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Abstract

The evolution of language implies the parallel evolution of an abili ty to
respond appropriately to signals (language understanding) and an
abili ty to produce the appropriate signals in the appropriate
circumstances (language production). When linguistic signals are
produced to inform other individuals, individuals that respond
appropriately to these signals may increase their reproductive chances
but it is less clear what is the reproductive advantage for the languages
producers. We present simulations in which populations of neural
networks living in an environment evolve a simple language with an
informative function. Signals are produced to help other individuals to
categorize edible and poisonous mushrooms in order to decide whether
to approach or avoid encountered mushrooms. Language production,
while not under direct evolutionary pressure, evolves as a by-product
of the independently evolving perceptual abili ty to categorize
mushrooms.
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The emergence of a "language" in an evolving population of neural networks

1. Modelling the evolution of language and communication

Human language has evolved and, therefore, it probably had some positive influence on the
reproductive success of the individuals that exhibited it. The evolutionary origin of language and
the selective pressures that may have originated it, however, are difficult to investigate because
of the limited evidence available. Therefore, it may be useful to try to simulate on a computer
different evolutionary scenarios in order to state more clearly the underlying hypotheses and to
determine more objectively and in more detail their consequences.

In fact, interest in studying language's origin and evolution using computer simulations has
increased considerably in the last few years. Some researchers have explored the evolution of
language using models that describe language as a set of signal-meaning pairs (Steels, 1996;
1997; Oliphant and Batali, 1996; Di Paolo, 1997). These authors use populations of agents that
play a communication game via the exchange of signals. At each time step a signal is selected
according to a matrix that assigns a probabili ty value to each signal in correspondence to each
meaning. With this simulation approach it is possible to study the different conditions that allow
the evolutionary emergence of shared vocabularies. Steels and Vogt (1997) have experimented
with adaptive language games in pairs of physically embodied robot agents. The language game
includes six steps: establishing contact with the other robot, identifying the communication
topic, categorizing the surrounding world, speaker’s encoding of the communicative signal,
listener’s decoding of the signal, feedback from listener to speaker. This robotic approach has
the advantage of stressing the emergence of grounded perceptual categories and the
development of a shared vocabulary to talk about the world. Other reaserchers have used
simulations to examine important linguistic phenomena such as the evolutionary emergence of a
critical period for language development (Hurford, 1991) and the interaction between evolution
and learning in the emergence of language (Kirby & Hurford, 1997).

Other simulative models have addressed topics in the evolution of animal communication such
as the reliabili ty of communication signals in aggressive behavior (de Bourcier & Wheeler,
1997) and the evolution of signal diversity, e.g., in mating songs (Werner & Todd, 1997), with
interesting results. For example, Werner and Todd point out that the evolution of high levels of
song diversity is possible when sexual rather than natural selection is the mechanism responsible
for evolution - a finding that could be related to the high level of diversity among human
languages and to the similarities between sexual and cultural selection mechanisms.

Some simulations use neural networks to model organisms and genetic algorithms to model
evolution. For example, Saunders and Pollack (1996) have used recurrent neural networks and
the GNARL (Saunders, Angeline, & Pollack, 1994) evolutionary algorithm to study the
evolution of continuous communicative systems, that is, the exchange of real valued signals in
different input and output channels. The interaction protocol involves small groups of agents (2
or 3) that exchange signals about a source of food with the evolved continuous signals
functioning as modulators of the agents’ behavior. (For a general discussion of how to study
language with neural networks in an Artificial Life perspective, cf. Parisi, 1997.)
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In the present paper we describe some simulations on the evolutionary emergence of a very
limited "language", made up of just two one-word utterances, in a population of simple
organisms living in a simple environment. The behavior of each organism is controlled by a
neural network and the evolution of the population of organisms is modeled using a standard
genetic algorithm. In our simulations the "language" is genetically inherited rather than culturally
transmitted and, moreover, the utterances have no internal structure and no syntax. Therefore,
our “ language” is closer to animal communication than to human language. However, some
processes (and problems) such as selective reproduction, changes in population variabili ty, drift,
etc. appear to be shared by both biological and cultural evolution and, furthermore, the
functional aspect of language we are interested in (e.g., as an aid to categorization) can be
studied even in languages without syntax. In any case, for simplicity we will refer to our
“language” as language, without quotation marks.

