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Iterated learning describes the process whereby an individual

learns their behaviour by exposure to another individual’s

behaviour, who themselves learnt it in the same way. It can be

seen as a key mechanism of cultural evolution. We review

various methods for understanding how behaviour is shaped by

the iterated learning process: computational agent-based

Iterated learning: The process by which a behaviour

arises in one individual through

induction on the basis of observations

of behaviour in another individual

who acquired that behaviour in the same

Available online at www.sciencedirect.com

ScienceDirect
simulations; mathematical modelling; and laboratory

experiments in humans and non-human animals. We show how

this framework has been used to explain the origins of structure

in language, and argue that cultural evolution must be

considered alongside biological evolution in explanations of

language origins.
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Introduction: can culture explain structure?
Language exhibits striking structural design features that

mark it out as extremely unusual among communication

systems in nature. In particular, utterances in a language

are constructed out of sub-parts — phonemes, mor-

phemes, words, phrases — that are reused and recom-

bined in systematic ways. Because of the apparent

uniqueness of this design, and because it enables the

open-ended expressive potential of human language,

linguistic structure has been a primary target for expla-

nation by evolutionary linguists and cognitive science

more generally [1–3].

In addition to exhibiting structure, language is one of a

rare set of behaviours that persists through a particular

kind of cultural transmission: iterated learning [4��].
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way.

For example, we induce the particular properties of our

language by being exposed to the linguistic behaviour of

other individuals in our speech community. Our resulting

language in turn leads to linguistic behaviour that shapes

the language of further individuals, leading to the possib-

ility of cultural evolution by a process of repeated induc-

tion and production of behaviour. In this paper we survey

simulations, mathematical models and experiments all

pointing towards the same underlying hypothesis: that

the key structural design features of language have their

explanation in the fact that language is culturally trans-

mitted in this way [4��,5–7]. The rarity of this kind of

design in natural communication may appear to be

explained as a consequence of the rarity of iterated

learning. However, as we will argue at the end of this

review, the vocal productions of some other species —

most notably, songbirds [8��] — also evolves culturally via

iterated learning. This opens up an intriguing avenue for

comparative study, and also raises important questions

about the differences in the design features of song and

language.

Agent-based simulation
Foundational work by Hurford [9] sparked interest in

computational simulation as a tool for modelling the

biological and cultural evolution of language. Following

Hurford’s lead, the earliest work in this area sought to

explain the role of interaction and negotiation [10�, 11] or

biases of learners [12,13] in shaping communication sys-

tems, focusing in particular on the conditions under which

communicatively optimal, socially learnt communication

systems would emerge. Subsequent efforts were directed

towards an explanation of how linguistic structure can

arise as a consequence of iterated learning. While inter-

action and learning bias play a role in this process [14,15],

much of this work emphasises the role of the learning
bottleneck [4��,15–19] in driving the evolution of structure:

language learners must attempt to learn a large or

infinitely expressive linguistic system on the basis of a

relatively small set of linguistic data. A key finding is that

compositional languages (in which the meaning of a com-

plex expression is composed of the meanings of parts of

that expression) emerge from holistic (i.e. unstructured)

languages as a result of repeated transmission through the

learning bottleneck: language structure appears as an
www.sciencedirect.com
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adaptive response by language itself to the problem of being

transmitted through a narrow bottleneck, since the

presence of compositional rules enables a learner to infer

from a small sample rules underpinning the entire

language.

Another rich seam of modelling work looks at the emer-

gence of systematicity in phonological systems through

communicative interaction and iterated learning. For

example, De Boer [20,21] looks at the cultural evolution

of vowel systems, demonstrating that universal features of

the organisation of vowels in the world’s languages can

arise through repeated interaction between simulated

agents under certain reasonable articulatory and percep-

tual constraints. Models by Oudeyer [22,23], Wedel

[24,25�], and Zuidema and De Boer [26], despite very

different underlying assumptions about the cognitive

machinery involved, show that the process of repeated

learning and use of a sound system can lead to the

emergence of systematic organisation of sequences of

sounds, as well as the organisation of those sounds them-

selves in acoustic/articulatory space.

This wide range of agent-based models suggest that key

design features of language emerge from iterated learn-

ing. Furthermore, the models employed by these authors

differ hugely in their approach (they include connection-

ist models [27], exemplar models [28], grounded robotic

models [14], and induction of formal symbolic grammars

[18]), suggesting general principles at play in iterated

learning that transcend the particular model implementa-

tion.

