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Abstract

This paper uses a model of neural networks and genetic
algorithms to simulate the evolution of communicaion in
populations of evolving neura networks. It focuses on the
emergence of simple forms of syntax, i.e. the combination
of two symbols. The simulation task resembles Savage-
Rumbaugh & Rumbaugh's experiment [11] on ape
language and symbd acquisition. The simulation results
show the evolution and cultural transmisson of languages
based on combination of grounded symbols. The model is
anayzed according to the issues of the symbaol grounding
and symbol acquisition problems.

1. Introduction

Computational models using genetic dgorithms, neura
networks, and robdics, have been used for studying the
evolution of language axd communicaion [13]. Some
models [2,10] have used neural networks and genetic
algorithms for smulating the emergence of single-word
languages. For example, organisms controlled by neura
networks evolve a shared lexicon of two signas for
naming two different types of food sources [2]. In other
studies [4,12], agents use signal-meaning matrices for
communication games. At the beginning o evolution al
signals are randomly associated to all possble meaiings.
During evolution adaptive pressure only strengthens
asciations between one signa and e meaning.
Communication games have also been used for originating
meanings and languagein groups of real robds [14]. Other
modeling approaches have focused on the dynamics of
syntax evolution. For example, the role of the Language
Acquisition Device for leaning artificial grammars has
been studied [§].

This paper focuses on the anergence of simple forms of
syntax. It will describe the simulation of the ealy stages of
the evolution of syntax with the cmbination of two
symboals. In particular, the model studies the evolution of
two-symbd combinatorial rules that resemble the “action-
objed” structure. The spontaneous production of this
syntactic rule has been observed in ape language studies.
Greenfiedld and Savage-Rumbaugh [6] report that the
chimpanzee Kanzi, whilg leaning to communicate with

experimenters through a keyboard of visua symbols
(lexigrams), incidentally "invented" the syntactic rule of
"action-ohject". For example, Kanzi used symbol
combinations to express messages such as "Hide-Peanut"
or "Grab-Kanzi". This experimental evidence suggests a
possble role of combinatorial syntax in the ealy stages of
language evolution.

Modeling o the evolution of syntactic languages, and their
reference to animal language studies, is related to the
problem of symbd acquisition. Deacon [3] states that the
main difference between anima communication and
human language relies on the acquisition of symbolic
references, and in particular on the fact that animals have
problems acquiring symbolic associations. Animals only
lean asociations between meanings and words through
conditional leaning. Instead, symbdic assciations in
human languages have double references, one between the
word (symbol) and the olject, and the second between the
symboal itself and aher symbds. According to Deacon this
difference explains why no form of "simple language" has
been found in animals. The missng gap between human
and animal languages can therefore be explained by the
symbol acquisition problem. Our model addresses the
evolution of early forms of syntactic languages that can be
related to the simulation of the missng animals "simple
languages'. Mode analyses will establish whether the type
of asociations leaned by organisms are symbolic.

2. Method

Genetic algorithms and neura networks are @mbined
together for studying the evolution of communication. This
simulation method, called EconeT (Ecological Neura
Network), was proposed by Parisi et. al. [9] to model
populations of virtua organiams that live in an
environment. ECONET models are used to study the
interaction of evolutionary, behavioral, social, and
cognitive factors. In our smulation a population of 80
organisms have to perform a foraging task by colleding
“edible mushrooms’ and avoiding “toadstods’. In the
environment there ae 6 types of mushrooms, three @ible
and three poisonous. Once a edible mushroom is
approached, organisms have to identify its type in order to



gain fitness As toadstods must be avoided, no further
clasdfication of their type is required. These foraging
gimuli  resemble those in Savage-Rumbaugh &
Rumbaugh’'s study on ape language [11]. In their
experiment chimpanzees were fed through a vending
machine that could "give" solid foods and "pour" drinks.
Therefore animals had to lean not only the names
(lexigrams) for the single foods/drinks but also a lexigram
for the different types of solid foods to be “given” and
another lexigram for different types of liquid to be
“poured”.