The evolution of a language in a population of individuals implies the parallel evolution of two
distinct abili ties: the abili ty to produce the appropriate signals in the appropriate circumstances
and the abili ty to understand these signals, that is, to respond to each signal with the appropriate
behavior. Each abili ty does not make much evolutionary sense without the other and, in fact,
every individual in a language-using population tends to possess both abili ties. Let us consider
how these two abili ties might evolve. Imagine two different scenarios. In one scenario (Webb,
1994) the male of one animal species emits a particular signal. The female perceives the signal
and uses the signal's properties (e.g., directional information about its source) to find the male.
When male and female are close enough, they can mate. In this scenario both the male's
behavior of producing the signal and the female's behavior of responding to the signal by
approaching its source are under separate selective pressures. Males emitting the signal are
more likely to have offspring than nonemitting males, and females that respond with the
appropriate behavior are more likely to have offspring than nonresponding females. In fact
Werner and Dyer (1991; 1994) have been able to evolve this type of language in a population of
neural networks.

But consider another scenario. An individual perceives the location of a mushroom but is unable
to perceive the mushroom's detailed perceptual properties (e.g., its shape and color) because the
mushroom is too distant or for some other reason. Hence, the individual cannot recognize if the
mushroom is edible or poisonous and it cannot decide whether to approach and eat the
mushroom or to avoid it. A conspecific which is nearby, unlike the first individual, can perfectly
perceive the mushroom's properties. This other individual emits a particular signal if the
mushroom is edible and a different signal if the mushroom is poisonous. Based on both direct
information about the mushroom's location and the signal emitted by the conspecific the first
individual responds by approaching and eating the mushroom in the first case and by moving
away in the second case.

In this scenario the behavior of understanding the signals by responding appropriately clearly is
under selective pressure. Individuals that respond appropriately to signals will tend to live longer
and to have more offspring than individuals that do not respond appropriately. On the other
hand, the evolution of the behavior of producing the appropriate signals is more mysterious.
What is the advantage of producing the signal to the individual that produces it? Why should an
individual that produces the appropriate signals live longer and have more offspring than other
individuals that fail to do so? Since language requires the parallel evolution of linguistic
production and linguistic comprehension, how can language evolve when it has a purely
informative function and therefore it is advantageous to the receiver but not to the producer?
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2. Experimental setup: Living in an environment with both edible and poisonous
mushrooms

In this Section we describe a scenario inspired by communicative signals in small groups of
animals such as the well known signals with which vervet monkeys communicate the presence
of various types of predators to their conspecifics (Cheney and Seyfarth, 1990). In the animal
kingdom signals that refer to entities in the environment are used to refer not only to predators
but to other entities as well. Use of signals to communicate information about food location and
quality is present in many animal species (Hauser, 1996). Our scenario simulates the exchange
of communicative signals between pairs of organisms concerning the quality of potential food.
More specifically, individual organisms signal to each other if encountered mushrooms are
edible or poisonous.

The organisms live in an environment that contains two types of mushrooms: edible mushrooms
and poisonous mushrooms. Edible mushrooms resemble but are not identical to each other, and
the same is true for poisonous mushrooms. Edible mushrooms are different from poisonous
mushrooms but mushrooms belonging to the two different categories may share some
properties. Since the organisms reproduce on the basis of their abili ty to eat the edible
mushrooms and to avoid the poisonous ones, they must first categorize an encountered
mushroom as either edible or poisonous and then they must respond by approaching and eating
edible mushrooms and by going away from poisonous ones.

