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Abstract. This paper describes a model for the evolution of communication
systems using simple syntactic rules, such as word combinations. It also focuses
on the distinction between simple word-object associations and symboli c
relationships. The simulation method combines the use of neural networks and
genetic algorithms. The behavioral task is influenced by Savage-Rumbaugh &
Rumbaugh’s (1978) ape language experiments. The results show that languages
that use combination of words (e.g. verb-object rule) can emerge by auto-
organization and cultural transmission. Neural networks are tested to see if
evolved languages are based on symbol acquisition. The implications of this
model for Deacon’s (1997) hypothesis on the role of symbolic acquisition for
the origin of language are discussed.

1. Symbol acquisition in the evolution of communication

The synthetic approach of Artificial Life has recently been applied to studying the
evolution of communication and language (Steels, 1997). Some models have been
used for the simulation of the emergence of simple lexicons in populations of
simulated organisms (e.g. Cangelosi & Parisi, 1998; MacLennan & Burghardt, 1994)
or in small communities of robots (Steel & Vogt, 1997). In these studies organisms
evolve shared lexicons for describing entities and relations of the environment. Other
models have focused on the evolution of syntax (e.g. Kirby & Hurford, 1997).
Simulated organisms evolve different syntactic languages starting from a given set of
syntactic structures and constraints, and devices for syntax acquisition.

The first type of model, that focus on lexicon emergence, do not make any explicit
reference to the role of syntax in language origin. Their aim is to model the early
stages of the evolution of (animal) communication. Indeed, in animal communication
systems, no syntactic structures have been observed. For example, no animal
communication systems have been found that share one of the main properties of
human languages, i.e. the combination of words to express different and new
meanings. These models of lexicon evolution study communication systems based on
simple signal-object associations. Organisms learn and evolve simple stimulus
associations between objects in the environment and signals.



In the second type of language origin models, researchers have taken the
availabili ty of some form of syntactic structures for granted. Their models do not
explain how syntax can emerge and the role of syntax for organisms’ adaptation and
survival. The associations that organisms learn are self-referential symbol-symbol
relationships. These models are subject to the symbol grounding problem (Harnad,
1990) since they lack an intrinsic link between their symbols and the entities and
relations existing in the organisms’ environment. Internal symbols need some form of
sensorimotor grounding. Due to the symbol grounding problem, the role of these
models for understanding the evolution of cognition is reduced.

Recently, Terrence Deacon (1997) proposed an explanation for the fact that animal
communication and human language differ. A variety of animal communication
systems have been studied (Hauser, 1996), however, there is no apparent continuity
between animal communication systems and complex human languages. That is, no
“simple languages” , using some elementary forms of word combinations or syntax,
have been found in the animal kingdom. The existence of simple languages could
explain the big gap between animal and human communication. Deacon (1997; 1996)
believes that this is due to the symbol acquisition problem. In fact the main difference
between animals and humans relies on symbolic references. There is a significant
difference between the referencing system of simple object-word associations and that
of symbolic associations. In animals, simple associations between world entities and
words can be explained by mere mechanisms of rote learning and conditional
learning. An animal acquires geneticall y, or learns, that a word’s sound is always
associated with a specific object. Instead, symbolic associations have double
references, one between the word (symbol) and the object, and the second between
the symbol itself and other symbols. A language-speaking human knows that a word
refers to an object and also that the same word has logical (syntactic) relation with
other words. Due to the possible combinatorial interrelationships between words,
there can be an exponential growth of reference with each new added word.

The difference between these types of associations, and their relation to the models
of language origin, is graphicall y represented in Figure 1. Figure 1a represents a
communication system based on simple associations between objects and words. It
refers to the models of the acquisition of lexicons. Figure 1b represents the models of
the origin of syntax. It only shows word-word associations, but this system is not
based on real symbolic associations as a link is missing between words and objects.
Words are self-referencing and they lack a grounding in the external world. Figure 1c
shows a system based on grounded symbolic associations. The arrows represent
references between words, and references between words and objects. This is the type
of system that we will study in this paper.

