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Abstract

The evolution of language implies the parallel evolution of an ability to
respond appropriately to signals (language understanding) and an
ability to produce the gpropriate signals in the gpropriate
circumstances (language production). When linguistic signals are
produced to inform other individuals, individuas that respond
appropriately to these signals may increase their reproductive chances
but it islessclea what is the reproductive advantage for the languages
producers. We present simulations in which populations of neura
networks living in an environment evolve a simple language with an
informative function. Signals are produced to help other individuals to
caegorize alible and poisonous mushrooms in order to dedde whether
to approach or avoid encountered mushrooms. Language production,
while not under dired evolutionary presaire, evolves as a by-product
of the independently evolving perceptual ability to categorize
mushrooms.

Keywords. Language evolution, Genetic dgorithm, Artificial Life, Symbol grounding
Note: published in Conredion Sience, 10(2), 83-97.



The emergence of a" language" in an evolving population of neural networks

1. Modelling the evolution of language and communication

Human language has evolved and, therefore, it probably had some positive influence on the
reproductive successof the individuals that exhibited it. The evolutionary origin of language and
the seledive presaures that may have originated it, however, are difficult to investigate because
of the limited evidence available. Therefore, it may be useful to try to simulate on a computer
different evolutionary scenarios in order to state more dealy the underlying hypotheses and to
determine more objedively and in more detail their consequences.

In fad, interest in studying language's origin and evolution using computer smulations has
increased considerably in the last few yeas. Some reseachers have explored the evolution of
language using models that describe language & a set of signal-meaning pairs (Steds, 1996
1997 Oliphant and Batali, 1996 Di Paolo, 1997). These auithors use populations of agents that
play a ommunicaion game via the exchange of signals. At ead time step a signd is sleded
acording to a matrix that assgns a probability value to ead signal in correspondence to eat
meaning. With this smulation approach it is possble to study the different conditions that allow
the evolutionary emergence of shared vocabularies. Steds and Vogt (1997 have experimented
with adaptive language games in pairs of physicaly embodied robot agents. The language game
includes gx steps. establishing contad with the other robot, identifying the communicaion
topic, caegorizing the surrounding world, speser’s encoding of the communicaive signa,
listener’s decoding of the signal, feedbadk from listener to spedker. This robotic goproach hes
the alvantage of stressng the amergence of grounded perceptual caegories and the
development of a shared vocabulary to talk about the world. Other reaserchers have used
simulations to examine important linguistic phenomena such as the evolutionary emergence of a
criticd period for language development (Hurford, 1991) and the interadion between evolution
and learning in the emergence of language (Kirby & Hurford, 1997).

Other smulative models have aldressed topics in the evolution of anima communication such
as the reliability of communicaion signals in aggressve behavior (de Bourcier & Wheder,
1997 and the evolution of signa diversity, e.g., in mating songs (Werner & Todd, 1997), with
interesting results. For example, Werner and Todd point out that the esolution of high levels of
song diversity is possble when sexual rather than retural seledion is the mecdhanism responsible
for evolution - a finding that could be related to the high level of diversity among human
languages and to the smilarities between sexual and cultural seledion medanisms.

Some simulations use neural networks to model organisms and genetic dgorithms to model
evolution. For example, Saunders and Polladk (1996 have used reaurrent neural networks and
the GNARL (Saunders, Angeline, & Polladk, 1994 evolutionary agorithm to study the
evolution of continuous communicaive systems, that is, the exchange of red valued signals in
different input and output channels. The interadion protocol involves small groups of agents (2
or 3) that exchange signals about a source of food with the evolved continuous sgnals
functioning as modulators of the agents behavior. (For a general discusson of how to study
language with neura networksin an Artificial Life perspedive, cf. Paris, 1997)



In the present paper we describe some simulations on the evolutionary emergence of a very
limited "language', made up of just two one-word uterances, in a population of smple
organisms living in a smple ewironment. The behavior of ead organism is controlled by a
neural network and the evolution of the population of organisms is modeled using a standard
genetic dgorithm. In our simulations the "language” is geneticdly inherited rather than culturally
transmitted and, moreover, the utterances have no internal structure and no syntax. Therefore,
our “language” is closer to animal communication than to human language. However, some
processes (and problems) such as sledive reproduction, changes in population variability, drift,
etc. appea to be shared by both hiologicd and cultural evolution and, furthermore, the
functional asped of language we ae interested in (e.g., as an aid to caegorizaion) can be
studied even in languages without syntax. In any case, for smplicity we will refer to our
“language” as language, without quotation marks.