Organisms live in a 2D environment of 100 ky 100 cdls.
At the beginning o each epoch there ae 1200 randomly
distributed mushrooms, 200 per category. During one
epoch every organism performs 50 actions. Each
organisms lives for 20 epochs, 1000 actions. A mushroom
is characterized by a binary string of 18 features. These
features will be used by the organism's neural network to
identify the mushroom type and appropriate action. A set
of 3 binary features always @t to 1 identifies the
mushroom category whilst the remaining hts are ather 0
or 1. Therefore, the 200 mushrooms of each caegory share
a common binary prototype. When this 18-bit gtring is
input to the organiam's neura network, the mushroom
should be dassfied into ane of the six categories.

Each time a organism colleds an edible mushroom, its
fitnessis increased by one paint if the crred category of
mushroom is identified. Identification is based upon the
level of activation of one output unit. When a toadstod is
colleded, the fithess deaeases by one point. At the end of
their lifetime the fittet 20 arganisms are sdeded and
reproduce 4 offspring each. The organism's genotype
made up of the neural network's connedion weights. Ten
percent of each offspring's connedion weights are
randomly mutated.

A 3-layer fealforward neural network controls the
behavior of the organism (Figure 1). In the inpu layer, 3
units encode the location of the dosest mushroom and 18
units encode their binary features. Eight input units are
used for the 8 symbds (words) used for naming
mushrooms. The network has 5 hidden units. In the output
layer, 3 wnits contral the organism’'s behavior (movement
and identification of mushroom category), and 8 units are
used to encode the mushroom names. These symbolic
output units are organized in two clusters of competitive
winner-takes-all units (one duster of 2 units, the other of 6
units). Since only one unit per cluster cen be active, each
mushroom will be named using two symboals.
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Figure 1: Neural network architedure

During the first 300 generations organisms evolve the
ahility to differentiate between the 6 types of mushrooms.
Organisms do not communicate and do not use the 8
symbolic input and output units. Only the dosest
mushroom's location and the 18-bit feature string are
available asinput.

From generation 301 to 400 organisms can communicae
by using the 8 linguigtic input/output units. During these
generations the new 80 organisms live together with their
20 parent organisms. Only the 80 offspring wil | forage and
reproduce The parents serve as eakers and teachers for
naming the mushroom categories. During each action, the
parent network receves the 18-bit feature as input and
produces two autput symbols describing the mushroom.
These symbols are used as input to the child's neura
network. Ten percent of the time the child recaves the 18-
bit stringasinput. Thisisto facilitate the evolution of good
languages as the availability of the mushroom features is
rare. Therefore, the parent's linguistic description becomes
an important source for discriminating between mushroom
categories. The child's network uses the parent's ymbols
not only to dedde what action to perform but also to
imitate the parent's description through backpropagation.
The parent's two-symbol string is the teaching input. Some
random noise is added to the error between the child's
output symbols and the parent's output symbols to
introduce variabil ity in the processof cultura transmisson

[5].
3. Reaults

The simulation from generation 1 to 300 was repeated 10
times, using different initial random populations (i.e
neura networks with dfferent random weights). At
generation 30 the foraging task fitnessin 9 out of 10
populations reached an optimal level. Indeed, analysis of
the behavior of the best organisms shows that all toadstod's



were avoided and dl edible mushrooms were approached
and corredly identified.

The 9 successful populations are used in the semnd stage
of simulation from generation 30l to 400. In this gtage,
communication is permitted and arganisms can lean how
to name mushrooms from their parents. Forty-five different
simulations were performed (9 populations *5 initial
random lexicons). In 20 o the 45 runs the evolution of
communication was successful since ech organism
evolved a good language. In fact, they use at least 4
symboals, or 4 symbols-combinations, to dstinguish the 4
functional categories of mushrooms (the toadstods + the
threetypes of edible mushrooms). In the remaining 25 runs
the evolved languages have signal mismatches. Some
mushrooms are incorredly labeled and classfied dweto the
lack of a symbol for one of the 4 functional categories.

B symbol-combination
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Figure 2: Percentages of the different types of languagesin
the 45 repli cations of the smulation at generation 400,

The digtribution of the different types of evolved languages
has been andyzed. Figure 2 shows tha 85% (17
populations) of the 20 ssimulations with good languages
evolved combinations of symbds. Ten of the 17 lexicons
use a1 “action-objed” structure. That is, two different
“action” symbals ("verbs') are used for all toadstods and
all edible mushrooms respedively. The second symboal is
used for distingushing the three @ible ategories. Only
15% of these good-language simulations use one-symbad
languages. At least four different symbols are used to
describe the general category of toadstools and the three
types of edible mushroom. In the 25 smulations with
language mismatch the digtribution of one-symbol
languages (48%) versus symbd-combination languages
(52%) was approximately equal.

