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  co-occurring with the selected one, we find a heavy-tailed behavior which is the 

mark of human activity 8,9 and observe properties that point to an emergent 

hierarchy of tags. We introduce a stochastic model embodying two main aspects  of 

collaborative tagging: (i) a fundamental multiplicative character closely related to 

the idea that users are exposed to each other's tagging activity 10,11,12; (ii) a notion of 

memory - or aging of resources - in the form of a heavy-tailed access to the past 

state of the system. Remarkably, our simple modelling is able to account 

quantitatively for the measured frequency-rank properties of tag association, with 

a surprisingly high accuracy.  This is a clear indication that collaborative tagging 

is able to recruit the uncoordinated actions of web users to create a predictable 

and coherent semiotic dynamics at the emergent level. 

Eight years after the first vision of the Semantic Web by Tim Berners-Lee13,14  a 

set of new semantically-enabled applications is  swiftly shaping the next generation of 

the World -Wide Web (the so-called WEB 2.0). One of the forces driving this change is 

a distributed classification paradigm known as “collaborative tagging”, which has been 

successfully deployed in web application designed to organize and share diverse online 
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resources such as web pages, academic references, photographs and music. Web users 

interact with a collaborative tagging system by posting content (resources)  into the 

system, and freely associating text labels (tags) with that content, as shown in Fig. 1. 

The basic unit of information in a collaborative tagging system is an entry , that is a 

(user, resource, {tags}) triple, with the largest online communities comprising 

hundreds of thousands of users and millions of resources. Users are exposed both to the 

resources and to the tags already existing within the system, and freely associate tags 

with newly entered resources. At the global level the set of  tags,  though freely 

determined, evolves in time and leads towards patterns of terminology usage that are 

shared by the entire user community. Hence one observes the emergence of a loose 

categorization system -- commonly referred to as “ folksonomy” -- that can be effectively 

used to navigate through a large and heterogeneous body of resources. 

Focusing on tags as basic dynamical entities, the process of collaborative tagging 

falls within the scope of Semiotic Dynamics5,6, a new field that studies how populations 

of humans or agents can establish and share semiotic systems, typically driven by their 

use in communication. New web applications hinged on collaborative tagging (such as 

del.icio.us or Flickr) fall precisely in this perspective and they can be regarded as cases 

of Semiotic Dynamics at play: the emergence of a folksonomy exhibits dynamical 

aspects also observed in human languages 15,16, such as the crystallization of naming 

conventions, competition between terms, takeovers by neologisms, and more. 

 

Fig.1: Schematic depiction of the collaborative tagging process: web users are 

exposed to a resource and freely associate tags with it. Their interaction with 

the system also exposes them to tags previously entered by themselves and by 

other users. The aggregated activity of users leads to an emergent 

categorization of resources in terms of tags shared by a community . 
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Data collection and analysis. Here we collect data from del.icio.us and Connotea  

(see the Methods section) and investigate the statistical properties of tag association. 

Specifically, we select a semantic context by extracting all the resources associated with 

a given tag X and study the statistical distribution of tags co-occurring with X (see Table 

1). Fig 2-a graphically illustrates the associations between tags and entries and Fig. 2-b 

reports the frequency-rank plots for all the tags co-occurring with a few selected tags 

(blog, ajax and xml for del.icio.us and H5N1  for Connotea). The high-rank tail of the 

experimental curves displays a power law behaviour, signature of an emergent 

hierarchical structure, corresponding to a generalized Zipf’s law with a slope larger than 

one12. The low-rank part of the curve, conversely, displays a flattening behaviour 

typically not observed in systems obeying Zipf’s law. Several aspects of the underlying 

complex dynamics are responsible for this deviation: on the one hand this behaviour 

points to the existence of semantically equivalent and possibly competing high-

frequency tags (e.g. blog and blogs). More importantly, this flattening behaviour may be 

ascribed to an underlying hierarchical organization of tags co-occurring with the one we 

single out. In this scenario, we expect a more shallow behaviour for tags co-occurring 

with generic tags (e.g. blog , see Fig. 2-b) and a steeper behaviour for semantically 

narrow tags (e.g. ajax, denoting a specific technology, also in Fig. 2-b). To better probe 

the validity of this interpretation, we investigated the co-occurrence relationship that 

links high-rank tags, lying well within the power-law tail, with low-rank tags, located in 

the shallow part of the distribution. Our observations (see Supplementary Information) 

point in the direction of a non-trivial hierarchical organization emerging out of the 

collective tagging activity, with each low-rank tag leading its own hierarchy of 

semantically related higher-rank tags, and all such hierarchies merging into the overall 

power-law tail. We shall elaborate on this point in the theoretical section. 

Table 1: Dataset statistics 
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Tag No. entries No. tags No. different tags No. resources 

Blog 37974 124171 10617 16990 

Ajax 33140 108181 4141 2995 

Xml 24249 108013 6035 7364 

H5N1 981 5185 241 969 

Table 1: Statistics of the datasets used for the co-occurrence analysis. For each tag in the first 

column we report the number of entries marked with that tag, the number of total and distinct  

tags co-occurring with it and the corresponding number of resources.   