The evolution of a language in a population of individuals implies the parallel evolution of two
distinct abilities: the ility to produce the gpropriate signals in the gpropriate drcumstances
and the adili ty to understand these signals, that is, to respond to ead signal with the gpropriate
behavior. Each ability does not make much evolutionary sense without the other and, in fad,
every individual in a language-using population tends to possess both abilities. Let us consider
how these two abilities might evolve. Imagine two different scenarios. In one scenario (Webb,
1994 the male of one animal spedes emits a particular signal. The female perceives the signa
and uses the signal's properties (e.g., diredional information about its urce) to find the male.
When male and female ae dose ewugh, they can mate. In this enario both the male's
behavior of producing the signa and the femal€'s behavior of responding to the signal by
approaching its urce ae under separate seledive presaures. Maes emitting the signal are
more likely to have offspring than nonemitting males, and females that respond with the
appropriate behavior are more likely to have offspring than nonresponding females. In fad
Werner and Dyer (1991, 1994 have been able to evolve this type of language in a population of
neural networks.

But consider another scenario. An individual perceves the location of a mushroom but is unable
to percave the mushroom's detailed perceptual properties (e.g., its $ape and color) because the
mushroom is too distant or for some other reason. Hence, the individual cannot reagnize if the
mushroom is edible or poisonous and it cannot dedde whether to approach and ea the
mushroom or to avoid it. A conspedfic which is neaby, unlike the first individual, can perfealy
percave the mushroom's properties. This other individual emits a particular signa if the
mushroom is edible and a different signal if the mushroom is poisonous. Based on hoth dired
information about the mushroom'’s location and the signal emitted by the wnspedfic the first
individual responds by approaching and eaing the mushroom in the first case axd by moving
away in the second case.

In this <enario the behavior of understanding the signals by responding appropriately clealy is
under seledive presaure. Individuals that respond appropriately to signals will tend to live longer
and to have more offspring than individuals that do not respond appropriately. On the other
hand, the evolution of the behavior of producing the gpropriate signals is more mysterious.
What is the advantage of producing the signal to the individual that produces it? Why should an
individual that produces the gpropriate signals live longer and have more offspring than other
individuals that fall to do so? Since language requires the paralel evolution of linguistic
production and linguistic comprehension, how can language evolve when it has a purely
informative function and therefore it is advantageous to the recaver but not to the producer?



2. Experimental setup: Living in an environment with both edible and poisonous
mushrooms

In this Sedion we describe ascenario inspired by communicaive signals in small groups of
animals guch as the well known signals with which vervet monkeys communicate the presence
of various types of predators to their conspedfics (Cheney and Seyfarth, 1990. In the animal
kingdom signals that refer to entities in the environment are used to refer not only to predators
but to other entities as well. Use of signals to communicate information about food locaion and
quality is present in many animal spedes (Hauser, 1996. Our scenario smulates the exchange
of communicative signals between pairs of organisms concerning the quality of potential food.
More spedficdly, individual organisms sgnal to ead other if encountered mushrooms are
edible or poisonous.

The organisms live in an environment that contains two types of mushrooms: edible mushrooms
and poisonous mushrooms. Edible mushrooms resemble but are not identicd to ead other, and
the same is true for poisonous mushrooms. Edible mushrooms are different from poisonous
mushrooms but mushrooms belonging to the two different categories may share some
properties. Since the organisms reproduce on the basis of their ability to ea the dlible
mushrooms and to avoid the poisonous ones, they must first categorize an encountered
mushroom as either edible or poisonous and then they must respond by approaching and eaing
edible mushrooms and by going away from poisonous ones.