Each individual lives in an environment of 20x20=400 cells that contains 20 randomly
distributed mushrooms each occupying a single cell. Ten mushrooms are edible and the other 10
are poisonous. At the beginning of its life an individual organism is placed in a randomly
selected cell with a randomly selected orientation (N, S, E, and W). The entire life of an
organism lasts 750 time units (input/output cycles) divided up into 15 "epochs" of 50 cycles
each. When an organism happens to step on a cell containing a mushroom, the mushroom
disappears (it is eaten). At the beginning of each epoch all the mushrooms remaining from the
preceding epoch are eliminated and they are replaced by a new set of 20 randomly distributed
mushrooms.

The behavior of each organism is controlled by a feedforward neural network with 14 input
units, 5 output units, and 5 hidden units (Figure 1). One input unit encodes the location
(direction) of the single nearest mushroom as the mushroom's angle measured clockwise from
the organism's current facing direction. This angle is mapped in the interval from 0 to 1. (If two
or more mushrooms are at the same distance from the organism, one is chosen at random.) Ten
input units encode the mushroom's perceptual properties. The 10 edible mushrooms are encoded
as 10 patterns of 10 bit, with each pattern obtained by changing a single bit, randomly chosen, in
the prototypical pattern 1111100000. Similarly, the 10 poisonous mushrooms are encoded as 10
single-bit deviations from the prototype 0000011111. Hence, an edible and a poisonous
mushroom can share either zero (when the two bit-changes neutralize each other) or two bits in
the same position. The 3 remaining input units (signal-encoding input units) encode one of 8
possible perceived signals: 111, 110, 100, etc.
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Figure 1. Neural networks controlli ng the behavior of speaking and listening organisms.

Two of the 5 output units encode a movement of the organism in the environment. The
organism can either proceed one step forward (11), turn 90 degrees to the left (10) or to the
right (01), or just do nothing (00). The remaining 3 output units (signal-encoding output units)
encode one of 8 possibile emitted signals in the same way as the signal encoding input units.
(For all output units continuous values are thresholded to either 0 or 1.)

We generate an initial population of 100 neural networks with the same architecture and
randomly assigned connection weights. These weights are randomly chosen from a rectangular
distribution ranging from -1 to +1. At the beginning of life an individual has zero energy. The
individual's energy is increased by 10 units every time the organism eats an edible mushroom
and it is decreased by 11 units if the organism eats a poisonous mushroom. At the end of life,
which has the same length for all organisms, the organisms are ranked in terms of their energy
and the 20 individuals with the most energy are allowed to reproduce by generating 5 offspring
each. An offspring has the same connection weights of its (single) parent with the exception of
some "genetic mutations" that change the value of 10% of the weights, randomly selected, by
adding a quantity randomly chosen in the range -1/+1. The process is repeated for 1000
generations. The selective reproduction of the individuals with most energy and the constant
addition of variation to the genetic pool of connection weights through the genetic mutations
results in an increase in average energy across the 1000 generations and the evolutionary
emergence of the behavior of approaching and eating the edible mushrooms and avoiding the
poisonous ones.

However, we are not interested in this behavior as such. We are interested in how our
organisms recognize edible and poisonous mushrooms and, more specifically, what we want to
know is if a useful language will emerge in the population because it helps the organisms to
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discriminate between edible and poisonous mushrooms. Linguistic signals can be useful both as
an aid in the categorization of nearby mushrooms whose perceptual properties are perceived by
the organism and as "symbols" standing for the perceptual properties of more distant
mushrooms that cannot be categorized as either edible or poisonous because while their location
is perceived their perceptual properties are not perceived.

Imagine an organism wandering in its environment. In each cycle one particular mushroom
happens to be the mushroom closest to the organism. If the mushroom is sufficiently near to the
organism, i.e., it is located in one of the 8 cells adjacent to the organism's cell, the organism
perceives both the location of the mushroom (its angle with respect to the organism's facing
direction) and its perceptual properties (the pattern of 10 bits). However, if the mushroom is
more distant, the organism can perceive the mushroom's location but not its perceptual
properties. The 10 input units encoding the mushroom's perceptual properties all have 0
activation value.

