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Abstract 

The grounding of symbols in computational models of linguistic abilities is one of the 

fundamental properties of psychologically-plausible cognitive models. This paper presents an 

embodied model for the grounding of language in action based on epigenetic robots. 

Epigenetic robotics is one of the new cognitive modeling approaches to modeling 

autonomous mental development. The robot model is based on an integrative vision of 

language, in which linguistic abilities are strictly dependent on, and grounded in, other 

behaviors and skills. It uses simulated robots that learn through imitation the names of basic 

actions. Robots also learn higher-order action concepts through the process of grounding 

transfer. The simulation demonstrates how new, higher-order behavioral abilities can be 

autonomously built upon previously-grounded basic action categories, following linguistic 

interaction with human users. 



 

1. Introduction 

 

Various computational modeling approaches have been proposed to study communication 

and language in cognitive systems, such as robots and simulated agents. On one end there are 

models of language primarily focused at the internal characteristics of individual agents, 

where the lexicon is constructed upon a self-referential symbolic system. The cognitive 

agents only possess a series of abstract symbols used for both communication and for 

representing meanings (e.g. Kirby, 2001). These models are subject to the symbol grounding 

problem (Harnad, 1990). That is, symbols are self-referential entities that require the 

interpretation of an external experimenter to identify the referential meaning of the lexical 

items. 

On the other end, there are grounded approaches to modeling language, where linguistic 

abilities are developed through the direct interaction between the cognitive agents and the 

social and physical world they interact with. The external world, and the agent’s own internal 

representation of it, play an essential role in shaping the language used by these cognitive 

systems. Language is therefore grounded in the cognitive and sensorimotor knowledge of the 

agents (Cangelosi, Bugmann & Borisyuk, 2005; Steels, 2003). For example, environmental 

stimuli are perceptually transformed by the agent’s own sensorimotor systems and might 

constitute the topic of conversation. This is the case of categorical perception, where the 

agent’s perceptual abilities constrain the representation of the environment that an agent can 

build. At the same time, the environment is subject to changes due to the communicating act 

of the agents themselves, e.g. when the agents’ lexicon creates new categorical representation 

of environmental entities. 



The grounding of language in autonomous cognitive systems requires two mechanisms. 

The first is the direct grounding of the agent’s basic lexicon. This assumes the ability to link 

perceptual (and internal) representations to symbols through supervised feedback. For 

example, an agent can learn that the symbol “horse” is grounded in its direct experience with 

this animal. The second mechanism implies the ability to transfer the grounding from the 

basic symbols to new symbols obtained by logical (e.g. syntactic) combinations of the 

elementary lexicon. The same agent can learn, without direct experience, that there is a 

hypothetical animal, the “unicorn”, that is perceptually grounded in the linguistic description 

of “horse with a horn”.  

Direct grounding has been widely studied in embodied autonomous agents (see Cangelosi 

2005 for a review), whilst grounding transfer has only been demonstrated in connectionist 

simulations (Cangelosi, Greco & Harnad, 2000; Riga, Cangelosi & Greco, 2004). This paper 

reports a new study on grounding transfer in cognitive robots for the acquisition of higher-

order action categories via linguistic instructions. This uses an epigenetic robotic approach 

(Weng et al., 2001; Prince & Demiris, 2003; McClelland, Plunkett & Weng, in press) where a 

simulated robot initially learns, via imitation, a series of basic actions and their corresponding 

names. An artificial neural network controls the robot’s motor and linguistic behavior. The 

robot then acquires the names of new high-order action categories following linguistic 

interaction with human users. The hypothesis is that the combination of direct grounding of 

basic words and their use to express new categories will results in the actual acquisition of 

new sensorimotor capabilities. After training, the agent will be tested to establish whether it 

can actually produce the new composite actions when their hearing their names. This would 

demonstrate that grounding from the basic action names has been transferred to the new 

composite categories. 