Eadh individua lives in an environment of 20x20=400 cdls that contains 20 randomly
distributed mushrooms ead occupying asingle cdl. Ten mushrooms are alible and the other 10
are poisonous. At the beginning of its life an individual organism is placed in a randomly
seleded cdl with a randomly seleded orientation (N, S, E, and W). The aitire life of an
organism lasts 750 time units (input/output cycles) divided up into 15 "epochs’ of 50 cycles
ead. When an organism happens to step on a cdl containing a mushroom, the mushroom
disappeas (it is eden). At the beginning of ead epoch all the mushrooms remaining from the
precading epoch are diminated and they are replacel by a new set of 20 randomly distributed
mushrooms.

The behavior of ead organism is controlled by a feedforward neura network with 14 input
units, 5 output units, and 5 hidden units (Figure 1). One input unit encodes the locaion
(diredion) of the single neaest mushroom as the mushroom's angle measured clockwise from
the organism's current fadng diredion. This angle is mapped in the interval from 0 to 1. (If two
or more mushrooms are & the same distance from the organism, one is chosen at random.) Ten
input units encode the mushroom'’s perceptual properties. The 10 edible mushrooms are encoded
as 10 petterns of 10 bit, with ead pattern obtained by changing a single bit, randomly chosen, in
the prototypicd pattern 1111100000Similarly, the 10 poisonous mushrooms are encoded as 10
single-bit deviations from the prototype 0000011111 Hence, an edible axd a poisonous
mushroom can share ather zero (when the two bit-changes neutralize eab other) or two bitsin
the same position. The 3 remaining input units (signal-encoding input units) encode one of 8
possble perceved signals. 111, 110 100, etc.
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Figure 1. Neura networks controlli ng the behavior of speaking and listening organisms.

Two of the 5 output units encode a movement of the organism in the environment. The
organism can either proceal one step forward (11), turn 90 degrees to the left (10) or to the
right (01), or just do nothing (00). The remaining 3 output units (signal-encoding output units)
encode one of 8 posshile amitted signals in the same way as the signal encoding input units.
(For al output units continuous values are thresholded to either 0 or 1.)

We generate a initial population of 100 neura networks with the same achitedure and
randomly assgned connedion weights. These weights are randomly chosen from a redangular
distribution ranging from -1 to +1. At the beginning of life a individual has zero energy. The
individual's energy is increased by 10 wits every time the organism eas an edible mushroom
and it is deaeased by 11 wits if the organism eds a poisonous mushroom. At the end of life,
which has the same length for al organisms, the organisms are ranked in terms of their energy
and the 20 individuals with the most energy are dlowed to reproduce by generating 5 off spring
ead. An offspring has the same nnedion weights of its (single) parent with the exception of
some "genetic mutations' that change the value of 10% of the weights, randomly seleded, by
adding a quantity randomly chosen in the range -1/+1. The process is repeaed for 1000
generations. The seledive reproduction of the individuals with most energy and the mnstant
addition of variation to the genetic pool of connedion weights through the genetic mutations
results in an increase in average elergy aaoss the 1000 generations and the evolutionary
emergence of the behavior of approaching and eaing the alible mushrooms and avoiding the
[p0iSONOUS ONeES.

However, we ae not interested in this behavior as sich. We ae interested in how our
organisms recognize alible and poisonous mushrooms and, more spedficdly, what we want to
know is if a useful language will emerge in the population becaise it helps the organisms to



discriminate between edible and poisonous mushrooms. Linguistic signals can ke useful both as
an aid in the cdegorizaion of nearby mushrooms whose perceptual properties are perceived by
the organism and as "symbols' standing for the perceptual properties of more distant
mushrooms that cannot be cdegorized as either edible or poisonous becaise while their locaion
is perceived their perceptual properties are not percaved.

Imagine an organism wandering in its environment. In ead cycle one particular mushroom
happens to be the mushroom closest to the organism. If the mushroom is aufficiently nea to the
organism, i.e., it is locaed in one of the 8 cdls adjacet to the organism's cdl, the organism
perceves both the locaion of the mushroom (its angle with resped to the organism's fadng
diredion) and its perceptual properties (the pattern of 10 bits). However, if the mushroom is
more distant, the organism can percave the mushroom's locaion but not its perceptua
properties. The 10 input units encoding the mushroom's perceptual properties al have 0
adivation value.

