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Abstract 

The paper presents a computational model of language in which linguistic abilities evolve in 

organisms that interact with an environment. Each individual's behavior is controlled by a 

neural network and we study the consequences in the network's internal functional 

organization of learning to process different classes of words. Agents are selected for 

reproduction according to their ability to manipulate objects and to understand nouns (objects’  

names) and verbs (manipulation tasks). The weights of the agents’  neural networks are 

evolved using a genetic algorithm. Synthetic brain imaging techniques are then used to 

examine the functional organization of the neural networks. Results show that nouns produce 

more integrated neural activity in the sensory processing hidden layer, while verbs produce 

more integrated synaptic activity in the layer where sensory information is integrated with 

proprioceptive input. Such findings are qualitatively compared with human brain imaging 

data that indicate that nouns activate more the posterior areas of the brain related to sensory 

and associative processing while verbs activate more the anterior motor areas. 
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1. Language processing in natural and artificial neural networks 

Artificial neural networks have been frequently used to build models of language processing 

abilities in adults and children. They have been employed to study the acquisition of lexicon 

and meaning, the processing of morphology and syntax, reading and speech production (cf. 

Christiansen et al., 1999). However, much connectionist work on linguistic tasks tends to 

study language in isolation from other cognitive abilities and from the sensory-motor 

interactions of the organism with the environment. This is an obstacle to considering the 

important issue of the “grounding”  of symbols on sensory-motor experience through which 

linguistic symbols acquire their meaning. Furthermore, in most connectionist models the issue 

of the neural plausibility and significance of the network architecture and functioning is not 

addressed, and this makes it impossible to compare the simulation results with such neural 

data as neuroimaging data.  

Computational models have also been successfully employed for investigating the 

evolution of language through simulation (Cangelosi & Parisi, 2002; Kirby 2002). These 

models use various approaches: artificial neural networks (e.g. Batali, 1994; Cangelosi & 

Harnad, 2000), rule-based systems (Kirby, 2001), and robotics (Steels & Kaplan, 1999). 

Neural networks have proven particularly useful because they can focus on the influence of 

both cognitive and neural mechanisms on language development and evolution. For example, 

evolutionary neural networks, or networks viewed in an Artificial Life perspective (Cangelosi 

& Harnad, 2000; Parisi 1997), are used to control the behavior of organisms that live in an 

environment and communicate between themselves. This approach provides a unifying 

theoretical framework for cognitive and neural modeling because of the use of both 

evolutionary and connectionist techniques. It offers the benefits of (i) studying some of the 

neural mechanisms at the basis of the evolution of linguistic abilities, (ii) understanding the 

interaction between the neural control of language and that of other behavioral and cognitive 
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abilities, and (iii) grounding language directly on the organism’s sensorimotor and cognitive 

abilities.  

Some studies using evolutionary neural networks have focused on the evolution of word 

classes and syntax. Cangelosi (2001) simulated the emergence of learned compositional 

languages, obtaining a strong evolutionary tendency to evolve a predicated-argument 

structure resembling a “verb-noun”  rule. In Cangelosi & Parisi (2001), an explicit verb-noun 

language evolves in a population of simulated organisms. The model highlights the beneficial 

effects of language on non-linguistic behavior and the asymmetric evolution of nouns before 

verbs. The analysis of categorical perception effects in the internal representations of 

networks (Cangelosi & Harnad, 2000) demonstrated that verbs produce more distinct internal 

representations of objects and events because of their more direct involvement with the motor 

actions with which the organism responds to the sensory input. However, in such studies no 

issues are considered regarding the architecture of the network, and there is no attempt at 

identifying internal representations of verbs and nouns in different parts of the network 

architecture.  