The evolution of optimal languages in the populations with
goad languages is also refleded by their fitness The
average fitnessin the simulations with good languages is

higher than that of the simulations with signal mismatch
(Figure 3). The lower fitness is due to the fact that
organisms incorredly label some of the mushroom
categories. They use the same symbol, or symboal
combination, for two of the four functional categories.
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Figure 3: Average fitnessof the best 20 organismsin the
population with good language and with imperfed
language.

4. Discussion

The results of this smulation show that the eologica
setting (e.g., foraging task), the neura nework
architedure, the mechanisms of cultura transmisson, and
the evolution allow the emergence of language. Moreover,
in the simulations with good languages there is a strong
tendency to evolve the use symbd combinations. Some
populations also evolve the "action-objed” rule, i.e. one
symbal is gstematicdly used for distinguishing the two
main actions ("avoid" al toadstods, "approach” all edible
mushrooms) and the othe symbol is used for
digtingushing between the three céegories of edible
mushrooms.

In the introduction the problem of symbal acquisition in
the evolution of animal communication and human
languages was discussed [3]. Human languages are
characterized by the fact that leaned words (symbols)
have double associations. One asciation is between the
word and its semantic referent (which has a dired link to
the world's object or event). The second type of association
is between the symboal itself and aher symbols, through
the use of syntactic rules. Therefore, a system that is truly
acquiring symbols will be able to use the potential of
symboalic associations and o syntactic rules. Due to the
possble cmbinatorial interrelationships between symbols,
there can be an exponential growth of reference with each
new added word.



It is possble to test for symbol acquisition and to establish
if the leaned syntactic rules are based on symbol-symbol
asciations. In the experiment by Savage-Rumbaugh &
Rumbaugh [11], upon which the foraging task and stimuli
were based, atest for symbol acquisition was used. In their
experiment, chimpanzees initially leaned to assciate
“pour” with the name of drinks (coke and juice) and "give'
with the name of solid foods (banana and orange).
Subsequently, they assessed animals with new names of
drinks and foods. These results show that under certain
language training conditions animals are able to lean rea
symbolic assciations and make @rred  rule
generalizations. Chimpanzees corredly associated the new
drinks' name with the verb "pour”, and the new foods
name with "give".

A similar symbol acquisition test was developed for the
foraging task of the mode presented in this paper.
Organisms are fird taught to asociate the verb "avoid"
with the names of two toadstools and "approach” with the
names of two edible mushrooms. Subsequently, they are
taught the name of a new toadstool and the name of a new
edible mushroom. No dired feedback for the verb
asciation is given duing the leaning o these new
names. Finally neural networks are tested to establish
whether they learned to use the "action-object” rule to
asciate the corred verb with the new names. The results
show that in 70% of populations the leaned language is
actualy based on symbolic associations between the
mushrooms names and the two verbs [1]. Therefore,
neural networks are able to use asymbdlic strategy when
leaning linguistic symbds and the syntactic rules for
combining them.

Neurd networks have been proposed as a good modd for
the symbd groundng problem in cognitive modding [7].
Every goad cognitive modd should use symbols that are
"grounded" in the world so that this groundng can affect
the way symbols are made available to the system and used
by it. The communicaion systems evolved in this
simulation use symbds, i.e. signals combined together to
represent different meanings. Due to the fact that
communicating organisms are ntrolling by neura
networks, their symbds are “grounded” because they are
intrinsically linked to their referents in the environment,
throughthe input units.

The proposed mode is able to smulate and study the
emergence of communication and syntax. Thismodel is an
example of the use of neura neworks and genetic
algorithms for the evolution of syntax. It shows the
emergence of the "action-ohjed" syntactic rule starting
with the mmplete absence of any form of communication.
The results in this paper are mnsistent with experiments
performed on anima communication (e.g. ape language

studies [11]) and the symbol grounding and symboal
acquisition problems. Further developments of this model,
such as smulations in which ewlogical, social, and
evolutionary variables are manipulated, will increase the
understanding o the role of these factors in the origin and
evolution of language.
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