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Abstract. A distributed classification paradigm known as collaborative tagging has been successfully de-
ployed in large-scale web applications designed to manage and share diverse online resources. Users of these
applications organize resources by associating with them freely chosen text labels, or tags. Here we regard
tags as basic dynamical entities and study the semiotic dynamics underlying collaborative tagging. We
collect data from a popular system and focus on tags associated with a given resource. We find that the fre-
quencies of tags obey to a generalized Zipf’s law and show that a Yule–Simon process with memory can be
used to explain the observed frequency distributions in terms of a simple model of user behavior

1 Collaborative Tagging

A new paradigm has been quickly gaining ground in in-
formation systems on the World Wide Web: collaborative
tagging [1, 2]. In web-based applications like Del.icio.us1,
Flickr2, CiteULike3, users enrich diverse resources – rang-
ing from photographs to scientific references and web pages
– with semantically meaningful information in the form
of text labels, or “tags”. Tags are freely chosen and users
associate resources with them in a totally uncoordinated
fashion, for their own use.
The tagging activity of each user is globally visible to

the user community (see Fig. 1) and the tagging process
develops genuine social aspects and complex interactions.
Remarkably, despite the selfish nature of users’ behavior,
tagging systems exhibit cooperative dynamics that eventu-
ally lead to a bottom-up categorization of resources, shared
throughout the user community. The open-ended set of
tags used within the system – commonly referred to as
“folksonomy” – can be used as a sort of semantic map to
navigate the contents of the system itself. It has been ar-
gued that the surging popularity of collaborative tagging is
due to its comparatively small cognitive overhead with re-
spect to taxonomic categorization [1, 3], so that tagging is
a very natural activity for web users. Collaborative tagging
systems leverage this aspect, recruiting simple and robust
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behaviors of individual users in order to create cooperation
and foster the emergence of shared conventions at the sys-
tem level.
Focusing on tags as basic dynamical entities, collabo-

rative tagging falls within the scope of semiotic dynam-
ics [4, 5], a new field that studies how populations of hu-
mans or agents can establish and share semiotic systems,
typically driven by their use in communication. New web
applications hinged on collaborative tagging fall precisely
in this perspective and can be regarded as cases of semiotic
dynamics at play: folksonomies, in fact, do exhibit dynam-
ical aspects also observed in human languages [6, 7], such
as the emergence of naming conventions, competition be-
tween terms, takeovers by neologisms, and more.
In the following we briefly describe the structure of

collaborative tagging systems and discuss the experimen-
tal procedures that we employ to collect data from Del.
icio.us, one of the most popular and paradigmatic social
bookmarking systems. We adopt a resource-centric view of
the system and focus on the tags that have been associ-
ated with a given resource. We report on the distribution
of tag frequencies and show that a stochastic Yule–Simon
process with memory can be used to successfully describe
the observed frequency distributions. We close by casting
our work in a more general research perspective.

2 Experimental data

The activity of users interacting with a collaborative tag-
ging system consists of either navigating the existing body
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Fig. 1. Schematic depiction of the collaborative tagging pro-
cess: web users (circles on the left) are exposed to a resource
and freely associate tags with it (rectangles on the right). In
their interaction with the system users are also exposed to
tags previously entered by themselves and by other users. The
collective tagging activity creates a dynamical correspondence
between a resource and a set of tags, i.e. an emergent catego-
rization in terms of tags shared by a community

of resources by using tags, or of adding new resources.
In order to add a new resource into the system the user
is prompted for a reference to the resource and a set of
tags to associate with it. Thus, the basic unit of informa-
tion in a collaborative tagging system is a (user, resource,
{tags}) triple, here referred to as “post” (see Fig. 2). Tag-
ging events build a tripartite graph with partitions corres-

Fig. 2. Tagging activity: an experimental sequence of tagging
events on Del.icio.us is graphically rendered by displaying the
tags that were used in posts associated with two popular re-
sources (web pages). In each panel, columns represent single
tagging events (posts) and rows correspond to the 10 tags most
frequently associated with the given resource. 50 tagging events
are shown in each panel, temporally ordered from left to right.
Only events involving at least one of the 10 top-ranked tags are
shown. For each tagging event (column), a filled cell marks the
presence of the tag in the corresponding row, while an empty
cell indicates its absence

ponding to users, resources and tags, respectively. A post
typically contains a temporal marker recording the (phys-
ical) time of the tagging event, so that temporal ordering
can be preserved in storing and retrieving posts.
Our analysis will focus on Del.icio.us for several rea-