It should be noted that the relationship between words and objects, that constitute
the grounding of symbols to entities of the real world, is not a direct link between
mental symbols and real objects. Instead, it is a link between mental entities (the
symbols or words) and other mental entities (such as concepts) that constitute the
semantic reference. These categorical representations, that Deacon (1996) call s
“ indexical” , are useful to “sort out” the extensive perceptual variability of objects in
the real worlds. The ability of humans and animals to create mental categories, e.g.
through categorical perception, constitutes the “groundwork” of cognition (Harnad,
1987). From this it is possible to build more complex cogniti ve skills, such as
language.
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Fig. 1. Associations between objects (pictures) and symbols (words) in language origin models.
(a) Simple stimulus associations between objects and words in the models of the origin of
lexicons. (b) Self-referential associations between words that lack sensory-motor grounding in
the models of the origin of syntax. (c) Grounded symbolic associations. Words have links with
objects and logical relationships between themselves. Objects and words were chosen from
Savage-Rumbaugh & Rumbaugh’s (1978) experiments on ape language.

Deacon’s hypothesis on the role of symbolic learning in the evolution of human
language is supported by ape language studies and by neuropsychological and
neurophysiolgical evidence (Deacon, 1997). For example, experiments on language
acquisition in chimpanzees have been used to support the idea that animals tend to
learn language using simple word-object associations. However, apes can be taught
real symbolic associations under special experimental conditions (Savage-Rumbaugh
& Rumbaugh, 1978). Moreover, in these language-speaking animals the spontaneous
use of the grammatical rule “verb-object” has also been observed (Greenfield &
Savage-Rumbaugh, 1990).

This paper aims to test a model of the origin of communication and language that
deals with the evolution of different types of associations. The model should be able
to study how different word/object relationships can evolve and also to define the
mechanisms that explain the passage from communication based on simple stimulus
association to languages based on grounded symbolic references. For this reason
languages based on two-word combinations will be evolved. The behavioral task is
influenced by ape language studies (Greenfield & Savage-Rumbaugh, 1990).

2. Method

The simulation method combines the use of artificial neural networks and genetic
algorithms. It uses the methodology and theoretical framework of Ecological Neural
Networks (ECONET: Parisi, Cecconi & Nolfi, 1990). Populations of organisms are
evolved according to their behavioral performance in foraging tasks. Organisms’
behavior is controlled by neural networks.

In the present simulation, the environment setting for the foraging task consists of a
2D grid of 100x100 cells. About 1200 cell s are occupied by randomly placed foods
(mushrooms). The foods are grouped into two main functional categories: edible
mushrooms (E), i.e. foods that need to be collected to increase organisms’ fitness, and
toadstools (T), i.e. mushrooms that must be avoided. The first category of edible



mushrooms is then split into three functional subcategories: white (e1), yellow (e2),
and gray (e3). These are called functional categories because they require organisms
to perform a different task when approached (e.g. white mushrooms e1 should be
picked and cut, whilst other colored mushrooms require different actions). The fitness
formula adds one point for each e1/e2/e3 mushroom that an organism approaches
and properly treats according to its color. When a toadstool is collected, the fitness is
decreased by one point. The toadstool category does not have any functional
subcategory. Even though toadstools are perceptually classifiable into three categories
(t1, t2, t3), these are not functional categories because the fitness formula removes
one point for each toadstool that the organism reaches, regardless of their appearance.

The organization of the foraging task stimuli into a hierarchy of functional
categories was derived from the experimental setting of ape language studies. For
example in Savage-Rumbaugh & Rumbaugh (1978) chimpanzees had to learn to use
different lexigrams to name solid foods (e.g. banana, orange) and drinks (coke, milk).
Since they receive food from a vending-machine, they also need to learn a lexigram
for the verb associated to solid foods (“give” ) and that for the liquid drinks (“pour” ).
These stimuli constitute a hierarchy of two high-level functional categories (verbs)
followed by four low-level categories (two foods and two drinks). In our model
organisms will have to learn a name for each of the three edible subcategories (e.g.
“white” for e1, “yellow” for e2, and “gray” for e3), plus a common verb for the
whole edible category, e.g. “approach”. All toadstools will require the use of a
common verb, such as “avoid”. The three toadstool subcategories do not require a
specific name to be identified, but organisms will be allowed to name them.