Mathematical models
The insights offered by agent-based simulations of iter-

ated learning have recently been supplemented by math-

ematical results that characterise how languages can

change through cultural transmission. Mathematical mod-

elling has been an important part of the theoretical de-

velopment of evolutionary biology, and some of the tools

that have been developed for analysing biological evolu-

tion prove equally powerful for analysing cultural evolu-

tion.

The potential of these mathematical tools was demon-

strated in a series of papers by Nowak and colleagues

[29�,30–32], who showed how one of the basic models of

biological evolution — the replicator dynamics — could

be modified to capture aspects of language evolution. The

replicator dynamics indicates how the composition of a

population of different types of organisms, each with a

different biological fitness, will change over time. By

modifying this model to allow the fitness of each type

to depend on the composition of the population, and for

offspring to be of a different type from their parents,

Nowak and colleagues were able to capture two important

aspects of language evolution: the success of a language
www.sciencedirect.com 
depends on how many people understand that language,

and children can end up speaking different languages

from their parents. This framework can be used to rig-

orously answer questions about, for instance, how con-

strained language learning needs to be in order to

guarantee that a population will end up speaking the

same language, and to what extent this coherence threshold
can drive the evolution of an ever-more restrictive

language faculty [29�].

Perhaps as a consequence of their origins in biological

evolution, these models made very weak assumptions

about the transmission process itself: no language is

easier or harder for learners to acquire than any other.

As a consequence, the driving force in the dynamics was

the effect of fitness — of being able to communicate

effectively with others — rather than learning. To

explore the effects of transmission more directly,

Griffiths and Kalish [33��] developed the first mathemat-

ical characterisation of the results of iterated learning,

based on analysing vertical transmission chains where

each learner acquires a language from the previous

learner then generates the data from which the next

learner learns. A richer characterisation of learning was

provided by assuming that learners follow the principles

of Bayesian inference, combining their own biases with

the observed data (the linguistic behaviour of others)

when inferring a language. These biases, which capture

the innate or acquired dispositions that make one

language easier to learn than another, are expressed in

a prior distribution over languages — a probability distri-

bution where languages that are easier to learn are

assigned higher probability.

Griffiths and Kalish assumed that each learner made an

inference by computing a posterior distribution over hy-

potheses that combined the biases reflected in the prior

distribution with the information available in the linguis-

tic data they had encountered. Each agent would then

choose a hypothesis by sampling from this distribution,

and use this hypothesis to generate data for the next agent

in a chain of transmission. Under these assumptions, the

hypotheses selected by the agents converge to a particular

distribution as iterated learning proceeds: after enough

episodes of transmission have passed, the probability that

a learner selects a particular hypothesis is just the prior

probability of that hypothesis, regardless of where the

process of iterated learning started.

This convergence to the prior illustrates the potential power

of cultural transmission as an evolutionary force: even in

the absence of communicative interaction, iterated learn-

ing can significantly change the languages spoken by a

population. In particular, it can induce a shift towards

languages that are consistent with the biases of learners,

with those languages that are easiest to learn becoming

more prevalent in the population.
Current Opinion in Neurobiology 2014, 28:108–114
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While this mathematical characterisation of iterated

learning shares some of the conclusions of the agent-

based simulation work reviewed above, in particular the

emphasis in some of the early work on the role of learner

biases in shaping cultural evolution, there are also some

important mismatches. First, it indicated that there

should be a one-to-one correspondence between the

biases of learners and the extent to which a language is

likely to emerge through cultural transmission, while

simulations had suggested that weak learning biases

could be magnified by iterated learning [18]. Second,

iterated learning would result in convergence to the same

distribution — the prior — regardless of how much data

each learner saw. There was thus no effect of the learning

bottleneck in the mathematical analysis, in contrast to the

important role this seemed to play in simulations.