On the contrary, the neuropsychological and neurocognitive literature on language 

processing in the brain is quite extensive (Gazzaniga 2000). Neuropsychological experiments 

use a variety of experimental approaches such as the investigation of patients with 

psycholinguistics deficits and brain imaging studies on normal adults and language-impaired 

patients. For example, various studies have analyzed the neural correlates of the processing of 

various word classes and the verb-noun dissociation in patients. Cappa & Perani (2003) 

recently analyzed the literature on the neural processing of verbs and nouns. They found a 

general agreement on the fact that the left temporal neocortex plays a crucial role in lexical-

semantic tasks related to the processing of nouns whereas the processing of words related to 

actions (verbs) involves additional regions of the left dorsolateral prefrontal cortex. For 
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example, in the well known neuropsychological study on verbs and noun processing, Damasio 

& Tranel (1993) reported that most of the patients with selective disorders of noun retrieval 

had lesions in the left temporal lobe. Instead, verb impairment was associated with damage on 

the left prefrontal cortex. In a PET study, Martin and colleagues (1995) compared color 

naming (nouns) and action naming (verbs). They observed a selective activation for color 

naming of the left fronto-parietal cortex, the middle temporal gyrus, and the cerebellum. 

Perani, Cappa et al. (1999) also used PET for the processing of concrete and abstract verbs 

and nouns in Italian. Results indicated that left dorsolateral frontal and lateral temporal cortex 

were activated only by verbs. In the comparison of abstract and concrete words, only abstract 

word processing was associated with selective activation of the right temporal pole and 

amygdala and the bilateral inferior frontal cortex. Finally, in evoked potential studies it was 

reported that there is selective activation of the frontal lobes for action words (Preissl, 

Pulvermueller et al., 1995). This difference is related to the semantic content of words rather 

than to grammatical differences, since no difference was observed between action verbs and 

nouns with a strong action association (Pulvermueller, Mohr & Schliechert, 1999). 

Brain simulation models, such as those of computational neuroscience, have rarely 

focused on complex linguistic behavior, except for a few studies (e.g., Just et al. 1999). This 

is due to the complexity of the various linguistic functions (speech processing, lexical and 

semantic knowledge, syntax) to be included in a model. However, brain simulation models 

have been commonly developed for a variety of behavioral and cognitive abilities, such as 

vision, memory, and motor control. More recently, in such models the method of synthetic 

brain imaging (Arbib et al. 2000; Horwitz et al. 1999) has permitted a more strict integration 

of experimental data and computational models and a direct comparison of performance in 

artificial and natural brains. 
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This paper presents a computational model of language in which linguistic abilities evolve 

in organisms that interact with an environment. Therefore, the model makes it possible to 

study the interaction of cognitive and linguistic abilities. The aim of the simulation is to study 

the consequences of architectural and functional constraints (Feldman et al., 1988) in 

evolutionary neural networks that learn to process (understand) different classes of words 

(nouns and verbs). The model uses synthetic neuroimaging techniques to examine the internal 

organization of the neural networks and compares the results with data reported in the 

literature on language processing in the brain. The comparison is a limited one and there is no 

attempt at building a plausible model of language processing in the human brain.  

2. Synthetic brain imaging (SBI) 

The development of functional brain imaging techniques, such as PET (positron emission 

tomography) and fMRI (functional magnetic resonance imaging), has permitted significant 

advancements in our understanding of the neural basis of human and animal cognition and 

sensorimotor abilities. However, functional imaging data are complex to interpret. To help 

appreciate the cognitive and neural significance of such rich data, neural modeling methods 

can be useful. This methodology is referred as synthetic brain imaging (SBI, thereafter) 

(Arbib et al. 2000; Horwitz et al. 1999). It can be used to compare directly PET and fMRI 

imaging data in empirical studies and in computational models. The aim is to develop more 

detailed and neurally-plausible models of behavioral functions.  

Experimental brain imaging using PET and fMRI is based on differences in brain activity 

between tasks. This activity is measured through changes in blood flow (rCBF, regional 

Cerebral Blood Flow) which are the results of synaptic and neural activation in different parts 

of the brain. Synthetic brain imaging is also based on differences in artificial neural network 

“activity”  between tasks. For example, following Arbib’s et al. (2000) assumptions, in 
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synthetic PET the involvement of a region in a specific task is correlated with local integrated 

synaptic activity. Synaptic activity is computed by summing together the synaptic inputs 

arriving to the artificial neurons of a specific area, ignoring the positive/negative sign of the 

connections. Synthetic fMRI, instead, can be correlated with the activation of neurons. The 

activation values of artificial neurons in a specific portion of the neural network are summated 

over a period of time and compared with experimental fMRI data. However, in the literature 

on SBI the methods for calculating synthetic PET/fMRI data from synaptic/neural activity can 

vary depending on the types of computational model adopted (Tagamets & Horwitz, 2001). 