The neural networks controlling the organisms’ behavior have a 3-layer
feedforward architecture (see figure 2). The input layer has 29 units, organized into
three groups of sensory units. In the first group there are 3 units, one for each of the
40-degree visual field. The unit corresponding to the visual field in which the closest
mushroom is perceived will be activated. The second group of input units has 18
nodes that encode some (visual) features of mushrooms. In fact, each mushroom has a
set of 18 binary features. The mushrooms of each subcategory share a common binary
pattern. For example e1 mushrooms share the prototype 111***************
and e2 have ***111************. An asterix (*) represents random bits. The
third group of input nodes are localist language units. Each unit is activated whenever
the corresponding word is used. The hidden layer has 5 units. The output layer has
two groups of unit. The first 3 units encode the actions (2 binary bits for the
approaching/avoiding movement and one unit for discriminating between e1, e2, and
e3). The second group has 8 linguist units. These units are organized into two clusters
of winner-takes-all units. That is, only two words at a time will be active (one per
cluster).

Evolution is organized into two sequential stages. The first stage takes 300
generations and organisms do not communicate at all. They only use the mushroom
position and feature information to evolve the proper foraging action. The population
consists of 80 individuals. Organisms live in the same environment for 1000 actions
(20 epochs of 50 moves each). The 20 organisms with the highest fitness level are
selected and each reproduce making 5 offspring. The new organisms’ genotypes, i.e.
the set of connection weights encoded as real numbers, are then mutated by slightly
modifying 10% of the weights. The new population will completely replace the
previous one.



Fig. 2. Neural network architecture and the interaction between the child organism and its
parent. The parent uses words to describe the closest mushroom. In the Listening Task the child
uses these words to decide which action to take. In the following Naming Task the child uses
the parent’s words as teaching input for error backpropagation.

In the second stage of evolution, starting at generation 301, communication
between organisms is allowed. The 20 parent organisms are kept together with the 80
new siblings. The parent organisms work only as speakers and language teachers.
They cannot eat mushrooms and do not replicate. During each time interval, child
organisms perform two actions (figure 2). The first is a Listening Task. To
discriminate the type of mushroom children use the words suggested by their parents
as input. In fact most of the time children rely solely on the parents’ linguistic input
because they only perceive the mushroom’s features 10% of the time. After the
network activation cycle of the Listening Task, children perform a Naming Task.
They use the mushroom’s 18-bit features to name the food type. An error
backpropagation algorithm is then applied. The error is computed using the parent’s
words as teaching input, so that children learn the same linguistic description given by
their parents. Some noise is added to the error between the child’s linguistic output
and the parents’ teaching input. This is to allow variability in the process of cultural
transmission of language (Denaro & Parisi, 1997). The same backpropagation
algorithm is used for an Imitation task, where the organism’s neural network learns
the auto-association of the input-output linguistic stimulus.

During the second stage of evolution the interaction between parents and children
can result in the emergence and auto-organization of a shared language. As they are
only allowed to perceive the mushroom’s features 10% of the time, it should facilitate
the evolution of a good language that discriminates at least the functional categories
T, e1, e2, e3. Fitness depends on the correct identification of these four categories.



3. Results

The first stage of evolution, which does not permit communication, was repeated 10
times using different random populations. Nine of these repli cations resulted in an
optimal classification behavior. Organisms evolved the ability to approach edible
mushrooms E and avoid all toadstools T. Moreover, according to the type of edible
mushrooms e1, e2, e3, they produced the correct activation in the third node of the
output action units. In the sole population where the evolved behavior was poor,
organisms were unable to discriminate between e2 and e3. The average fitness for
the 9 successful populations is shown in Figure 3 (first 300 generations). At
generation 300 the best individual of each population on average collects 90 edible
mushrooms (i.e. 4.5 mushrooms per each of the 20 epochs), and avoid all toadstools.
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Fig. 3. Fitness of the best individuals and of the groups of 20 selected parents. Simulation
without communication (generations 1-300) and during the evolution of communication
(generations 301-400). The values of generations 1-300 are averaged over 9 successful
simulations. The fitness of generations 301-400 is averaged over 11 populations.

For the second stage of evolution only the nine successful populations were used.
The only simulation with unsuccessful fitness growth was not used because language
evolution requires a preliminary ability to discriminate behavioral categories. This
stage took 100 generations. For each population, two random starting conditions were
executed. In total, 18 replications were performed.

