is clear that the simple clas-
sification techniques used in single-word learning will not

3The definite determinertheexplicitly depends on a representa-
tion of the situational and discourse context that supports reference
resolution. For simplicity, we will ignore the internal structure of
“the ball” and treat it as an unstructured unit.

4This example, like the rest of those in the paper, is based on ut-
terances from the CHILDES corpus (MacWhinney 1991) of child-
language interaction. Note that the earliest constructions children
learn seem to be verb-specific, but at later stages of development
this utterance might be seen as an instance of a more general tran-
sitive construction (Tomasello 1992).



suffice. In this section we present an algorithm for acquiring
grammatical constructions on the basis of examples, focus-
ing on the earliest multi-word constructions. In accord with
our discussion of conceptual prerequisites, a training exam-
ple is taken to consist of an utterance paired with a represen-
tation of a situation, where the former is a sequence of famil-
iar and novel forms, and the latter a set of conceptual entities
and role bindings representing the corresponding scene.

Our approach rests on three separate but interacting pro-
cedures, shown in Figures 3, 4 and 5. In the broadest terms,
we assume that the learning agent expects correlations be-
tween what is heard and what is perceived. Some of these
correlations have already been encoded and thus accounted
for by previously learned constructions; the tendency to try
to account for the remaining ones leads to the formation of
new constructions. In other words, what is learned depends
directly on what remains to be explained.

The identification of the mappings between an utterance
and a situation that are predicted by known constructions can
be seen as a precursor to language comprehension, in which
the same mappings actively evoke meanings not present in
the situation. Both require the learner to have ananalysis
procedure that determines which constructions are poten-
tially relevant, given the utterance, and, by checking their
constraints in context, finds the best-fitting subset of those.

Once the predictable mappings have been explained away,
the learner must have ahypothesisprocedure for determin-
ing which new mappings may best account for new data.
The mappings we target here are, as described in the previ-
ous section, relational. It is crucial to note that a relational
mapping must hold across arguments that are themselves
constructionally correlated. That is, mappings between ar-
guments must be in place before higher-order mappings can
be acquired. Thus the primary candidates for relational map-
pings will be relations over elements whose form-meaning
mapping has already been established. This requirement
may also be viewed as narrowing the search space to those
relations that are deemedrelevantto the current situation,
as indicated by their connection to already recognized forms
and their mapped meanings.

But structure hypothesis is not the only way construc-
tions can arise. The same kinds of generalization that we
assume for conceptual and single-word learning can also ap-
ply to constructions. Generalizations driven in a bottom-up
fashion by similar or co-occurring constructions lead to the
reorganization of the set of known constructions (orcon-
structicon). We extend previous work using Bayesian model
merging as the basis for both types of generalization (Stol-
cke 1994) to handle relational structures.

Details of each procedure are best illustrated by exam-
ple. Consider the utteranceU1 = “you throw a ball” spo-
ken to a child throwing a ball. The situationS consists of
entitiesSe and relationsSr; the latter includes role bind-
ings between pairs of entities, as well as attributes of in-
dividual entities. In this case,Se includes the child, the
thrown ball and the throwing action, as well as poten-
tially many other entities, such as other objects in the im-
mediate context or the parent making the statement:Se
= fSelf,Ball,Block,Throw,Mother,. . .g. Relational bindings

include those encoded by theThrow frame, as well as
other properties and relations:Sr = fThrow.thrower:Self,
Throw.throwee:Ball, Ball.Color:Yellow, . . .g.

In the following sections we describe what the learner
might do upon encountering this example, given an
existing set of constructionsC that has lexical en-
tries for ball,throw,block,you,she, etc., as well as
a two-word throw-ball construction associating the
before(throw,ball) word-order constraint with the
binding ofBall to thethrowee role of theThrow frame.