sons: i) it was the first system to deploy the ideas and
technologies of collaborative tagging, so it has acquired
a paradigmatic character and it is the natural starting
point for any quantitative study. ii) because of its popular-
ity, it has a large community of active users and comprises
a precious body of raw data on the static and dynamical
properties of a folksonomy. iii) it is a broad folksonomy [8],
i.e. single tagging events (posts) retain their identity and
can be individually retrieved. This affords unimpeded ac-
cess to the “microscopic” dynamics of collaborative tag-
ging, providing the opportunity to make contact between
emergent behaviors and low-level dynamics. It also allows
us to define and measure the multiplicity (or frequency)
of tags in the context of a single resource. Contrary to
this, popular sites falling in the narrow folksonomy class
(Flickr , for example) foster a different model of user in-
teraction, where tags are mostly applied by the content
creator, no notion of tag multiplicity is possible in the con-
text of a resource, and no access is given to the raw se-
quence of tagging events. On studyingDel.icio.us we adopt
a resource-centric view of the system, that is we investigate
the dynamical correspondence between a given resource
and the tags that users associate with it. In line with our fo-
cus on semiotic dynamics, we factor out the detailed iden-
tity of the users involved in the process and only deal with
streams of tagging events and their statistical properties.
To perform automated data collection of raw data we

use a custom web (HTTP) client that connects to Del.icio.
us and navigates the system’s interface as an ordinary user
would do, extracting the relevant metadata and storing it
for further post-processing. Del.icio.us allows the user to
browse its content by resource: our client requests the web
page associated with the resource under study and uses
an HTML parser to extract the post information (user,
tags and time stamp). Figure 2 graphically depicts the raw
data we gather for the case of two popular resources on
Del.icio.us. The data used for the present analysis were re-
trieved in November 2005.

3 Temporal evolution

Figure 3 displays the amount of tagging data associated
with a single popular resource (the same shown in the top
panel of Fig. 2) as a function of time. The time stamp at-
tached to each post is used to build a time series of tagging
events and cumulated values are shown for the number of
entries associated with the resource and the total number
of tags used. The data shown in Fig. 3 span a time interval
of about 2 years, during which the popularity ofDel.icio.us
surged and its user base increased enormously. Corre-
spondingly, the amount of tagging data associated with the
selected resource increased by several orders of magnitude.
In striking contrast with this, the relative proportions of
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Fig. 3. Amount of metadata associated with a popular re-
source in Del.icio.us, as a function of time. Data are shown
for the same resource of Fig. 2, top panel. Over a time inter-
val of about 2 years, the number of posts (solid lines) and the
number of total tags (dotted line) increased by several orders of
magnitude. Inset: the fraction P (n) of posts containing n tags
displays an exponential tail for high values of n. The average
value n̄ corresponds to the vertical offset between the solid line
and the dotted line

tags associated with a given resource quickly approach
a quasi-stationary condition: in Fig. 4 we plot the frac-
tion of occurrence of the 10 top-ranked tags of Fig. 2 (top
panel) as a function of the number of posts associated with

Fig. 4. For a given resource (Fig. 2, top panel) the relative frac-
tion of cumulated tag occurrences is shown as a function of
time, measured by the number of posts associated with the re-
source. Tag fractions are plotted for the 10 most frequent tags
associated with the resource (legend, same tags as Fig. 2, top
panel). After an initial transient, the relative proportions of tag
occurrence freeze towards (approximately) steady values, even
though the amount of accumulated metadata never levels off
(Fig. 3)

the resource. After an initial transient, during which the
fractions fluctuate significantly, the relative proportion of
each tag settles towards an approximately constant value.
This is reminiscent of the behavior observed in Polya’s urn
problems [9] and suggests the existence of a multiplica-
tive process underlying the tagging activity of users [10],
where the usage pattern of tags is subjected to some kind of
frequency-bias. Once the number of posts associated with
a resource is sufficiently large, single tagging events have
a negligible effect on the global distribution of tags and
the existing distribution is reinforced, generally becoming
more and more stable. This kind of robustness is a very
important property of collaborative tagging: on the one
hand, the fact that tag fractions stabilize quickly allows
the emergence of a clearly defined categorization of the re-
source in terms of tags, with a few top-ranked tags defining
a semantic “fingerprint” of the resource they refer to (see
also Fig. 2). On the other hand, the long-term stability of
tag proportions makes the emergent categorization robust
against noise. Both aspects contribute greatly to the actual
usability of collaborative tagging systems. Occasionally, in-
teresting non-stationary behaviors and transitions can be
observed, where new tags are invented and become socially
adopted by the user community [10].