Fig. 2: a) Tagging activity: a time-ordered sequence of tagging events is 

graphically rendered by marking the tags co-occurring with blog  (top panel) or 

ajax (bottom panel) in an experimental sequence of resources entered into 

del.icio.us. In each panel, columns represent single tagging events and rows 

correspond to the 10 most frequent tags co-occurring with either blog (top 

panel) or ajax (bottom panel). 150 tagging events are shown in each panel, 

temporally ordered from left to right. Only events involving at least one of the 10 

top-ranked tags are shown. For each tagging event (column), a filled cell marks 

the presence of the tag in the corresponding row, while an empty cell indicates 

its absence. A qualitative difference between blog (top panel) and ajax (bottom 

panel) is clearly visible, where a higher density at low-rank tags characterize the 

semantically narrower ajax term. This corresponds to the steeper low-rank 

behavior observed in the frequency-rank plot for ajax (Fig. 2 -b).  b) Frequency-

rank plots for tags co-occurring with a selected tag: experimental data (black 

symbols) are shown for del.icio.us (circles for tags co-occurring with the popular 

tag blog, squares for ajax and triangles for xml) and Connotea (inset, black 

circles for the H5N1 tag). For the sake of clarity, the curves for ajax and xml are 

shifted down by one and two decades, respectively. Details about the 
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experimental datasets are reported in Table 1. All curves exhibit a power-law 

decay for high ranks (a dashed line corresponding to the power law 4/5−R is 

provided as an aid for eye) and a more shallow behaviour for low ranks. To 

make contact with Fig. 2-a, some of the top-ranked tags co-occurring with blog 

and ajax are explicitly indicated with arrows. Red symbols are theoretical data 

obtained by computer simulation of the stochastic model described in the text 

(Fig. 3). The parameters of the model, i.e. the probability p , the short-term 

memory parameter τ and the initial number of words 0n were adjusted to match 

the experimental data, giving approximately 0.06p = , 100τ =  and 0 100n =  for 

blog, 0.03p = , 20τ =  and 0 50n =  for ajax, and 0.034p = , 40τ =  and 0 110n =  

for xml. Connotea is a much younger system than del.icio.us and the 

corresponding data set is smaller and noisier. Nevertheless, a good match with 

experimental data can be obtained for 0.05p = , 120τ =  and 0 7n =  (inset, red 

circles), demonstrating that our model can be also applied to the early stages of 

development of a folksonomy. c) Tag-tag correlation functions and non-

stationarity. The tag-tag correlation function ( , )wC t t∆ is computed over three 

consecutive and equally long ( 30000T =  tags each) subsets of the blog  dataset, 

starting respectively at positions 1 10000wt = , 2 40000wt =  and 3 70000wt =  within the 

collected tag stream. Short-range correlations are clearly visible, slowly 

decaying towards a long-range plateau value. The non-stationary character of 

correlations is visible both at short range, where the value of the correlation 

function decays with wt , and at long range, where the asymptotic correlation 

increases with wt . The long-range correlations (dashed lines) can be estimated 

as the natural correlation present in a random stream containing a finite number 

of tags: on using the appropriate ranked distribution of tag probabilities within 

each window (see text) the values 1( )wc t , 2( )wc t  and 3( )wc t  can be computed, 
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matching the meas ured plateau of the correlation functions. The thick solid line 

is a fit with a long-range memory kernel (see text). 

A Yule-Simon’s model with long-term memory. We now aim at gaining a deeper 

insight in the phenomenology reported above. In order to model the observed 

frequency-rank behavior for the full range of ranking values, we introduce a new 

version of the “rich-get-richer” Yule-Simon’s stochastic model10,11 by enhancing it with 

a long-term memory kernel. The original model can be described as the construction of 

a text from scratch. At each discrete time step one appends a word to the text: with 

probability p  the appended word is a new word, that has never occurred before, while 

with probability 1 p−  the word is copied from the existing text, choosing it with a 

probability proportional to its current frequency of occurrence. This simple process 

produces frequency-rank distributions with a power-law tail whose exponent is given by 

1 pα = − . In our construction we moved from the observation that actual users are 

exposed in principle to all the tags stored in the system (like in the original Yule-S imon 

model) but the way in which they choose among them, when they tag a new entry, is far 

from being a simple uniform distribution (see also [17]). It seems more realistic to 

assume that users tend to apply recently added tags more frequently than old ones, 

according to a memory kernel which might be highly skewed. Indeed, recent findings 

about human activities 9 support the idea that the access pattern to the past of the system 

should be fat-failed, suggesting a power-law memory kernel. Let us test this hypothesis 

with real data extracted from del.icio.us: in Fig. 2-c we show the temporal auto-

correlation function of the sequence of tags co-occurring with blog . Correlations are 

computed inside three consecutive windows of  length T , starting at different times wt , 
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where ( ( ), ( ))tag t t tag tδ + ∆  is the usual Kronecker delta function, taking the value 1 