SBI has been used in studies with animal and humans for developing more detailed 

models of cognitive and behavioral abilities. Arbib et al. (2000) used synthetic PET to test 

their FARS model of parietal-premotor interactions underlying primate grasp control. 

Tagamets and Horwitz first applied synthetic PET (Tagamets & Horwitz, 1998) and then 

synthetic fMRI (Horwitz & Tagamets, 1999) to a large-scale model of working memory for 

determining the interregional connection patterns and strengths.   

In a study on language, Just et al. (1999) developed a computational model of sentence 

comprehension and analyzed the simulation results using synthetic neuroimaging. The results 

accounted for fMRI data that vary as a function of sentence complexity in Broca and 

Wernicke areas and in the dorsolateral prefrontal cortex. They found good agreement between 

the number of activated voxels in human brain imaging experiments and the predictions of 

their model for sentence types of different complexity.   

The use of SBI methods is still in an exploratory stage. There is ongoing debate on the 

general role of synthetic PET and fMRI data and on how to exactly compute such data. In 

addition, some researchers (e.g. Arbib et al., 2000) propose the use of SBI only for “realistic”  

neural network models, such as those based on leaky integrator models. However, SBI 

appears to be a useful and promising research methodology, as we will try show in this paper. 
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3. A neural network model of the evolution of nouns and verbs 

To study the processing of different word classes (nouns and verbs) in artificial neural 

networks, an artificial life model of object manipulation was developed. The simulated agent 

consists of an organism with a retina and a two-segment arm (e.g. Marocco et al., 2002; 

Schlesinger & Barto, 1999). The object manipulation scenario was chosen because of the 

important role of hand use and tool manipulation abilities in language evolution hypotheses 

(e.g. Corballis, 2002; Rizzolatti & Arbib, 1998).  

The simulations presented in this paper are based on a previous model of the evolution of 

verbs and nouns (Cangelosi & Parisi, 2001; cf. also Parisi et al., in press). Most of the model 

parameters, which are summarized in the following sections, are the same as in the above 

studies. The major differences concern the neural network architecture.  

3.1 The behavioral and linguistic tasks 

The artificial agent has to perform a number of different tasks. At the beginning of each 

task the agent is grasping an object with its hand and it has to either push the object away 

from itself or pull the object toward itself. Two different objects are used, a vertical bar 

(object A) and a horizontal bar (object B). To perform the task the agent may respond to 

visual stimuli, linguistic stimuli, or both. Furthermore, the agent receives a proprioceptive 

input regarding the current position of the two segments of its arm. 

The lifetime of an individual agent is divided into 11 tasks. In the first task 

(No_language), the retina encodes a 5x5 image of either object A or B in different positions 

and there are no linguistic stimuli. When object A is presented, the agent must push the object 

toward itself. When object B is presented, the object must be pulled away. These are the two 

default actions with which the agent must respond to the two objects. In the next five tasks 

(Vision+Language), the agent receives both the visual input from the retina and a linguistic 

input. In the remaining 5 tasks (Language_only), the retina input is shut off and only the 
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linguistic input is received by the agent. (The proprioceptive input is received in all epochs.)  

In the epochs with linguistic input five different linguistic inputs can be received by the agent: 

(1) noun of object A or B; (2) verb describing the default action (push for object A; pull for 

B); (3) verb describing the opposite action (pull for object A; push for object B); (4) both 

noun of object and verb for default action; (5) both noun of object and verb for opposite 

action. When the verb is received as input, the agent must do whatever the verb meaning 

indicates, thus overriding the default action if the verb describes the opposite action. 