We @mpare the evolution acoss 1000 gnerations of three different populations. One
population hes no language. In the organisms of this population the input units of the neura
network that should encode the perceived signal are anstantly kept at an adivation level of 0.5
and the output of the signal-encoding output units is ignored. Like dl the organisms in the
present smulations, when an individual encounters a mushroom which is not locaed in one of
the 8 cdls adjacant to the individual's cdl, the organism can perceve the diredion in which the
mushroom lies but not the mushroom's perceptual properties. Unlike the organisms of the next
two populations, however, this individual is not helped in recognizing the type of mushroom by
some linguistic signal. Therefore, the only solution which is open to this organism consists in
approaching the unknown mushroom until it happens to be sufficiently nea that the organism
can perceave its perceptual properties. At this point the individual can caegorize the mushroom
and it can either ea the mushroom or go away from the mushroom as appropriate.

In a second type of population the language is externally provided by us and it does not evolve
(Floreano, Miglino, & Paris, 1997). When an individual belonging to this population encounters
a mushroom, the threeinput units of its neural network that encode perceved signals have an
adivation pattern of '100 if the encountered mushroom is edible and an adivation pattern of
'010 if it is poisonous. (The first two digits discriminate between the two signals while the third
digit has a value shared by both signals.) The signals produced by the organisms are ignored.
These organisms can use the linguistic signals externally provided to them both as a help in
caegorizing a mushroom when they can percave the mushroom's perceptual properties because
the mushroom is close eough, and as a substitute for the ad¢ of perceving the mushroom's
perceptua properties when the encountered mushroom is too distant for the organism to have
accessto its perceptual properties.

In the third type of population language is not externaly provided by us but it evolves
autonomously. The scenario, which hes been inspired by Hutchins and Hazdhurst (1995, is the
following. Like the organisms of the other two populations, an individual can percave the
neaest mushroom's perceptual properties only if the mushroom is close exough. However, in
this sSmulation something spedal happens. In ead cycle another individual is randomly seleded
from the population (i.e., from the remaining 99individuals forming the aurrent generation) and
this seoond individual is placed next to the first individual so that it is exposed to the same
perceptua input as the first individual with the only difference that the second individual has
access to the perceptua properties (the pattern of 10 bits) of the mushroom whatever the
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distance of the mushroom. The only task for the second individual is to label the mushroom for
the first individual. The signal-encoding input units of the second individual are dways st to
0.5. The output of its sgnal-encoding output units (thresholded to either O or 1) in response to
the perceptual properties of the mushroom is used as input to the signal-encoding input units of
the first individual. (The second individual's motor output isignored.)

Therefore, in this last population when an individual encounters a mushroom the individual has
always accessto alinguistic signal produced by a conspedfic. As in the previous population, if
the mushroom is close enough so that not only the mushroom's locaion hut also its perceptual
properties can be percaved, the linguistic signal provided by the conspedfic can be used by the
individual as a help in categorizing the mushroom. If the mushroom is more distant and its
perceptual properties are not accessble, the linguistic signal can function as a substitute for
these perceptua properties. However, in this population, unlike the previous population, the
quality of the signals provided by conspedfics is not guaranteed. Whatever signal is generated
by the conspedfic's neural network, the signal is input to the neural network of the individual
that must dedde whether to approacdh or go away from the mushroom. Hence, the language can
be useful to these organisms only if it evolves appropriately.

3. Reaults

Figure 2 shows how average energy changes aaoss 1000 generations in the three populations
with no language, externally provided language, and evolved language, respedively (average
results of 5 replications of ead smulation). The smulations were stopped after 1000
generations because & that point the organisms are ale to discriminate sufficiently well between
edible and poisonous mushrooms and to assciate the gpropriate behavior to ead type of
mushrooms. A behavioral test of mushroom discrimination at generation 1000 has owed that
in average agood organism colleds 28 edible mushrooms and only 1 toadstoal.

