
Evolution of Communication Using Symbol Combination in Populations of
Neural Networks

Angelo Cangelosi

Centre for Neural and Adaptive Systems
University of Plymouth (UK)

angelo@soc.plym.ac.uk

Abstract
This paper uses a model of neural networks and genetic
algorithms to simulate the evolution of communication in
populations of evolving neural networks. It focuses on the
emergence of simple forms of syntax, i.e. the combination
of two symbols. The simulation task resembles Savage-
Rumbaugh & Rumbaugh’s experiment [11] on ape
language and symbol acquisition. The simulation results
show the evolution and cultural transmission of languages
based on combination of grounded symbols. The model is
analyzed according to the issues of the symbol grounding
and symbol acquisition problems.

1. Introduction

Computational models using genetic algorithms, neural
networks, and robotics, have been used for studying the
evolution of language and communication [13]. Some
models [2,10] have used neural networks and genetic
algorithms for simulating the emergence of single-word
languages. For example, organisms controlled by neural
networks evolve a shared lexicon of two signals for
naming two different types of food sources [2]. In other
studies [4,12], agents use signal-meaning matrices for
communication games. At the beginning of evolution all
signals are randomly associated to all possible meanings.
During evolution adaptive pressure only strengthens
associations between one signal and one meaning.
Communication games have also been used for originating
meanings and language in groups of real robots [14]. Other
modeling approaches have focused on the dynamics of
syntax evolution. For example, the role of the Language
Acquisition Device for learning artificial grammars has
been studied [8].

This paper focuses on the emergence of simple forms of
syntax. It will describe the simulation of the early stages of
the evolution of syntax with the combination of two
symbols. In particular, the model studies the evolution of
two-symbol combinatorial rules that resemble the “action-
object” structure. The spontaneous production of this
syntactic rule has been observed in ape language studies.
Greenfield and Savage-Rumbaugh [6] report that the
chimpanzee Kanzi, whilst learning to communicate with

experimenters through a keyboard of visual symbols
(lexigrams), incidentall y "invented" the syntactic rule of
"action-object". For example, Kanzi used symbol
combinations to express messages such as "Hide-Peanut"
or "Grab-Kanzi". This experimental evidence suggests a
possible role of combinatorial syntax in the early stages of
language evolution.

Modeling of the evolution of syntactic languages, and their
reference to animal language studies, is related to the
problem of symbol acquisition. Deacon [3] states that the
main difference between animal communication and
human language relies on the acquisition of symbolic
references, and in particular on the fact that animals have
problems acquiring symbolic associations. Animals only
learn associations between meanings and words through
conditional learning. Instead, symbolic associations in
human languages have double references, one between the
word (symbol) and the object, and the second between the
symbol itself and other symbols. According to Deacon this
difference explains why no form of "simple language" has
been found in animals. The missing gap between human
and animal languages can therefore be explained by the
symbol acquisition problem. Our model addresses the
evolution of early forms of syntactic languages that can be
related to the simulation of the missing animals' "simple
languages". Model analyses will establi sh whether the type
of associations learned by organisms are symbolic.

2. Method

Genetic algorithms and neural networks are combined
together for studying the evolution of communication. This
simulation method, called ECONET (Ecological Neural
Network), was proposed by Parisi et. al. [9] to model
populations of virtual organisms that live in an
environment. ECONET models are used to study the
interaction of evolutionary, behavioral, social, and
cogniti ve factors. In our simulation a population of 80
organisms have to perform a foraging task by collecting
“edible mushrooms” and avoiding “toadstools” . In the
environment there are 6 types of mushrooms, three edible
and three poisonous. Once an edible mushroom is
approached, organisms have to identify its type in order to



gain fitness. As toadstools must be avoided, no further
classification of their type is required. These foraging
stimuli resemble those in Savage-Rumbaugh &
Rumbaugh’s study on ape language [11]. In their
experiment chimpanzees were fed through a vending
machine that could "give" solid foods and "pour" drinks.
Therefore animals had to learn not only the names
(lexigrams) for the single foods/drinks but also a lexigram
for the different types of solid foods to be “given” and
another lexigram for different types of liquid to be
“poured” .