The use of the terms “noun”  and “verb”  in the present model is not intended to correspond 

to the full blown grammatical categories of verbs and nouns. Nevertheless, the “nouns”  and 

“verbs”  of the present simulation seem to capture some of the fundamental properties of 

nouns and verbs of real human languages (Parisi et al., in press). Nouns co-vary with the input 

stimuli and can act as attentional cues. Verbs co-vary with the motor action performed by the 

agents. These simple properties may have been those of primitive proto-nouns and proto-

verbs which, through cultural and linguistic evolution, have given way to the complex, full 

blown grammatical categories of nouns and verbs. In fact, the analysis of the internal (neural) 

organization of our agents shows that there are functional communalities between the 

verbs/nouns in the model and the verbs/nouns in human subjects. 

3.2 Neural network 

The behavior of the agent is controlled by a feedforward neural network (Figure 1). The 

visual scene is perceived through a retina of 5x5=25 cells. An object is encoded as a pattern of 

25 bits with three horizontally/vertically aligned 1s and twenty-two 0s. The proprioceptive 

input is encoded in 4 units, which represent proprioceptive information about the two pairs of 

muscles (extensor and contractor) of each of the two arm’s segments. The linguistic input is 

encoded in 4 input units which localistically encode two nouns and two verbs. Depending on 
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the task, one or two of these units can be on (noun or verb only; both noun and verb) but in 

the No_language task all four linguistic input units are turned off. 

The network has two successive layers of hidden units (Figure 1). The first hidden layer is 

divided into two separate sensory-processing modules, one for processing the proprioceptive 

input and the other one for processing the visual input from the retina. Both modules project 

to a second hidden layer which has the role of integrating sensorimotor knowledge because of 

the convergence of motor (proprioceptive) and visual information1. The four linguistic input 

units project to both the visual hidden units in the first layer and to the sensorimotor hidden 

units of the second layer. 

The output layer contains four motor units. These units control the extension/contraction 

of the four arm muscles (a pair of extension/contraction muscles per arm segment). At each 

time step, the output activation corresponds to the force that is applied to each muscle. 

The activation rule for all hidden and output neurons is a standard logistic function. 

4 units

5 units

Proprioc. Language

4 units
ACTION

25 units
Retina

5 units

10 units

2+2 units

  

Fig 1 – Neural network architectures with specialized hidden layers. The first hidden layer 
works as a sensory processing module. The second layer works as a sensorimotor 
integration module.  

                                                

1 This architecture has been previously compared with another network without specialized hidden layers. 

Analyses on the hidden layer activity showed that this network actually uses different processing strategies in the 

two hidden layers (Cangelosi, in press). 
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3.3 Evolutionary algorithm 

A genetic algorithm is used to evolve the genotype (connection weights) of the agents’  

neural networks. During an individual agent’s lifetime, the weights do not change. The motor 

behavior and the language understanding of the agents improve (are learned) during evolution 

because the best agents are selected for reproduction in a succession of generations. 

In each generation, a population of 80 agents is used. The genotypes encode the 

connection weights of the network (as real numbers). At generation 0, weights are initialized 

by selecting randomly a value in the range ±1. A single task in the lifetime of an individual 

consists of a total of 18 subtasks (2 objects x 9 positions) each subtask lasting for 20 

input/output cycles. These 20 cycles are necessary for the arm to move an object from its 

initial position to the target. The fitness formula computes the total number of subtasks 

successfully completed by each agent in all epochs.  

At the end of their life, agents are ranked on the basis of their fitness and the 20 agents 

with highest fitness are selected for reproduction. Each individual asexually generates 4 

offspring with the same genotype of its single parent except for the addition of some random 

changes to some of the weights.  