The results of the distribution of evolved languages are shown in Table 1. In 11 of
the 18 runs, populations evolved an optimal language, i.e. the use of at least four
words/word-combinations to distinguish the four behavioral categories T, e1, e2, e3.
These languages emerged through a process of auto-organization of the lexicon, due
to the interaction between organisms and the process of cultural transmission. The
average fitness for the 11 successful populations is shown in figure 3 (generations
301-400). In the remaining 7 populations the emerged language was poor. That is,
some mushroom types were incorrectly labeled due to the lack of a specific symbol,
or symbol combination. Therefore the fitness is very low since these mushrooms were
incorrectly described and collected.



Single word Word combination Verb-object TOTAL
Optimal languages 1 (9%) 3 (27%) 7 (64%) 11
Imperfect languages 1  (14%) 2 (29%) 4 (57%) 7

Table 1. Distribution of language types in the 18 stage-two simulations for the evolution of
communication.

In the previous section we explained that the linguistic output units are organized
into two winner-takes-all clusters. The first cluster is made up of 6 linguistic units
(words), and the second has 2 units. The cluster-based structure does not imply that a
combination of two words is always necessary to describe a mushroom. In fact the
optimal behavior requires the production of only four actions, and therefore four
words from the first cluster are enough to name these categories. This is what
happened for one of the optimal language populations. Here organisms used four
words of the first cluster to name the four categories T, e1, e2, e3. The two words of
the second clusters were not systematically associated to any mushroom.

When both clusters are used, there are several possibilities of combining words.
However, we are interested in identifying word-combination rules that resemble
known syntactical structures. In particular we want to establish if a verb-object rule
has emerged. Considering the populations where optimal communication evolved, ten
(91%) evolved languages that use combinations of symbols. Among these, three
populations (27%) use various combinations of two words, and seven (64%) use verb-
object rules. The way we can identify the verb-object rule is because in the two-word
cluster each linguistic unit is systematicall y associated only to one of the high-order
categories T and E. One “verb” symbol is always used for all toadstools (“avoid” ) and
the other for all edible mushrooms (“approach” ). The units in the 6-word cluster are
used for distinguishing single “objects” (mushroom types) with which the two verbs
systematically couple.

4. Discussion

The aim of this research was to develop a model of the evolution of communication
systems based on simple syntactic rules, such as word combination. Moreover we
were interested in establishing whether the evolved word-object relationships were
based on symbolic learning or mere object-word associations. The resultant
description shows that languages that use combination of words (e.g. verb-object rule)
can emerge by auto-organization and cultural transmission. During the first stage
organisms forage using the 18-bit feature information to discriminate mushrooms.
Throughout the second stage, the foraging strongly depends on the evolution of a
useful language, as features are rarely available. This condition has resulted in the
rapid emergence of a shared language. In fact, within 30 generations the organisms’
average fitness is the same as in generation 300, when the mushroom feature
information was available all of the time. Moreover, the final fitness at generation 400
is higher (99 for the best organism) than that at generation 300 (91). This could be due
to the fact that for neural networks it is easier to process discrete information, such as
localist linguistic input, rather then processing the 18-bit feature information.



The probabil ity of evolving an optimal language is 61%, as 11 out of 18
populations evolved useful languages. The remaining 7 populations (39%) evolved
imperfect languages. However the discriminative quali ty of these languages was
relatively good. In the majority of the imperfect languages only one of the four
functional categories is incorrectly labeled. Two of the edible mushrooms categories
are named by the same word/word-combination. Note that these imperfect languages
also tend to use word combinations, and in particular most of them evolve the use of a
verb-object rule.