4 Tag frequencies

To better probe the emergent categorization of a resource
in terms of tags, we compute the standard frequency-rank
distributions for the tags associated with the resources
of Fig. 2, i.e. we compute the number of occurrences of
tags and rank them: our results are shown in Fig. 5 (black
dots). The high-rank tails of the experimental curves dis-
play a power-law behavior reminiscent of Zipf’s law [11]
which is characteristic of self-organized communication
systems and is commonly observed in natural languages
and written text [12]. The observed exponent of the power
law is greater than 1 (the lines in Fig. 5 have slope 4/3)
and its explanation requires more complex microscopic
mechanisms than those usually invoked to explain Zipf’s
law [13]. Moreover, the low-rank part of the distributions
of Fig. 5 displays a flattening behavior typically not ob-
served in systems strictly obeying Zipf’s law, related to
the co-existence (and possibly the competition) of the few
low-rank tags which characterize the resource in the statis-
tically strongest way.
In order to model the observed frequency-rank be-

havior, we use a Yule–Simon stochastic process [14–16]
with long-term memory, introduced in [17] (Fig. 6). We
move from the observation that actual users are in prin-
ciple exposed to all the tags stored in the system (like
in the original Yule–Simon model), but the way in which
they choose among them, when tagging a new post, is far
from being a simple uniform distribution (see also [18]).
It seems more realistic to assume that users tend to use
recently added tags more frequently than old ones, accord-
ing to a skewed memory kernel. Our modification of the
Yule–Simon’s model consists in weighting the probability
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Fig. 5. Frequency-rank plots for the tags associated with
a given resource. Experimental data (black symbols) are shown
for the resources of Fig. 2 (top panel and bottom panel corres-
pond to resource A and B , respectively). For the sake of clarity
the data for resource B were shifted down by one decade. The
high-rank tail of the curves displays a power-law behavior cor-
responding to a generalized Zipf’s law. For reference, the blue
lines correspond to the power law R−4/3. Red symbols are the-
oretical data obtained by computer simulation of the stochastic
model described in the text (Fig. 6). The parameters of the
model, i.e. the probability p, the memory parameter τ and the
initial number of words n0 were adjusted to match the experi-
mental data, yielding approximately p = 0.035, τ = 175 and
n0 = 10 for resource A, and p= 0.04, τ = 170 and n0 = 10 for
resource B

of choosing an existing tag according to a power-law mem-
ory kernel which controls the visibility of the past history
of the resource. This hypothesis about the functional form
of the memory kernel is supported by findings in cogni-
tive psychology [19] (where power laws of latency and fre-
quency have been shown to model human memory) as well
as by recent analysis on patterns of human activity [20].
Specifically, previous work on tag co-occurrence [17] shows
that a hyperbolic memory kernel is needed to match the
experimental data. Thus, our model (Fig. 6) can be stated
as follows: the process by which users of a collaborative
tagging system associate tags to resources can be regarded
as the construction of a “text”, built one step at a time
by adding “words” (i.e. tags) to a text initially comprised
of n0 words. This process is meant to model the behav-
ior of an effective average user in the context of a single
resource. At a generic time step t, a new word may be in-
vented with probability p and appended to the text, while
with probability 1−p one word is copied from the existing
text, going back in time by i steps with a probability that
decays with the offset i as a power law, Q(i) = C(t)/(τ +
i). C(t) is a time-dependent normalization factor and τ is
a characteristic time-scale over which recently added words
have comparable probabilities. By simulating the stochas-
tic process described above and adjusting the values of the
model parameters in order to match the experimental data,
we obtain a very good agreement between experimental
data (black dots) and model (red dots), as shows in Fig. 5.

Fig. 6. A Yule–Simon’s process with memory. A stream of tags
is generated by iterating the following step: with probability p
a new tag is created and appended to the tag stream, while with
probability 1−p a tag is extracted from the past history of the
system and appended to the text, going back in time by i steps
with a probability Q(i)∼ 1/(τ + i)

This proves that the simple Yule–Simon process with fat-
tailed memory can be successfully applied to model the
frequency-rank distribution of tags associated with a given
resource, providing insights into the average behavior of
users in the context of that resource.

5 Conclusions and perspective

Information systems on the World Wide Web have been
increasing in size and complexity to the point that they
presently exhibit features typically attributed to bona fide
complex systems. They display rich high-level behaviors
that are causally connected in non-trivial ways to the dy-
namics of their interacting parts. Because of this, concepts
and formal tools from the science of complex systems can
play a potentially important role in understanding and de-
signing the behavior of such systems. Here we made a first
step in this direction and focused on the new paradigm
of collaborative tagging. Collaborative tagging systems in-
volve the computer-mediated interaction of a large number
of human agents. They have an emergent semiotic system
(the folksonomy) at their core and can be regarded as a sort
of “laboratory” of semiotic dynamics. In addition to this,
their evolution can be easily monitored both at the global
level (folksonomy) and at the agent-level (single tagging
events of users), providing an interesting opportunity to
connect the two levels by means of a suitable theoretical
framework. We grounded our work on actual tagging data
and made use of statistical tools and stochastic models to
gain insights into the dynamical properties of collabora-
tive tagging.We studied the frequency distributions of tags
and found that a simple stochastic process, a long-term
memory version of the classic Yule–Simon process, is able
to describe very accurately the experimental data, allow-
ing us to develop a model of user behavior and link it to
the statistical properties of the folksonomy. Overall, our
findings suggest that users of collaborative tagging systems
share universal behaviors which, despite the intricacies of
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personal categorization, tagging procedures and user inter-
actions, appear to obey to simple activity patterns.
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