In the first 1000 generations the agents are only exposed to a single task, i.e., the 

No_language task. These initial generations are needed for evolving a set of connection 

weights that allows agents to respond appropriately to the two objects (before language is 

introduced). After generation 1000, agents have a longer lifetime and they are exposed to all 

11 tasks, that is, the single No-language task and the 10 linguistic tasks. (The 11 tasks are 

experienced in a random order by each individual). In the fitness formula for the 10 tasks with 

language, a subtask is successful if the agent pushes or pulls the object according to the 

linguistic input. 
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The genetic algorithm is used here for simulating the process of acquiring simple 

linguistic abilities such as that of understanding (proto)nouns and (proto)verbs. However, the 

present model is not intended to support a view of language as based only on biological 

evolution. A simulation model meant to address the issue of the biological vs cultural origins 

of language should include both genetic and learning algorithms (cf. Cangelosi & Parisi 2001; 

Kirby, 2002). For example, Munroe and Cangelosi (2003) combine the genetic algorithm with 

the error backpropagation learning algorithm for neural networks. Their model makes it 

possible to analyze different types of Baldwin effects in the evolution of language.  

4 Results: Synthetic brain imaging 

The simulation was replicated 10 times with different randomly generated initial 

conditions. In all replications, agents evolved an ability to respond appropriately to the 

different input conditions. At the end of generation 2000, over 90% of the objects are 

responded to with the appropriate pushing or pulling behavior in all tasks. Because in this 

paper we focus on the synthetic brain imaging (SBI) analyses, other interesting results are not 

reported here (e.g., differences in the timing of evolution for verbs and nouns) but they can be 

found in  Cangelosi & Parisi (2001) and Cangelosi (in press). 

For the analysis of the internal organization of the agents’  neural networks using SBI, the 

methods proposed by Arbib et al. (2002) were used. One first analysis is based on the amount 

of synaptic input to a layer of neurons and will be called ISA: Integrated Synaptic Activity 

(synthetic PET in Arbib et al. 2000). A second analysis is based on the neural activity of 

neurons and will be called INA: Integrated Neural Activity (synthetic fMRI in Arbib et al. 

2000) 
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The overall integrated synaptic activity value ISAA(1/2) for the difference of activity 

between two different tasks (task 1 and task 2) in receiving region (hidden layer) A was 

computed using the following formula: 

 ( ) ( ) ( )212/1 AAA rISArISAISA −=   (1) 

where the regional synaptic activity for each task rISAA is  

 ( )
�

=
→=

N

i
tABA wrISA

1

  (2) 

with N equal to the number of units in the hidden layer, and the activity of each individual 

synapses wB→A(t) is 

 ( ) weightneuronsendingactivationw tAB ×=→ __   (3) 

Similar calculations were used for the integrated neural activity INAA(1/2). In this case, 

the data refer to the activity within each layer, instead of the receiving synaptic activity. 

Formulae (4) and (5) were used for the difference of regional rINAA values in the two tasks, 

based on the summation of the activity (activation value) of each neuron a(t). 

 ( ) ( ) ( )212/1 AAA rINArINAINA −=   (4) 

 ( )�

=
=

N

i
A tarINA

1

  (5) 

In the simulation there are 11 different tasks. The ISA and ISA values for all possible 

pairs of task subtractions were calculated for each hidden layer (e.g., No_language–

Noun_only, No_language–Verb_only, Verb_only–Noun_verb). Subsequently, all subtractions 

were averaged for the two linguistic classes of verbs and nouns, e.g., the average of the values 

No_language–Noun_only and Verb_only–Noun_verb contribute to the ISA value for Noun 

processing.  
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Data were statistically evaluated using repeated measure analysis of variance (MANOVA) 

separately for the ISA and INA data. A 2x2 design utilized as independent variables 

HIDDEN_LAYER (levels H1 and H2) and WORD_CATEGORY (levels Noun and Verb). 

The dependent variable of each MANOVA was the respective subtraction ISA or INA data of 

20 networks. These are the set single best individuals of the last generation in each of the 20 

replications of the simulation. The means and standard errors for the integrated synaptic 

activity ISA values are reported in Figure 2a. The integrated neural activity INA data are in 

Figure 2b. 

In the ISA MANOVA, the two main factors and their interaction were all significant: 

HIDDEN_LAYER F(1/19)=13.59 p<0.002, WORD_CATEGORY F(1/19)=6.43 p<0.02, 

interaction F(1/19)=8.92 p<0.008. The comparison of means (Fig. 2a) indicates that the 

processing of nouns is not differentiated between the two layers. Instead, the synaptic activity 

for verbs is significantly differentiated in the two layers, with the second hidden layer 

(sensorimotor integration) being more active.  