Language analysis
Given this information, the analysis algorithm in Fig-
ure 3 first extracts the setFknown = fyou ,throw ,ball g,
which serves to cue constructions that have any of
these units in the form pole. In this case,Ccued =
fyou,throw,ball,throw-ballg. Next, the constraints
specified by these constructions must be matched against the
input utterance and situation. The form constraints for all
the lexical constructions are trivially satisfied, and in this
case each also happens to map to a meaning element present
in S.5 Checking the form and meaning constraints of the
throw-ball construction is only slightly less trivial: all
relations of interest are directly available in the input utter-
ance and situation.6

Analyze utterance . Given an utterance U in situation
S and current set of constructions C, produce the best-
fitting analysis A:

1. Extract the set Fknown of familiar form units from U ,
and use them to cue the set Ccued of constructions.

2. Find the best-fitting subset CA of Ccued for utterance
U in situation S. Let FA be the set of form units
and relations in U used in CA, and MA be the set of
meaning elements and bindings in S accounted for
by CA. Then A = < CA; FA;MA >. A has an asso-
ciated cost CostA providing a quantitative measure
of how well A accounts for U in S.

3. Reward constructions in CA; penalize cued but un-
used constructions, i.e., those in Ccued n CA.

Figure 3: Construction analysis.

In the eventual best-fitting analysisA, the con-
structions used areCA =fyou,throw,ball,throw-
ballg, which cover the forms and form relations in
FA = fyou,throw,ball,before(throw,ball) g and
map the meanings and meaning relations inMA =
fSelf,Throw,Ball,Throw.throwee:Ballg. (Remaining unused
in this analysis is the forma.)

5We assume theyou construction is a context-dependent con-
struction that in this situation maps to the child (Self).

6Many complications arise in adult language – category con-
straints on roles may apply only weakly, or may be overridden by
the use of metaphor or context. At the stage of interest here, how-
ever, we assume that all constraints are simple and few enough that
exhaustive search should suffice, so we omit the details about how
cueing constructions, checking constraints and finding the best-
fitting analysis proceed.



Construction hypothesis based on explaining away

We proceed with our example by applying the procedure
shown in Figure 4 to hypothesize a new construction.
All form relations and meaning bindings, respectively,
that are relevant to the form and meaning entities in-
volved in the analysis are extracted as, respectively,Frel
= fbefore(you,throw), before(throw,ball),
before(you,ball) g and Mrel = fThrow.thrower:Self,
Throw.throwee:Ballg; the remainder of these not used
in the analysis areFrem = fbefore(you,throw),
before(you,ball) g andMrem = fThrow.thrower:Selfg.
The potential constructionCpot derived by replacing terms
with constructional references is made up of form pole
fbefore (youf ,throwf ),before (youf ,ballf )g and
meaning polefThrowm.thrower:youmg. The final con-
structionCU1

is obtained by retaining only those relations
in Cpot that hold over correlated arguments:

(fbefore (youf ,throwf )g, fthrowm.thrower:youmg)

Hypothesize construction . Given an analysis A of
utterance U in situation S, hypothesize a new con-
struction CU including correlated but unused form and
meaning relations:

1. Find the set Frel of form relations in U that hold be-
tween the familiar forms Fknown, and the set Mrel

of meaning relations in S that hold between the
mapped meaning elements in MA.

2. Find the set Frem = Frel n FA of relevant form rela-
tions that remain unused in A, and the set Mrem =
Mrel nMA of relevant meaning relations that remain
unmapped in A. Create a potential construction Cpot

= (Frem,Mrem), replacing terms with references to
constructions in CA where possible.

3. Create a new construction CU consisting of pairs of
form-meaning relations from Cpot whose arguments
are constructionally related.

4. Reanalyze utterance using C [fCUg, producing a
new analysis A0 with cost CostA0 . Incorporate CU

into C if CostA � CostA0 �MinImprovement; else
put CU in pool of potential constructions.

5. If U contains any unknown form units, add the
utterance-situation pair (U; S) to the pool of unex-
plained data.

Figure 4: Construction hypothesis.

At this point, the utility ofCU1
can be evaluated by re-

analyzing the utterance to ensure a minimum reduction of
the cost of the analysis. As noted in Step 4 of Figure 4, a
construction not meeting this criterion is held back from im-
mediate incorporation intoC. It is possible, however, that
further examples will render it useful, so it is maintained as
a candidate construction. Similarly, Step 5 is concerned with
maintaining a pool of examples that involve unexplained
units of form, such as the unfamiliar articlea in this exam-
ple. Further examples involving similar units may together
lead to the correct generalization, through the reorganization
process to which we now turn.

Constructicon reorganization
So far we have described an analysis-hypothesis approach
to learning constructions on the basis of a single example
and a set of existing constructions. A separate process that
takes place in parallel is the data-driven, bottom-up reor-
ganization of the constructicon on the basis of similarities
among and co-occurrences of multiple constructions. Fig-
ure 5 gives a high-level description of this process; we re-
frain from delving into too much detail here, since these pro-
cesses are closely related to those described for other gener-
alization problems (Stolcke 1994; Bailey 1997).