Organisms live in a 2D environment of 100 by 100 cell s.
At the beginning of each epoch there are 1200 randomly
distributed mushrooms, 200 per category. During one
epoch every organism performs 50 actions. Each
organisms li ves for 20 epochs, 1000 actions. A mushroom
is characterized by a binary string of 18 features. These
features wil l be used by the organism's neural network to
identify the mushroom type and appropriate action. A set
of 3 binary features always set to 1 identifies the
mushroom category whilst the remaining bits are either 0
or 1. Therefore, the 200 mushrooms of each category share
a common binary prototype. When this 18-bit string is
input to the organism's neural network, the mushroom
should be classified into one of the six categories.

Each time an organism collects an edible mushroom, its
fitness is increased by one point if the correct category of
mushroom is identified. Identification is based upon the
level of activation of one output unit. When a toadstool is
collected, the fitness decreases by one point. At the end of
their li fetime the fittest 20 organisms are selected and
reproduce 4 offspring each. The organism’s genotype
made up of the neural network's connection weights. Ten
percent of each offspring's connection weights are
randomly mutated.

A 3-layer feedforward neural network controls the
behavior of the organism (Figure 1). In the input layer, 3
units encode the location of the closest mushroom and 18
units encode their binary features. Eight input units are
used for the 8 symbols (words) used for naming
mushrooms. The network has 5 hidden units. In the output
layer, 3 units control the organism’s behavior (movement
and identification of mushroom category), and 8 units are
used to encode the mushroom names. These symbolic
output units are organized in two clusters of competiti ve
winner-takes-all units (one cluster of 2 units, the other of 6
units). Since only one unit per cluster can be active, each
mushroom will be named using two symbols.

Mushroom features
(18 bits)

Mushroom name
(2 symbols, one per cluster)

Mushroom name
(2 winner-takes-all clusters)Motor actions

Mushroom
location

Figure 1: Neural network architecture

During the first 300 generations organisms evolve the
abilit y to differentiate between the 6 types of mushrooms.
Organisms do not communicate and do not use the 8
symbolic input and output units. Only the closest
mushroom's location and the 18-bit feature string are
available as input.

From generation 301 to 400 organisms can communicate
by using the 8 linguistic input/output units. During these
generations the new 80 organisms live together with their
20 parent organisms. Only the 80 offspring wil l forage and
reproduce. The parents serve as speakers and teachers for
naming the mushroom categories. During each action, the
parent network receives the 18-bit feature as input and
produces two output symbols describing the mushroom.
These symbols are used as input to the child's neural
network. Ten percent of the time the child receives the 18-
bit string as input. This is to facilitate the evolution of good
languages as the availability of the mushroom features is
rare. Therefore, the parent's linguistic description becomes
an important source for discriminating between mushroom
categories. The child's network uses the parent's symbols
not only to decide what action to perform but also to
imitate the parent's description through backpropagation.
The parent's two-symbol string is the teaching input. Some
random noise is added to the error between the child's
output symbols and the parent's output symbols to
introduce variabil ity in the process of cultural transmission
[5].

3. Results

The simulation from generation 1 to 300 was repeated 10
times, using different initial random populations (i.e.
neural networks with different random weights). At
generation 300 the foraging task fitness in 9 out of 10
populations reached an optimal level. Indeed, analysis of
the behavior of the best organisms shows that all toadstools



were avoided and all edible mushrooms were approached
and correctly identified.

The 9 successful populations are used in the second stage
of simulation from generation 301 to 400. In this stage,
communication is permitted and organisms can learn how
to name mushrooms from their parents. Forty-five different
simulations were performed (9 populations *5 initial
random lexicons). In 20 of the 45 runs the evolution of
communication was successful since each organism
evolved a good language. In fact, they use at least 4
symbols, or 4 symbols-combinations, to distinguish the 4
functional categories of mushrooms (the toadstools + the
three types of edible mushrooms). In the remaining 25 runs
the evolved languages have signal mismatches. Some
mushrooms are incorrectly labeled and classified due to the
lack of a symbol for one of the 4 functional categories.
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Figure 2: Percentages of the different types of languages in
the 45 repli cations of the simulation at generation 400.