Attempting to reconcile these differences, Kirby, Dow-

man, and Griffiths [34] examined the effect of different

learning mechanisms on the mathematical results. This

analysis showed that the differences from the simulation

results were due to the assumption that learners sampled a

hypothesis from the posterior distribution. If learners

adopt a more deterministic strategy — moving towards

simply selecting the hypothesis with highest posterior

probability — then iterated learning converges to a distri-

bution that exaggerates the prior: hypotheses with high

prior probabilities appear even more often, while those

with low prior probabilities become even less likely. The

exact distribution depends on how much data is seen by

each learner, with the prior having a stronger effect when

only small amounts of data are available. This analysis

thus helps to explain the circumstances under which

cultural transmission can magnify learning biases (allow-

ing weak biases to be a potential explanation for strong

linguistic patterns) and when a bottleneck effect will

emerge. Specifically, it suggests that future empirical

work should concentrate on the extent to which acqui-

sition of language appears to involve sampling from a

posterior or choosing the hypothesis that maximises the

posterior.

Subsequent mathematical analyses have begun to link

these results to broader questions about cultural and

biological evolution, exploring transmission in more com-

plex populations [35,36], the effects of the structure of the

environment on the structure of language [37], formal

relationships between iterated learning and the Wright-

Fisher model from population genetics [38], and the

biological evolution of learner biases [39].

Laboratory experiments
The experimental study of iterated learning goes back at

least as far as Bartlett’s ‘serial reproduction’ paradigm

[40], in which participants were exposed to some stimulus

(e.g. a drawing), then asked to reproduce that material

from memory; their reproduced stimuli served as the
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stimulus for a second participant, and so on. Bartlett

observed that material transmitted in this way changed

as participants imposed their expectations about the

appropriate content onto the recalled material, causing

it to be restructured: for instance, drawings might change

towards conventional representational forms (see also,

[41]). This is an experimental demonstration of the pre-

diction made by the mathematical analysis of iterated

learning, outlined above, that systems of knowledge or

behaviour transmitted by iterated learning evolve to

reflect the biases of individuals involved in transmission.

Much of the modern work using the iterated learning

paradigm with humans (see [42] for review) is of a similar

nature, demonstrating the presence and consequence of

learner biases. Several studies take known biases from

well-studied tasks, such as the learning of categories or

functions, and verify that transmission through iterated

learning yields behaviours which reflect those biases

[43,44]; an alternative approach is to use iterated learning

as a discovery procedure for biases, for example showing

biases in favour of retaining social information over non-

social information [45], or using the results of iterated

learning to arbitrate between theories of how people

make predictions about everyday events [46].

In the domain of language evolution, several studies have

combined iterated learning techniques with artificial

language learning or communication game paradigms

to explore the way in which languages or other communi-

cation systems evolve through learning and use (see [48]

for review). Kirby and colleagues introduced an iterated

learning paradigm (Figure 1) in which participants were

trained on an artificial language (a set of labels for

coloured moving shapes) and then produced linguistic

behaviour which subsequent individuals learnt from

[47��] (see also [49]). A learning bottleneck was imposed

on transmission: while each participant produced a label

for the full set of stimuli, only a subset of those pictures

were presented, together with their labels, to the partici-

pant at the next generation. From an initial random

labelling of objects, the languages changed over gener-

ations so as to facilitate generalisation: as predicted by the

modelling results discussed above (e.g. [4��]), compo-

sitional languages developed, where sub-parts of each

complex label specified components of the picture that

label referred to (e.g. the first syllable of a complex label

might indicate the colour, the second syllable might

indicate shape, the third syllable movement). Related

experimental paradigms, in which participants learn or

communicate using a novel medium (systematically dis-

torted graphical scribbles, or a slide whistle) show the

emergence of combinatorial structure, where complex

signals are composed by recombining a smaller set of

meaningless component parts [50,51,52�], again demon-

strating that the predictions of earlier agent-based mod-

elling above are borne out experimentally.
www.sciencedirect.com
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Figure 1
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An illustration of the iterated artificial language learning method and indicative results, from [47��]. Data shown is from their Experiment 2, Chain 3.