Reorganize constructicon . Incorporate a new con-
struction Cn into an existing set of constructions C,
reorganizing C to consolidate similar and co-occurring
constructions if necessary:

1. Find potential construction pairs to consolidate.
� Merge constructions involving correlated rela-

tional mappings over one or more pairs of similar
constituents, basing similarity judgments and type
generalizations on the conceptual ontology.

� Compose frequently co-occurring constructions
with compatible constraints.

2. Evaluate constructions; choose the subset maximiz-
ing the posterior probability of C on seen data.

Figure 5: Constructicon reorganization.

Continuing our example, let us assume that the utterance
U2 = “she’s throwing a frisbee” is later encountered in con-
junction with an appropriate scene, with similar results: in
this case, both the unfamiliar inflections and the article are
ignored; the meanings are mapped; and constraints with ap-
propriate correlations are found, resulting in the hypothesis
of the constructionCU2

:

(fbefore (shef ,throwf )g, fthrowm.thrower:shemg)

CU1
andCU2

bear some obvious similarities: both construc-
tions involve the same form relations and meaning bindings,
which hold of the same constituent constructionthrow.
Moreover, the other constituent is filled in the two cases
by she andyou. As emphasized in our discussion of con-
ceptual representations, a key requirement is that the mean-
ing poles of these two constructions reflect their high de-
gree of similarity.7 The overall similarity between the two
constructions can lead to a merge of the constructional con-
stituents, resulting in the merged construction:

(fbefore (hf ,throwf )g,fthrowm.thrower:hmg)

whereh is a variable over a construction constrained to have
a Human meaning pole (whereHuman is a generalization
over the two merged constituents). A similar process, given
appropriate data, could produce the generalized mapping:

(fbefore (throwf ,of )g,fthrowm.throwee:omg)

7The precise manner by which this is indicated is not at issue.
For instance, a type hierarchy could measure the distance between
the two concepts, while a feature-based representation might look
for common featural descriptions.



whereo is constrained to have anObject meaning pole.8

Besides merging based on similarity, constructions may
also be composed based on co-occurrence. For example, the
generalizedHuman-throw andthrow-Object construc-
tions just described are likely to occur in many analyses in
which they share thethrow constituent. Since they have
compatible constraints in both form and meaning (in the lat-
ter case even based on the same conceptualThrow frame),
repeated co-occurrence eventually leads to the formation of
a larger construction that includes all three constituents:

(fbefore (hf ,throwf ),before (throwf ,of )g,
fthrowm.thrower:hm,throwm.throwee:omg)

Both generalization operations we describe are, like the hy-
pothesis procedure, merely means of finding potential con-
structions. Due to space considerations, we do not discuss
the many complexities that arise in evaluating these con-
structions using Bayesian criteria. Briefly, a prior based on
minimum description length favors merged and composed
constructions that compactly encode previously seen data;
this measure combats the inevitable drop in likelihood asso-
ciated with these more general constructions. The learning
algorithm chooses the set of constructions that maximizes
the posterior probability of the constructicon given the data.

Discussion
The model we have proposed for the acquisition of gram-
matical constructions makes some strong claims about the
relationship between comprehension, production and learn-
ing. We take these three processes to be tightly linked: new
constructions are hypothesized specifically to make up for
correlations not covered by currently known constructions,
and productions are based largely on the most entrenched
subset of previously acquired constructions.

The model is compatible to the extent possible with evi-
dence from child language acquisition. The principles guid-
ing construction hypothesis, in particular those for mapping
relevant form and meaning relations, have counterparts in
some of Slobin’s (1985) Operating Principles for mapping.
Construction reorganization allows more general construc-
tions to result from the merging of lexically specfic construc-
tions like those described by (Tomasello 1992).

More broadly, since the algorithm produces constructions
based on any utterance-situation pair and existing constructi-
con represented as described above, it can apply equally well
for more advanced stages of language development, when
the learner has more sophisticated meaning representations
and more complex constructions. The potential continuity
between early language acquisition and lifelong construc-
tional reorganization offers hope for the modeling of adap-
tive language understanding systems, human and otherwise.
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