We compare the evolution across 1000 generations of three different populations. One
population has no language. In the organisms of this population the input units of the neural
network that should encode the perceived signal are constantly kept at an activation level of 0.5
and the output of the signal-encoding output units is ignored. Like all the organisms in the
present simulations, when an individual encounters a mushroom which is not located in one of
the 8 cells adjacent to the individual's cell, the organism can perceive the direction in which the
mushroom lies but not the mushroom's perceptual properties. Unlike the organisms of the next
two populations, however, this individual is not helped in recognizing the type of mushroom by
some linguistic signal. Therefore, the only solution which is open to this organism consists in
approaching the unknown mushroom until i t happens to be sufficiently near that the organism
can perceive its perceptual properties. At this point the individual can categorize the mushroom
and it can either eat the mushroom or go away from the mushroom as appropriate.

In a second type of population the language is externally provided by us and it does not evolve
(Floreano, Miglino, & Parisi, 1991). When an individual belonging to this population encounters
a mushroom, the three input units of its neural network that encode perceived signals have an
activation pattern of '100' if the encountered mushroom is edible and an activation pattern of
'010' if it is poisonous. (The first two digits discriminate between the two signals while the third
digit has a value shared by both signals.) The signals produced by the organisms are ignored.
These organisms can use the linguistic signals externally provided to them both as a help in
categorizing a mushroom when they can perceive the mushroom's perceptual properties because
the mushroom is close enough, and as a substitute for the act of perceiving the mushroom's
perceptual properties when the encountered mushroom is too distant for the organism to have
access to its perceptual properties.

In the third type of population language is not externally provided by us but it evolves
autonomously. The scenario, which has been inspired by Hutchins and Hazelhurst (1995), is the
following. Like the organisms of the other two populations, an individual can perceive the
nearest mushroom's perceptual properties only if the mushroom is close enough. However, in
this simulation something special happens. In each cycle another individual is randomly selected
from the population (i.e., from the remaining 99 individuals forming the current generation) and
this second individual is placed next to the first individual so that it is exposed to the same
perceptual input as the first individual with the only difference that the second individual has
access to the perceptual properties (the pattern of 10 bits) of the mushroom whatever the
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distance of the mushroom. The only task for the second individual is to label the mushroom for
the first individual. The signal-encoding input units of the second individual are always set to
0.5. The output of its signal-encoding output units (thresholded to either 0 or 1) in response to
the perceptual properties of the mushroom is used as input to the signal-encoding input units of
the first individual. (The second individual's  motor output is ignored.)

Therefore, in this last population when an individual encounters a mushroom the individual has
always access to a linguistic signal produced by a conspecific. As in the previous population, if
the mushroom is close enough so that not only the mushroom's location but also its perceptual
properties can be perceived, the linguistic signal provided by the conspecific can be used by the
individual as a help in categorizing the mushroom. If the mushroom is more distant and its
perceptual properties are not accessible, the linguistic signal can function as a substitute for
these perceptual properties. However, in this population, unlike the previous population, the
quality of the signals provided by conspecifics is not guaranteed. Whatever signal is generated
by the conspecific's neural network, the signal is input to the neural network of the individual
that must decide whether to approach or go away from the mushroom. Hence, the language can
be useful to these organisms only if it evolves appropriately.

3. Results

Figure 2 shows how average energy changes across 1000 generations in the three populations
with no language, externally provided language, and evolved language, respectively (average
results of 5 replications of each simulation). The simulations were stopped after 1000
generations because at that point the organisms are able to discriminate sufficiently well between
edible and poisonous mushrooms and to associate the appropriate behavior to each type of
mushrooms. A behavioral test of mushroom discrimination at generation 1000 has showed that
in average a good organism collects 28 edible mushrooms and only 1 toadstool.