Language gppeasto be auseful addition to the evolutionary adaptation of these organisms. The
organisms with no language have an average energy of a little more than 150 wits at the end of
evolution while the two populations with language have an average energy of more than 250
units. On the other hand, the two populations with language do not differ very much from eat
other. Although, predictably, the population with externally provided language has a more
regular incresse in average elergy than the population with evolved language, the two
populations read an equivalent level of energy at the end of evolution.
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Figure 2. Average fitnessaaoss1000 generations of threedifferent populations. without
language, with externally imposed language, and with evolved language. Each curveisthe
average of 5 dfferent replications of the same smulation.

It is interesting to examine what linguistic signals evolve in the third population. Since the
individuals that label the mushrooms are eab time randomly seleded from the population
different individuals can produce different signals when exposed to the same perceptual input.
What is observed, therefore, is a frequency distribution of different signals produced by the
different individuals in eat generation. To determine what signals are acdually produced, eat
individual was tested using a sort of 'naming task' in an experimental controlled setting. The
individual was exposed to the aitire set of 20 mushrooms (10 edible and 10 misonous ones)
ead positioned in four different locations (diredions) with resped to the individual, that is, in
front, in the bad, right and left. The 20x4=80 signals produced by the individual in response to
this st of 80 inputs were recmrded and analyzed. (The signal-encoding input units of the
individual were set to 0.5 duing the aitire test.)

Figure 3 shows the frequency distribution of the 8 possble signals produced by al the
individuals in ead of 10 generations (generation 0, 100, 200, etc., up to generation 1000 in
one replication of the smulation. A similar pattern of frequency distribution was found in the
other four replications. However the two high-frequency signals used to name the two types of
mushrooms changed in ead replication.
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Figure 3. Typicd frequency distribution of the 8 posshle signals produced by al the individuals
in ead of 10 generations (generation 0, 100, 200, etc., up to generation 1000 in one replication
of the simulation with the population with evolved language.

Although there ae some oscillations, the population evolves a language that tends to
consistently use the pattern 010 to label edible mushrooms and the pattern 110 to label
poisonous mushrooms. A population can be said to possess an efficient language if (a)
functionally distinct categories (in our case, edible and poisonous mushrooms) are labeled with
distinct signals, (b) a single signal tends to be used to label al the instances within a caegory,
(c) al the individuals in the population tend to use the same signal to label the same cdegory.
(Clark (1993 has argued that principles smilar to these govern the dild's aaquisition of the
lexicon.) According to these aiteria, the language evolved by our population appeas to be
rather efficient. (Similar results were obtained in the other replications of the simulation
although of course different pairs of signals emerged for the two categories of mushrooms.)

4. Discussion

We have seen that a population of simple atificial organisms living in a Simple evironment can
evolve an efficient language with an informative function to help the individuals to interad with
their environment. Due to sensory limitations an individual can perceve the locaion but not the
perceptual properties of a distant mushroom. This represents a serious handicgp because an
individual can adopt an informed dedsion on whether to approach or go away from an
encountered mushroom only if the mushroom is very close. In these drcumstances the
population evolves a simple language in the sense that individuals tend to generate distinctive
labels for edible and for poisonous mushrooms and these labels are used by other individuals to
dedde whether to approach or avoid a mushroom.

As we have observed in Sedion 1, the evolution of a language implies the parallel evolution of
the ability to produce the gpropriate signals in the gpropriate drcumstances and the aility to
understand the perceved signals by responding appropriately to them. In some populations the
two abilities co-evolve becaise there ae separate evolutionary pressures on both language
producers and language understanders. However, in the evolutionary scenario that we have
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studied in our simulationsit is lessclea how a language can evolve. When linguistic signals are
used with the function to inform the recever about some environmental objed or event that is
useful for the recaver to know more aout, there is an evolutionary presaure on recevers of
signals to evolve an ability to understand the signals. However, it is less clea what are the
evolutionary presaures on the produce's of the signals to evolve an ability to produce the
appropriate signals in response to the gpropriate objed. But if the gpropriate signals are not
produced the adility to understand those signals does not make much sense and no language can
evolve.