Participants are asked to learn a target language based on exposure to a subset of that language (labelled ‘Transmission Set’ here), with (a subset of)

the language produced by the nth participant in a chain of transmission providing the input to participant n + 1. In this experiment, participants were

asked to learn labels for coloured moving shape (there were 3 shapes, 3 colours, 3 motions: a subset are shown here). The initial language (Language

0) provided a randomly generated, idiosyncratic label for each such picture. As a result of the iterated learning procedure, this unstructured set of

meaning-signal associations developed into a structured language: in the chain shown here, by generation 10, each label consists of a prefix

specifying colour (e.g. ne- for black, la- for blue), a stem specifying shape (e.g. -ho- for circle, -ki- for triangle), and an affix specifying motion (e.g. -plo

for bouncing, -pilu for looping).
The combination of iterated learning and artificial

language learning has been used to show that miniature

languages exhibiting unpredictable or ‘free’ variation

(largely absent from natural languages) become increas-

ingly regular and predictable as a result of their trans-

mission [53,54], demonstrating that adult learners have a

bias in favour of regularity, and that these learning biases

can explain the absence of unpredictable variation in

natural languages (complementing studies which empha-

sise the role of strong biases in child learners in imposing

regularity on language [55,56]). Using a similar exper-

imental paradigm, [57] demonstrate that miniature voca-

bularies for describing colour evolve through iterated

learning to resemble the distribution of colour naming

systems observed in the world’s natural languages, again

highlighting iterated learning as a mechanism which can

explain linguistic universals.

Other work has explored how the nature of interactions

between participants engaged in iterated learning can

shape an evolving communication system. In an important

series of studies [58–61], participants play a graphical

communication game in pairs: the director produces a

drawing which is intended to convey a concept to the

matcher, who attempts to identify the concept being con-

veyed by the director. These studies compare simple dyads

(two participants play together repeatedly), larger closed

groups of eight individuals (‘communities’), where mem-

bers of the group play a series of pairwise communication

games, rotating through partners in a controlled fashion,
www.sciencedirect.com 
and transmission chains, where drawings were transmitted

to naive individuals rather than within closed groups.

These three population structures produce different types

of graphical communication system. In dyads, participants’

drawings develop from rather complex affairs which

represent their intended referent iconically (e.g. by resem-

bling the actor or location they depict) to far simpler,

economical but opaque symbols, which pick out their

intended referent only by convention within the dyad.

In contrast, graphical representations in diffusion chains

became increasingly complex and iconic. The systems

which emerge in communities differ more subtly from

those which develop in dyads: community graphical

representations are simple, like the representations that

develop in dyads, but are less opaque to outsiders and

inherently more ‘shareable’. Following on from this, other

work in the same paradigm further explores the con-

sequences of transmission and interaction for the form

and structure of graphical communication systems [62–64].

A range of iterated learning experiments have also been

carried out with non-human animals (see [65] for review),

being primarily used to establish whether the studied

species are capable of faithfully transmitting and main-

taining a novel behaviour within a population [66�]. In

species where the presence of cultural transmission is

uncontroversial (e.g. songbirds), iterated learning has

been used as a tool to investigate biases in learning, in

close parallel to the experimental work with humans:

Feher and colleagues show that an initially degenerate
Current Opinion in Neurobiology 2014, 28:108–114
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song rapidly reverts to natural, wildtype song as it is

passed from tutor to pupil in transmission chains of zebra

finches, suggesting that zebra finch learners have strong

expectations about appropriate song structure [8��] and,

as predicted by the simulation and modelling work

reviewed above, these biases shape the evolving song

system. In addition to providing a rich toolkit for un-

derstanding song, further application of iterated learning

as an explanatory framework to learned systems in animal

communication, like birdsong, is likely to raise challen-

ging new questions about what makes human language,

and humans, special.

Conclusions
We have reviewed over a decade of work using computer

simulation, mathematical modelling, and experiments

that has shown how iterated learning can produce sys-

tematically structured behaviour. We began this review

by suggesting that the uniqueness of human language

may be due to the unusual way that it is transmitted: the

rarity of iterated learning in nature explains the rarity of

systematically structured communication systems. In

order to test this hypothesis, future research needs to

look more closely at the parallels between iterated learn-

ing in birds and humans, and the parallels between the

structure in birdsong and language. One crucial differ-

ence between song and language relates to meaning.

Language is a culturally transmitted system for mapping

between complex signals and complex semantics. The

models and experiments showing the emergence of

compositionality were based on this observation

[4��,47��]. However, there is no evidence that birdsong

is semantic in this way. As such, a closer parallel in the

human case is the emergence of combinatorial rather

than compositional structure [52�].

Finally, we are left with an important unanswered ques-

tion: how does iterated learning itself evolve? An answer

to this question will require further animal studies to

understand more precisely the biological prerequisites for

this particular type of cultural transmission.
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