Language appears to be a useful addition to the evolutionary adaptation of these organisms. The
organisms with no language have an average energy of a little more than 150 units at the end of
evolution while the two populations with language have an average energy of more than 250
units. On the other hand, the two populations with language do not differ very much from each
other. Although, predictably, the population with externally provided language has a more
regular increase in average energy than the population with evolved language, the two
populations reach an equivalent level of energy at the end of evolution.
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Figure 2. Average fitness across 1000 generations of three different populations: without
language, with externally imposed language, and with evolved language. Each curve is the

average of 5 different replications of the same simulation.

It is interesting to examine what linguistic signals evolve in the third population. Since the
individuals that label the mushrooms are each time randomly selected from the population
different individuals can produce different signals when exposed to the same perceptual input.
What is observed, therefore, is a frequency distribution of different signals produced by the
different individuals in each generation. To determine what signals are actually produced, each
individual was tested using a sort of 'naming task' in an experimental controlled setting. The
individual was exposed to the entire set of 20 mushrooms (10 edible and 10 poisonous ones)
each positioned in four different locations (directions) with respect to the individual, that is, in
front, in the back, right and left. The 20x4=80 signals produced by the individual in response to
this set of 80 inputs were recorded and analyzed. (The signal-encoding input units of the
individual were set to 0.5 during the entire test.)

Figure 3 shows the frequency distribution of the 8 possible signals produced by all the
individuals in each of 10 generations (generation 0, 100, 200, etc., up to generation 1000) in
one replication of the simulation. A similar pattern of frequency distribution was found in the
other four replications. However the two high-frequency signals used to name the two types of
mushrooms changed in each replication.
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Figure 3. Typical frequency distribution of the 8 possible signals produced by all the individuals
in each of 10 generations (generation 0, 100, 200, etc., up to generation 1000) in one replication

of the simulation with the population with evolved language.

Although there are some oscill ations, the population evolves a language that tends to
consistently use the pattern '010' to label edible mushrooms and the pattern '110' to label
poisonous mushrooms. A population can be said to possess an efficient language if (a)
functionally distinct categories (in our case, edible and poisonous mushrooms) are labeled with
distinct signals, (b) a single signal tends to be used to label all the instances within a category,
(c) all the individuals in the population tend to use the same signal to label the same category.
(Clark (1993) has argued that principles similar to these govern the child's acquisition of the
lexicon.) According to these criteria, the language evolved by our population appears to be
rather efficient. (Similar results were obtained in the other replications of the simulation
although of course different pairs of signals emerged for the two categories of mushrooms.)

4. Discussion

We have seen that a population of simple artificial organisms living in a simple environment can
evolve an efficient language with an informative function to help the individuals to interact with
their environment. Due to sensory limitations an individual can perceive the location but not the
perceptual properties of a distant mushroom. This represents a serious handicap because an
individual can adopt an informed decision on whether to approach or go away from an
encountered mushroom only if the mushroom is very close. In these circumstances the
population evolves a simple language in the sense that individuals tend to generate distinctive
labels for edible and for poisonous mushrooms and these labels are used by other individuals to
decide whether to approach or avoid a mushroom.

As we have observed in Section 1, the evolution of a language implies the parallel evolution of
the abili ty to produce the appropriate signals in the appropriate circumstances and the abili ty to
understand the perceived signals by responding appropriately to them. In some populations the
two abili ties co-evolve because there are separate evolutionary pressures on both language
producers and language understanders. However, in the evolutionary scenario that we have
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studied in our simulations it is less clear how a language can evolve. When linguistic signals are
used with the function to inform the receiver about some environmental object or event that is
useful for the receiver to know more about, there is an evolutionary pressure on receivers of
signals to evolve an abili ty to understand the signals. However, it is less clear what are the
evolutionary pressures on the producers of the signals to evolve an abili ty to produce the
appropriate signals in response to the appropriate object. But if the appropriate signals are not
produced the abili ty to understand those signals does not make much sense and no language can
evolve.