A possble answer to this apparent puzze links the evolution of language to the evolving
cognitive (perceptual) ability to caegorize mushrooms (or, more generaly, entities in the
environment) based on their perceptual properties. If one examines the achitedure of the neural
network that governs the behavior of our organisms, one can say that the two abilities of
producing and understanding linguistic signals are incorporated (represented) in two separate
sets of connedion weights. The adility to understand the signals is represented in the lower
connedions weights linking the signal-encoding input units to the hidden units ("understanding
weights'). The adility to produce signals is represented in the higher weights from the hidden
units to the signal-encoding output units ("producing weights") (cf. Figure 1). The two sets of
connedions weights are interlinked through the layer of hidden units. So let us examine more
closely the role of these hidden units.

In a feadforward neural network the input-to-hidden connedion weights have the task to
transform the input so that the input can be mapped into the gpropriate output using the
hidden-to-output connedion weights. The result of this transformation is the adivation pattern
which is observed in the hidden units. In our networks the hidden units sould be ale to encode
the transformed perceptual properties of encountered mushrooms in such a way that the output
units can generate two different motor behaviors in response to the two caegories of
mushrooms. approaching and eaing the edible mushrooms and going away from the poisonous
ones. The hidden units can acammplish this task by exhibiting the same or very smilar patterns
of adivation in response to al edible mushrooms and a distinct set of smilar patterns in
response to al poisonous mushrooms. At the beginning of evolution, given the random weights,
the patterns evoked by the two categories of mushrooms are likely to overlap considerably.
However, the erolutionary emergence of the aility to approach the alible mushrooms and to
avoid the poisonous ones implies that the two sets of hidden adivation patterns tend
progressvely to separate. The networks that tend to respond to all edible mushrooms with a
given set of smilar adivation patterns in their hidden units and to poisonous mushrooms with a
distinct (nonoverlapping) set of smilar adivation patterns are more likely to leare descendants.

Now let us introduce linguistic signals and let us consider how the understanding weights and
the production weights are related to the adivation patterns in the hidden units. Given some
particular signal as input the role of the understanding weights is to help the hidden units to
exhibit the gopropriate adivation pattern (tendentially a single one for all edible mushrooms and
a different one for al poisonous mushrooms) when a mushroom is close enough and its
perceptua properties can be perceived or, more aiticdly, to induce the gpropriate adivation
pattern in the hidden units when the mushroom is distant and its perceptual properties cannot be
percaved. Hence, there is a dired evolutionary presaure to develop the aility to understand
linguistic signals becaise understanding linguistic signals helps, or makes it possbile, to
caegorize the different environmental entities and, as a wnsequence, to respond appropriately
to these anttities.



But it is the role of the hidden units in language production which is of interest here. This role
may suggest how the evolutionary improvement in the cognitive (perceptual) ability to
reaognize different categories of mushrooms can have apositive influence on the evolution of
the linguistic ability to produce an efficient language. Individuals that tend to exhibit one set of
similar adivation patterns on their hidden units in response to al edible mushrooms and a
distinct set of smilar adivation pattern in response to al poisonous ones are more likely to
designate with a distinct linguistic signal al edible mushrooms and with a different linguistic
signal all poisonous mushrooms, that is, to produce auseful language. This results from the faa
that the signals emitted by an individual in response to a perceived mushroom depend on two
fadors. (a) the individual’s production weights, and (b) the adivation pattern on the individual's
hidden units (cf. Figure 1). In the ealy stages of evolution both fadors are unable to produce
useful signals. The production weights are initially assgned at random and they are not seleded
for producing useful signals. Furthermore, the adivation patterns on the hidden units will vary
inconsistently from one mushroom to another one. Hence the adivation pattern on the signal-
encoding output units (i.e., the emitted signal) will tend to consist of values that vary more or
lessrandomly around 0.5 (because the production weights have been randomly assgned at the
beginning of evolution and random weights tend to result in 0.5 adivation values) and, after
these values have been thresholded to either O or 1, the resulting signal will not be very useful.