In the INA MANOVA, only the word category and the interaction were significant: 

HIDDEN_LAYER F(1/19)=1.11 p=3.04, WORD_CATEGORY F(1/19)=15.96 p<0.001, 

interaction F(1/19)=24.37 p<0.0001. Figure 2b shows that during noun processing, the first 

hidden layer (sensory processing) is significantly more active than the second layer. No 

relevant differences appear for verbs, although activity in the sensorimotor integration layer is 

higher. 
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2a - Integrated Synaptic Activity
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2b: Integrated Neural Activity
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Fig 2 – Data on the Integrated Synaptic Activity ISA (2a) and Integrated Neural Activity INA 
(2b) for verb and noun processing in network with specialized architecture. See text for 
explanation. 

5. Discussion 

Our simple neural network model of the evolution of verbs and nouns exhibits some 

surprising functional and architectural similarities with data on the neural processing of 

different word classes in the brain. In the computational model, nouns produce more neural 

activity (INA data – Fig 2b) in the sensory processing layer, while verbs produce more 

synaptic activity (ISA data – Fig. 2a) in the layer where sensory information is integrated with 

proprioceptive input to plan the action. In the human brain, nouns activate more the 

(posterior) areas of the brain related to sensory and associative processing, while verbs 

activate more the (anterior) motor areas (Cappa & Perani, 2003).  



 15

As previously stated, the aim was not to build a realistic and plausible model of language 

processing in the brain. The scope of the simulation was to establish if the architectural 

constraint of dividing the hidden layer into two different processing layers actually resulted in 

a functional specialization for the two word categories. The SBI data confirm that this is the 

case. This reinforces previous analyses of activation pattern representations in architectures 

with different modular organization of the hidden layer. In another study of linguistic 

evolutionary networks (Cangelosi & Parisi, 2001), the categorical perception effects differ for 

the two word categories: verb processing produces more compressed within-category 

representations and larger between-category differences compared to noun processing. In 

addition, the enhanced categorical perception effects for verbs always only appear in the 

sensorimotor integration layer (Cangelosi, in press).  

The present study demonstrates the usefulness of using SBI to study the functional and 

architectural specializations of artificial neural networks and to determine how these 

specializations might correspond to those reported in the literature on cognitive and neural 

processing of language. The methodology can be used for various research purposes. In the 

field of language evolution modeling, simulations can focus on how functional changes in 

network architecture will affect the evolution of cognitive and linguistics abilities (Deacon, 

1997). For example, the connectivity pattern of the networks can be evolved leading to 

changes in the size and position of the sensorimotor integration layer. The researcher can then 

monitor the effects of such changes, e.g., in favoring, or inhibiting, the emergence of nouns 

and verb processing abilities. The simulation results can subsequently be extended to build 

broader explanatory hypotheses on the evolution of language. 

One further direction of research is to investigate in more detail the SBI data. The results 

presented in Section 4 only use data averaged over all 11 language processing tasks. 

Therefore, potentially important differences in synaptic and neural activity among tasks may 
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have been overlooked. For example, detailed analyses of the synthetic synaptic/neural data for 

individual pairs of task subtractions could reveal significant differences between tasks in 

which language is received in isolation and those in which language is added to the visual 

input. Moreover, the ISA data on synaptic activity could be decomposed into two values, that 

of inhibitory synapses and that of excitatory synapses. This could reveal a differential 

positive/negative contribution of layers in the processing of nouns and verbs. 

Finally, our artificial life approach to neural networks (Parisi, 1997) has the advantage of 

studying the simultaneous interaction between different cognitive abilities and language. This 

is achieved in a system where symbols are directly grounded in the individual’s sensorimotor 

behavior and interaction with the environment (Harnad, 1990). The tool of SBI can make it 

possible to reach a deeper understanding of the cognitive and neural mechanisms which 

interact to ground linguistic and symbol manipulation abilities on simpler sensorimotor 

behavior (Cangelosi & Harnad, 2000). 
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