A possible answer to this apparent puzzle links the evolution of language to the evolving
cognitive (perceptual) abili ty to categorize mushrooms (or, more generally, entities in the
environment) based on their perceptual properties. If one examines the architecture of the neural
network that governs the behavior of our organisms, one can say that the two abili ties of
producing and understanding linguistic signals are incorporated (represented) in two separate
sets of connection weights. The abili ty to understand the signals is represented in the lower
connections weights linking the signal-encoding input units to the hidden units ("understanding
weights"). The abili ty to produce signals is represented in the higher weights from the hidden
units to the signal-encoding output units ("producing weights") (cf. Figure 1). The two sets of
connections weights are interlinked through the layer of hidden units. So let us examine more
closely the role of these hidden units.

In a feedforward neural network the input-to-hidden connection weights have the task to
transform the input so that the input can be mapped into the appropriate output using the
hidden-to-output connection weights. The result of this transformation is the activation pattern
which is observed in the hidden units. In our networks the hidden units should be able to encode
the transformed perceptual properties of encountered mushrooms in such a way that the output
units can generate two different motor behaviors in response to the two categories of
mushrooms: approaching and eating the edible mushrooms and going away from the poisonous
ones. The hidden units can accomplish this task by exhibiting the same or very similar patterns
of activation in response to all edible mushrooms and a distinct set of similar patterns in
response to all poisonous mushrooms. At the beginning of evolution, given the random weights,
the patterns evoked by the two categories of mushrooms are likely to overlap considerably.
However, the evolutionary emergence of the abili ty to approach the edible mushrooms and to
avoid the poisonous ones implies that the two sets of hidden activation patterns tend
progressively to separate. The networks that tend to respond to all edible mushrooms with a
given set of similar activation patterns in their hidden units and to poisonous mushrooms with a
distinct (nonoverlapping) set of similar activation patterns are more likely to leave descendants.

Now let us introduce linguistic signals and let us consider how the understanding weights and
the production weights are related to the activation patterns in the hidden units. Given some
particular signal as input the role of the understanding weights is to help the hidden units to
exhibit the appropriate activation pattern (tendentially a single one for all edible mushrooms and
a different one for all poisonous mushrooms) when a mushroom is close enough and its
perceptual properties can be perceived or, more critically, to induce the appropriate activation
pattern in the hidden units when the mushroom is distant and its perceptual properties cannot be
perceived. Hence, there is a direct evolutionary pressure to develop the abili ty to understand
linguistic signals because understanding linguistic signals helps, or makes it possibile, to
categorize the different environmental entities and, as a consequence, to respond appropriately
to these entities.
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But it is the role of the hidden units in language production which is of interest here. This role
may suggest how the evolutionary improvement in the cognitive (perceptual) abili ty to
recognize different categories of mushrooms can have a positive influence on the evolution of
the linguistic abili ty to produce an efficient language. Individuals that tend to exhibit one set of
similar activation patterns on their hidden units in response to all edible mushrooms and a
distinct set of similar activation pattern in response to all poisonous ones are more likely to
designate with a distinct linguistic signal all edible mushrooms and with a different linguistic
signal all poisonous mushrooms, that is, to produce a useful language. This results from the fact
that the signals emitted by an individual in response to a perceived mushroom depend on two
factors: (a) the individual’s production weights, and (b) the activation pattern on the individual's
hidden units (cf. Figure 1). In the early stages of evolution both factors are unable to produce
useful signals. The production weights are initially assigned at random and they are not selected
for producing useful signals. Furthermore, the activation patterns on the hidden units will vary
inconsistently from one mushroom to another one. Hence, the activation pattern on the signal-
encoding output units (i.e., the emitted signal) will tend to consist of values that vary more or
less randomly around 0.5 (because the production weights have been randomly assigned at the
beginning of evolution and random weights tend to result in 0.5 activation values) and, after
these values have been thresholded to either 0 or 1, the resulting signal will not be very useful.