However, after a cetain number of generations the organisms will be more ale to caegorize
the encountered mushrooms appropriately with their hidden units because this is the only way
for them to increase their reproductive chances. Better categorization, as we have seen, means
that the hidden units tend to exhibit very similar adivation patterns for all edible mushrooms and
adistinct set of smilar adivation patterns for al poisonous mushrooms. Hence, facor (b) above
has changed. More @nsistent adivation patterns on the hidden units can result in sight changes
in the adivation level of the signal-encoding output units that may be sufficient to alow
organisms to produce more useful signals, that is, asingle signal for al edible mushrooms and a
different signal for all poisonous mushrooms. Furthermore, the evolutionary increese in the
absolute value of connedion weights due to mutations can proted the production weights from
the disrupting effeds of mutations and consolidate this trend toward the production of better
signals.

This analysis is confirmed by an examination of the signals produced (but not used) by the
population without language. As will be recdled, the individuals in this population do not
recave awy linguistic signals in their signal-enconding input units (which have a onstant
adivation value of 0.5) and the signals they produce ae smply ignored. Therefore, there is no
evolutionary presaure of any kind for the emergence of a language in this population. However,
if we examine the adivation patterns appeaing on the signal-encoding output units of the
individuals of our populations without language, i.e., the linguistic signals they produce e/en if
nobody is using them, we see a interesting result. Figure 4 shows the evolution of average
energy in one of our populations without language and at the same time it plots an index of the
quality of the language produced based on the three citeria for an efficient language mentioned
at the end of Sedion 3.

To compute the index of language quality we use an 8x2 language production table. The table
contains the percentages of ead of the 8 possble signals for the 2 classes of edible ad
poisonous mushrooms based on the results of the naming test for all individuals. The quality
index QI is computed using the following formula:
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8
Ql = Z‘Xi _yi‘ —k*min(d poisonous’dedible) )
i=1

where xj is the percentage of signal i for poisonous mushrooms and yj for edible mushrooms; k
(here 1) isa mnstant to weigh the dfed of the internal dispersion value of poisonous or edible
mushrooms. The dispersion values dpoisonouws and dedible are computed with formula (2) using
the expeded percentage Xe and ye in case of aflat distribution in which al 8 signals are equally
used to name a tassof mushroom:

8 8
d poisoNoLs ~ _Zl|Xi _Xe| Uedible = Zl‘ Y, _ye‘ (2

While the first part of formula (1) measures the principle of contrast (use of only one word for
ead class of mushrooms), the dispersion values measure the use of synonyms for the same
mushroom class The use of the percentage table for the signals emitted by all organisms allows
us to consider how much all the organisms are the same language.

Comparing the evolutionary trend of fitnessand of the language quality index what is observed
is that after a cetain number of generations the organisms dart producing useful linguistic
signals and that, interestingly, the sudden improvement in the usefulness of their language
coincides with a marked increase in their fitness(cf. Figure 4).
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Figure 4. Evolutionary increase in average fitnessin a population with no language. Also shown
in the figure is the evolutionary change in an index of the quality of the language inadvertently
produced by the population.

The observed improvement in the quality index of the emitted, even if not used, language since
generation 450 appeas to be related to the sudden increase in average fitness which is also
observed in this period. The incressed fitness is at least in part determined by a better
caegorizaion of encountered mushrooms by the adivation patterns in the hidden units. These
better adivation patterns of the hidden units in turn cause the production of better linguistic
signals. Hence, the linguistic ability to produce useful signals appeas to be aby-product of the
cognitive aility to caegorize percaved mushrooms. If the produced signals are receved by
other individuals, as in our third population, they may help these other individuals to caegorize
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percaved mushrooms or they may function as sibstitutes for the perceptual properties of
mushrooms when these properties cannot be percaved.

The fad that language production and categorization are related does not mean that any change
in ead of the two abilities sould necessarily affed the other. In the smulations where language
has no direa effead on the organism’s fitness the naming behavior depends also on the random
drift of the connedion weights between the hidden units and the output signal-emitting units.
This probably explains why at about generation 950 the temporary deaease of language quality
is not asociated with adeaease in fitness

In simulations where foraging behavior depends diredly on language, the crrelation between
caegorizaion ability and the quality of produced language can be much more important. We
have measured this correlation using Peason r. The aorrelation between average fitnessand the
language quality index for all five replicationsis .71 (p<.0001J). In this case ay relevant change
in the language or in the caegorization skill will affea the other ability.