when the same tag occurs at times t  and t t+ ∆ . From Fig.2-c it is apparent how the 

correlation function is non-stationary over time. Moreover, for each value of the initial 

time wt  it displays a power-law behaviour ( ) / ( ( )) ( )w w wa t t t c tδ∆ + + , where ( )wa t is a 

time-dependent normalization factor and ( )wtδ  is a phenomenological time-scale, 

slowly increasing with the “age” of the system wt , whose interpretation is related to the 

number of independent hierarchies nested into the emergent categorization. ( )wc t  is the 

correlation that one would expect in a random sequence of tags distributed according to 

the frequency-rank distribution , ( )
wT tP R  pertaining to the data windows we selected. 

Denoting by max ( , )wR T t  the number of distinct tags occurring in the window 

[ ],w wt t T+ , we have 
max ( , )
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Fig. 3: A Yule-Simon's process with long-term memory. A synthetic stream of 

tags is generated by iterating the following step: with probability p  a new tag is 

created and appended to the tag stream, while with probability p−1  a tag is 

extracted from the past history of the system and appended to the text, its 

probability being weighted by the long-range memory kernel )(xQt , which 

provides a fat-tailed access to the past of the stream. 

Our modification of the Yule-Simon’s model thus consists in weighting the 

probability of choosing an existing word (tag) according to a power-law. This 

hypothesis about the functional form of the memory kernel is also supported by findings 

in Cognitive Psychology18 (where power laws of latency and frequency have been shown 

to model human memory) as well as recent analysis on patterns of human activity9, as 

mentioned above. Thus, our model can be stated as follows: the process by which users 

of a collaborative tagging system associate tags to resources can be regarded  as the 

construction of a “text”, built one step at a time by adding “words” (i.e. tags) to a text 

initially comprised of  0n  words. This process is meant to model the behaviour of an 
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effective average user in the context identified by a specific tag. At a generic (discrete) 

time step t , a brand new word may be invented with probability p and appended to the 

text, while with probability 1 p− one word is copied from the existing text, going back in 

time by x  steps with a probability that decays as a power law, ( ) ( ) ( )tQ x a t x τ= + . 

( )a t  is a normalization factor and τ is the characteristic time-scale over which the 

recently added words have comparable probabilities. Its interpretation is similar to that 

of the δ  parameter we used to model the tag -tag correlation functions (Fig. 2-c). In our 

simple model the average user is exposed to a few equivalent top-ranked tags, and this 

is translated mathematically in a low-rank cut-off of the power law. Fig.2-b shows the 

excellent agreement between the experimental data and the numerical predictions of our 

Yule-Simon’s model with long-term memory. The parameter τ can be interpreted as the 

signature of a semiotic dynamics underlying the categorization process, since it affects 

the number of different top-ranked tags which are perceived by users as semantically 

independent, loosely corresponding to co-existing and non-overlapping categories. This 

picture is confirmed by that fact that the value of τ needed to match the experimental 

data for blog (a rather generic tag) is larger than the one needed for ajax (a pretty 

specific tag). This suggests that users of collaborative tagging systems share a universal 

behaviour which, despite the intricacies of personal categorization, tagging procedures 

and user interactions, appears to obey simple activity patterns. 

Conclusions. Uncovering the mechanisms governing the emergence of shared 

categorizations or vocabularies in absence of global coordination is a key problem with 

significant scientific and technological potential. The theoretical challenges are relevant 

for diverse areas where researchers are faced with the problem of taming the 

information overload and unleashing the full potential of computer-mediated social 

interaction. Collaborative tagging can provide precious hints and tools to both analyze 

and design large (human or artificial) communicating systems. Here we report for the 

first time about the emergence of a self-organized hierarchical structure in the co-
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occurrence of tags. Furthermore we show how a simple modelling scheme for 

collaborative tagging, which only takes into account two basic elements underlying the 

tagging process at the user level, is able to reproduce to a surprisingly level of accuracy 

the phenomenology of online social systems at the emergent level. In addition to the 

findings reported and discussed in this  Letter, our approach constitutes a starting point 

upon which studies of greater complexity can be based, with the final goal of 

understanding, predicting and controlling the Semiotic Dynamics of on-line social 

systems. 

Methods. Collaborative tagging systems are designed from the ground up to be 

information sharing systems for web-based interactive use, so that most of the 

information they contain is accessible by using a web browser. To perform automated 

data collection, a custom web (HTTP) client was written that connects to del.icio.us (or 

Connotea) and navigates the system's interface as an ordinary user would do, logging 

the relevant information for further post-processing. Both del.icio.us and Connotea  

allow the user to browse their content by tag: our client requests all the entries 

associated to the tag under study and uses an HTML parser to extract the post 

information (resource, user, tags) from the returned HTML code. Usually, only the most 

recent posts are returned, together with links to the previous history of the system: our 

client follows those links and repeats the parsing stage over and over to trace back the 

history of all posts associated to a given tag. 
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