However, after a certain number of generations the organisms will be more able to categorize
the encountered mushrooms appropriately with their hidden units because this is the only way
for them to increase their reproductive chances. Better categorization, as we have seen, means
that the hidden units tend to exhibit very similar activation patterns for all edible mushrooms and
a distinct set of similar activation patterns for all poisonous mushrooms. Hence, factor (b) above
has changed. More consistent activation patterns on the hidden units can result in slight changes
in the activation level of the signal-encoding output units that may be sufficient to allow
organisms to produce more useful signals, that is, a single signal for all edible mushrooms and a
different signal for all poisonous mushrooms. Furthermore, the evolutionary increase in the
absolute value of connection weights due to mutations can protect the production weights from
the disrupting effects of mutations and consolidate this trend toward the production of better
signals.

This analysis is confirmed by an examination of the signals produced (but not used) by the
population without language. As will be recalled, the individuals in this population do not
receive any linguistic signals in their signal-enconding input units (which have a constant
activation value of 0.5) and the signals they produce are simply ignored. Therefore, there is no
evolutionary pressure of any kind for the emergence of a language in this population. However,
if we examine the activation patterns appearing on the signal-encoding output units of the
individuals of our populations without language, i.e., the linguistic signals they produce even if
nobody is using them, we see an interesting result. Figure 4 shows the evolution of average
energy in one of our populations without language and at the same time it plots an index of the
quality of the language produced based on the three criteria for an efficient language mentioned
at the end of Section 3.

To compute the index of language quality we use an 8x2 language production table. The table
contains the percentages of each of the 8 possible signals for the 2 classes of edible and
poisonous mushrooms based on the results of the naming test for all individuals. The quality
index QI is computed using the following formula:
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While the first part of formula (1) measures the principle of contrast (use of only one word for
each class of mushrooms), the dispersion values measure the use of synonyms for the same
mushroom class. The use of the percentage table for the signals emitted by all organisms allows
us to consider how much all the organisms share the same language.

Comparing the evolutionary trend of fitness and of the language quality index what is observed
is that after a certain number of generations the organisms start producing useful linguistic
signals and that, interestingly, the sudden improvement in the usefulness of their language
coincides with a marked increase in their fitness (cf. Figure 4).

Figure 4. Evolutionary increase in average fitness in a population with no language. Also shown
in the figure is the evolutionary change in an index of the quality of the language inadvertently

produced by the population.

The observed improvement in the quality index of the emitted, even if not used, language since
generation 450 appears to be related to the sudden increase in average fitness which is also
observed in this period. The increased fitness is at least in part determined by a better
categorization of encountered mushrooms by the activation patterns in the hidden units. These
better activation patterns of the hidden units in turn cause the production of better linguistic
signals. Hence, the linguistic abili ty to produce useful signals appears to be a by-product of the
cognitive abili ty to categorize perceived mushrooms. If the produced signals are received by
other individuals, as in our third population, they may help these other individuals to categorize
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perceived mushrooms or they may function as substitutes for the perceptual properties of
mushrooms when these properties cannot be perceived.

The fact that language production and categorization are related does not mean that any change
in each of the two abili ties should necessarily affect the other. In the simulations where language
has no direct effect on the organism’s fitness, the naming behavior depends also on the random
drift of the connection weights between the hidden units and the output signal-emitting units.
This probably explains why at about generation 950 the temporary decrease of language quality
is not associated with a decrease in fitness.

In simulations where foraging behavior depends directly on language, the correlation between
categorization abili ty and the quality of produced language can be much more important. We
have measured this correlation using Pearson r. The correlation between average fitness and the
language quality index for all five replications is .71 (p<.0001). In this case any relevant change
in the language or in the categorization skill will affect the other abili ty.