Aswe have drealy said, the positive dfed of caegorizaion on emitted language is explained in
our model by their sharing the common layer of hidden units. Even though the present neural
network architedure is not intended to reflea any spedfic animal or human brain structure, the
shared layer of hidden units is assumed to correspond to the brain level in which perceptual and
linguistic processng share some common information.

The influence of the perceptual ability to categorize attities in the environment on the linguistic
ability to produce dficient signals to label these antitiesis related to a hypothesis about language
evolution which has been proposed by Burling (1993. Burling has argued that human language
has emerged from the agnitive (sensory-motor) cgpadties of our prelinguistic ancestors rather
than from their primate-level communicaive behavior. One might read our simulations as
providing some evidence in favour of this hypothesis. The production of efficient linguistic
signals as aids to caegorization can be viewed as a by-product of, or at least to be fadlitated by,
a pre-existing ability to categorizethe environment on a sensory-motor basis.

In our analysis of the language produced by the organisms in our third simulation (evolved
language) we found that the evolved language tends to have the following three properties. (a)
different signals are used for functionaly distinct caegories, (b) the same signal is used to label
al the instances within a cdegory, (c) al individuas use the same two signals for the two
caegories. The use of different signals for different categories and of the same signal for all
members within a cdegory corresponds to the principle of contrast (Clark, 1987 or of mutual
exclusivity (Markman and Wadhtel, 1988, that children rely on when they assgn only one label
per caegory. The fad that al individuals use the same signal for eat caegory corresponds to
the ontogenetic principle of conventionaity (Clark, 1993. This correspondence between
ontogenetic principles of language aquisition and phenomena of both language evolution and
historicd changes has been discussed by Clark (1993. For example, she cmpares the principle
of contrast with Bréd's law of linguistic differentiation. In his work on historicd changes of
linguistic forms Bréd (1897 showed that a single meaning originaly associated with severa
different signals becomes assciated in later historicd stages with only one of these signals.

A final aspea of our model that we would like to mention isits potential to ded with the symbol
grounding problem (Harnad, 1990. Harnad has proposed the use of some kind of hybrid
connedionist-symbolic system in which the cnnedionist component would generate symbols
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that are grounded in the physicd world by perception and the symbolic component would
manipulate these symbols (Harnad, 1993. The present model seansto be ale to evolve signals
that are linked to objeds in the environment in that they are produced and understood by
organisms as part of their sensory-motor interadions with the ewironment. The signals
produced by our networks with their signal-encoding output units can be identified with
Harnad's "symbolic representations’, while the hidden unit adivations correspond to
"categoricd representations’ since their patterns tend to maximize inter-categoricd differences
and minimizeintra-categoricd differences. (For a discusson of these differences cf. Sharkey and
Jackson, 1994 Cf. also Paris, Denaro, and Cangelosi, 1997) A further step in the evolution of
a truly human language, of course, would be the evolution of an ability in neural networks to
combine signals (and the internal categoricd representations associated with them) to form
complex signals with a syntax. If this can be done, our model would ded with signal
manipulation and combination within a non-hybrid entirely connedionist framework.

5. Conclusions

The results of our efforts to simulate language evolution using neural networks in an eclogicd
perspedive have shown that the model proposed allows us to study at least some aspeds of the
emergence of language in populations of organisms interading among themselves and with an
external environment. The anaysis of the relation between caegorization and linguistic
production suggested that there might be astrong interdependence between the evolution of
language and the evolution of cognition and that language might have initially evolved as a by-
product of cognitive (perceptual) abilities to categorize the eavironment. On the other hand, the
role of language in the cdegorizaion of entities in the eavironment can have been one of the
evolutionary presaures for the further evolution of categorization abili ties.

In further development and testing of the model (Cangelosi, 1997 Cangelos, Denaro, and
Paris, in preparation) we have investigated other aspeds of the model such as the influence of
language on caegorizaion when caegorizaion is fadlitated becaise individuals lean during
their life (by imitating others) to label encountered mushrooms. In these smulations we have
also diredly inspeded the interna representations of encountered mushrooms (adivation
patterns on hidden units) and compared internal representations without language and with
percaved or produced language, and how these interna representations change during the
processof evolution.
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