The distribution of the different types of evolved languages
has been analyzed. Figure 2 shows that 85% (17
populations) of the 20 simulations with good languages
evolved combinations of symbols. Ten of the 17 lexicons
use an “action-object” structure. That is, two different
“action” symbols ("verbs") are used for all toadstools and
all edible mushrooms respectively. The second symbol is
used for distinguishing the three edible categories. Only
15% of these good-language simulations use one-symbol
languages. At least four different symbols are used to
describe the general category of toadstools and the three
types of edible mushroom. In the 25 simulations with
language mismatch the distribution of one-symbol
languages (48%) versus symbol-combination languages
(52%) was approximately equal.

The evolution of optimal languages in the populations with
good languages is also reflected by their fitness. The
average fitness in the simulations with good languages is

higher than that of the simulations with signal mismatch
(Figure 3). The lower fitness is due to the fact that
organisms incorrectly label some of the mushroom
categories. They use the same symbol, or symbol
combination, for two of the four functional categories.
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Figure 3: Average fitness of the best 20 organisms in the
population with good language and with imperfect

language.

4. Discussion

The results of this simulation show that the ecological
setting (e.g., foraging task), the neural network
architecture, the mechanisms of cultural transmission, and
the evolution allow the emergence of language. Moreover,
in the simulations with good languages there is a strong
tendency to evolve the use symbol combinations. Some
populations also evolve the "action-object" rule, i.e. one
symbol is systematicall y used for distinguishing the two
main actions ("avoid" all toadstools, "approach" all edible
mushrooms) and the other symbol is used for
distinguishing between the three categories of edible
mushrooms.

In the introduction the problem of symbol acquisition in
the evolution of animal communication and human
languages was discussed [3]. Human languages are
characterized by the fact that learned words (symbols)
have double associations. One association is between the
word and its semantic referent (which has a direct link to
the world's object or event). The second type of association
is between the symbol itself and other symbols, through
the use of syntactic rules. Therefore, a system that is truly
acquiring symbols will be able to use the potential of
symbolic associations and of syntactic rules. Due to the
possible combinatorial interrelationships between symbols,
there can be an exponential growth of reference with each
new added word.



It is possible to test for symbol acquisition and to establi sh
if the learned syntactic rules are based on symbol-symbol
associations. In the experiment by Savage-Rumbaugh &
Rumbaugh [11], upon which the foraging task and stimuli
were based, a test for symbol acquisition was used. In their
experiment, chimpanzees initiall y learned to associate
“pour” with the name of drinks (coke and juice) and "give"
with the name of solid foods (banana and orange).
Subsequently, they assessed animals with new names of
drinks and foods. These results show that under certain
language training conditions animals are able to learn real
symbolic associations and make correct rule
generalizations. Chimpanzees correctly associated the new
drinks' name with the verb "pour", and the new foods'
name with "give".

A similar symbol acquisition test was developed for the
foraging task of the model presented in this paper.
Organisms are first taught to associate the verb "avoid"
with the names of two toadstools and "approach" with the
names of two edible mushrooms. Subsequently, they are
taught the name of a new toadstool and the name of a new
edible mushroom. No direct feedback for the verb
association is given during the learning of these new
names. Finally neural networks are tested to establi sh
whether they learned to use the "action-object" rule to
associate the correct verb with the new names. The results
show that in 70% of populations the learned language is
actuall y based on symbolic associations between the
mushrooms’ names and the two verbs [1]. Therefore,
neural networks are able to use a symbolic strategy when
learning linguistic symbols and the syntactic rules for
combining them.

Neural networks have been proposed as a good model for
the symbol grounding problem in cognitive modeling [7].
Every good cognitive model should use symbols that are
"grounded" in the world so that this grounding can affect
the way symbols are made available to the system and used
by it. The communication systems evolved in this
simulation use symbols, i.e. signals combined together to
represent different meanings. Due to the fact that
communicating organisms are controll ing by neural
networks, their symbols are “grounded” because they are
intrinsically linked to their referents in the environment,
through the input units.

The proposed model is able to simulate and study the
emergence of communication and syntax. This model is an
example of the use of neural networks and genetic
algorithms for the evolution of syntax. It shows the
emergence of the "action-object" syntactic rule starting
with the complete absence of any form of communication.
The results in this paper are consistent with experiments
performed on animal communication (e.g. ape language

studies [11]) and the symbol grounding and symbol
acquisition problems. Further developments of this model,
such as simulations in which ecological, social, and
evolutionary variables are manipulated, wil l increase the
understanding of the role of these factors in the origin and
evolution of language.
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