As we have already said, the positive effect of categorization on emitted language is explained in
our model by their sharing the common layer of hidden units. Even though the present neural
network architecture is not intended to reflect any specific animal or human brain structure, the
shared layer of hidden units is assumed to correspond to the brain level in which perceptual and
linguistic processing share some common information.

The influence of the perceptual abili ty to categorize entities in the environment on the linguistic
abili ty to produce efficient signals to label these entities is related to a hypothesis about language
evolution which has been proposed by Burling (1993). Burling has argued that human language
has emerged from the cognitive (sensory-motor) capacities of our prelinguistic ancestors rather
than from their primate-level communicative behavior. One might read our simulations as
providing some evidence in favour of this hypothesis. The production of efficient linguistic
signals as aids to categorization can be viewed as a by-product of, or at least to be facili tated by,
a pre-existing abili ty to categorize the environment on a sensory-motor basis.

In our analysis of the language produced by the organisms in our third simulation (evolved
language) we found that the evolved language tends to have the following three properties: (a)
different signals are used for functionally distinct categories, (b) the same signal is used to label
all the instances within a category, (c) all individuals use the same two signals for the two
categories. The use of different signals for different categories and of the same signal for all
members within a category corresponds to the principle of contrast (Clark, 1987) or of mutual
exclusivity (Markman and Wachtel, 1988), that children rely on when they assign only one label
per category. The fact that all individuals use the same signal for each category corresponds to
the ontogenetic principle of conventionality (Clark, 1993). This correspondence between
ontogenetic principles of language acquisition and phenomena of both language evolution and
historical changes has been discussed by Clark (1993).  For example, she compares the principle
of contrast with Bréal's law of linguistic differentiation. In his work on historical changes of
linguistic forms Bréal (1897) showed that a single meaning originally associated with several
different signals becomes associated in later historical stages with only one of these signals.

A final aspect of our model that we would like to mention is its potential to deal with the symbol
grounding problem (Harnad, 1990). Harnad has proposed the use of some kind of hybrid
connectionist-symbolic system in which the connectionist component would generate symbols
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that are grounded in the physical world by perception and the symbolic component would
manipulate these symbols (Harnad, 1993). The present model seems to be able to evolve signals
that are linked to objects in the environment in that they are produced and understood by
organisms as part of their sensory-motor interactions with the environment. The signals
produced by our networks with their signal-encoding output units can be identified with
Harnad's "symbolic representations", while the hidden unit activations correspond to
"categorical representations" since their patterns tend to maximize inter-categorical differences
and minimize intra-categorical differences. (For a discussion of these differences cf. Sharkey and
Jackson, 1994; Cf. also Parisi, Denaro, and Cangelosi, 1997.) A further step in the evolution of
a truly human language, of course, would be the evolution of an abili ty in neural networks to
combine signals (and the internal categorical representations associated with them) to form
complex signals with a syntax. If this can be done, our model would deal with signal
manipulation and combination within a non-hybrid entirely connectionist framework.

5. Conclusions

The results of our efforts to simulate language evolution using neural networks in an ecological
perspective have shown that the model proposed allows us to study at least some aspects of the
emergence of language in populations of organisms interacting among themselves and with an
external environment. The analysis of the relation between categorization and linguistic
production suggested that there might be a strong interdependence between the evolution of
language and the evolution of cognition and that language might have initially evolved as a by-
product of cognitive (perceptual) abili ties to categorize the environment. On the other hand, the
role of language in the categorization of entities in the environment can have been one of the
evolutionary pressures for the further evolution of categorization abili ties.

In further development and testing of the model (Cangelosi, 1997; Cangelosi, Denaro, and
Parisi, in preparation) we have investigated other aspects of the model such as the influence of
language on categorization when categorization is facili tated because individuals learn during
their life (by imitating others) to label encountered mushrooms. In these simulations we have
also directly inspected the internal representations of encountered mushrooms (activation
patterns on hidden units) and compared internal representations without language and with
perceived or produced language, and how these internal representations change during the
process of evolution.
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