After having shown that it is possible to evolve by auto-organization
communication systems based on the combinatory rule “verb-object” , we want to
analyze the kind of referencing systems that organisms use when they associate words
with objects. We are interested in establi shing if the evolved languages are based on
the use of grounded symbols, i.e. words that have a direct association with objects and
that have logical relationships between them. We used a symbol acquisition test
consisting of the training of organisms with a perfect combinatory language using the
verb-object rule. The test was structured into three stages. In the first stage, organisms
learn to name each of the four categories e1, e2, t1, t2. The teaching input is not
provided by the parent organisms, but directly from the researcher. At this stage verbs
are not used, and no names are taught for the two categories e3 and t3. In the second
stage, organisms learn to associate the two verbs “approach” and “avoid” with the
categories e1/e2 and t1/t2 respectively. It is now expected that organisms learn the
logical relationship between the names of the two edible mushrooms e1 and e2 and
the verb "approach". The same symbolic association between the verb “avoid” and the
names of toadstools t1 and t2 should be learned. In the final stage the learning of
the names of categories e3 and t3 is finally introduced. The association the two
verbs with these new names is not taught. In fact it is expected that after the training
the organisms that learned real symbolic relationships between verbs and names will
be able to generalize the verb-object relationship to the new mushroom names. If the
verb “approach” is not associated with e3 it means that organisms did not learn any
symbolic association between the names of e1 and e2 and the verb “approach” . They
simply learned two independent object-word associations, one between e1 and its
name, and another between the same e1 and the verb “approach” .

This type of symbol acquisition test has been used in ape language studies. In the
experiment where chimpanzees learned to associate “pour” with the name of the solid
foods banana and orange (Savage-Rumbaugh & Rumbaugh, 1978), animals were then
tested with new names of foods. Only those animals that made the correct
generalization were considered to have learn symbolic associations.

The symbol acquisition test was repeated with 10 different populations. After the
three learning stages, seven populations produced the correct associations e3-
“approach” and t3-“avoid” . The success criterion was the production of the correct
verb for more than 75% of e3 and t3 mushroom types (N=8). In three populations
the learning of the names for e3 and t3 did not produce the activation of the proper
verb. It means that these organisms did not learn any symbolic association. In the
seven successful populations, instead, the language is based on logical relationships
between the mushrooms’ names and the two verbs. The relationships between words
and real objects, and between verbs and objects’ name, allow neural networks to
generalize the association of new names with the correct verb category.



These results show that neural networks can learn simple languages that use
symbolic associations. These symbols are grounded in the environment because of the
ecological simulation framework that allows a direct link between words and the
objects with which organisms interact. However, the network simple feedforward
architecture allows the use of other non-symbolic strategies for language learning. In
fact, during some simulations organisms appear to learn languages that do not use
symbolic relationships. More complex and biologically-inspired neural network
architectures could steer the learning towards symbolic acquisition, rather than simple
stimulus associations. As neurophysiological data suggests (Deacon, 1997) the
cortico-cortical connections in the human brain could help explain why humans can
easily learn symbolic associations, while animals tend to learn conditional stimulus
associations (except in controlled experiments as shown in ape language studies).
Deacon’s analysis of neuropsychological experiments on patients with prefrontal
cortex lesions suggests that this area, and its connection with other cortical regions,
could play a major role on symbol acquisition. The absence or underdevelopment of
the prefrontal cortex in animals would subsequently explain the lack of symbol-based
languages in animal communication systems. Our simple neural networks are not
meant to represent any real neural systems. However, it is possible to design more
articulate neural architectures that are inspired to specific connection patterns
observed in the brain. Research is ongoing into understanding which particular neural
network architectures allow symbol acquisition in language learning.

The model described in this paper allowed the simulation of the evolution of
languages using simple syntactic rules and symbol acquisition. To create a selective
pressure for the auto-organization of useful languages the experimental condition
made the foraging behavior highly dependent on the parents’ linguistic input (as
mushroom features are only available 10% of the time). Moreover, the
communication between parents and children, and the cultural transmission of
language in the Naming Task, allowed the auto-organization of a population-shared
language. The potential of this model for the study of the evolution of animal
communication and human language is high. In future studies both the experimental
setting, defining the availabil ity of input mushroom features and of the linguistic
input, and the model parameters controlling the pattern of communication and
language learning between organisms, can be systematically changed to test specific
hypothesis of the origin of language. For example, this model allowed us to focus on
the important distinction between communication systems based on simple object-
signal associations and languages based on symbolic relationships. The integration of
the model with ongoing studies of the role of neural network architectures for the
learning of symbolic representations will help to test Deacon’s (1997) hypothesis. It
wil l evaluate the role of symbol reference in language origin and on the co-evolution
of brain structures, i.e. the prefrontal cortex, and language and symbolic acquisition.
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