The motivation for developing such a model of language embodiment and grounding is 

two-fold. First, there is a need for psychologically-plausible computational models of 

language embodiment to further support the growing theoretical and experimental evidence 

on sensorimotor grounding (Pecher & Zwaan, 2005). Computational models can help 

investigating the detailed mechanisms involved in the process of grounding. The proposed 

approach is based on the combination of neural network and robotic methodologies, which 

we call “Embodied Connectionism” (Cangelosi, in prep.). This will provide a modeling 

platform for the development of grounded language systems that overcome the known 

shortcoming of featured-based connectionist models of language (Glenberg, 2005 – see also 

discussion in section 4) and of the symbolic-only models (Burgess & Lund, 1997; Landauer 

& Dumais, 1997; Kirby, 2001).  

The second motivation regards the scientific and technological advances in the design of 

interactive cognitive systems able to communicate with humans and other robots. In artificial 

intelligence and robotics, the issue of instruction-based learning and linguistic interaction has 

become of the priority areas for future research. Some of the most promising results have 

come from grounded robotic approaches based on the acquisition of language through direct 

sensorimotor interaction with the environment (Cangelosi et al., 2005).  

In the following sub-sections, we will look at the state of the art in both experimental and 

modeling studies of the grounding of language. We will then present the epigenetic robot 

modeling setup (section 2) and the results of the simulated robotic experiments on symbol 

grounding and the autonomous transfer of sensorimotor grounding (section 3). The final 

section will discuss the advantages of such an approach to model embodied cognition and its 

potential application in further experimental and computational investigations of language 

grounding. 

 



1.1 Grounding language in action and perception: theoretical and experimental studies 

 

In the past few years there has been a growing body of theoretical and empirical evidence in 

support of the role of embodiment and sensorimotor factors in language use (e.g. Barsalou, 

1999; Coventry & Garrod, 2004; Feldman & Narayanan, 2004; Gallese & Lakoff, 2005; 

Glenberg & Robertson, 2000; Pulvermuller, 1999; Zwaan, 2004 – see also Pecher & Zwaan, 

2004 for a recent review). Overall, language grounding theories support the view that 

language use involves modality-specific simulations of the referents and the actions described 

in the sentences.  

Simulation theories vary for the focus they put on some of the mechanisms involved in 

these simulations and the detailed function of the simulation process. For example, Barsalou 

(1999) focuses on modality-specific perceptual and simulation processes within the 

Perceptual Symbol System hypothesis. He suggests that the brain association area partially 

reactivate sensorimotor areas to implement perceptual symbols. This includes memories of 

sensorimotor, proprioceptive and introspective events, and also dynamic mental 

representations of object interaction (e.g. Zwaan, Madden, Yaxley & Aveyard, 2004). Such 

memories are organized around a common frame, which constitute the structure of a 

simulator. The coordinate activity of simulators implement a basic conceptual system that 

represents types, supports categorization, and produces categorical inferences. Barsalou also 

shows how abstract concepts are grounded in complex simulations of combined physical and 

introspective events.  

Glenberg and collaborators (e.g. Glenberg & Kaschak, 2002; Borghi, Glenberg & 

Kaschak, 2004; Kaschak et al., 2005) focus on the action and embodiment component of 

language. They demonstrate the existence of Action-sentence Compatibility Effects. In 

sentence comprehension tasks participants are faster to judge the sensibility of sentences 



implying motion toward the body (e.g. “Courtney gave you the notebook”) when the 

response requires moving toward the body. When the sentence implied movement away from 

the body, participants were faster to respond by literally moving away from their bodies. The 

data support an embodied theory of meaning that relates the meaning of sentences to human 

action and motor affordances. This view, called Indexical Hypothesis (Glenberg, 1997; 

Glenberg & Robertson, 2000), suggest that in the reading of a sentence, the first process is to 

index words and phrases to objects in the environment or to analogical perceptual symbols. 

The second process is deriving affordances from the object or perceptual symbol. Finally, the 

third process is to mesh the affordances into a coherent set of actions. The mesh process is 

guided by syntax of the sentence being processed.  

Gallese and Lakoff (2005) use neurophysiology evidence to show that language makes 

direct use of the same brain structures used in perception and action. They suggest that brain 

structures in the sensorimotor regions are exploited to characterize abstract symbolic 

concepts that constitute the meanings of grammatical constructions and general inference 

patterns. The semantics of grammar is constituted by cogs, i.e. structuring circuits used in the 

sensory-motor system. 

Such theories of the sensorimotor grounding of language propose an alternative account 

to classical symbolic theories of meaning and cognition (e.g. Fodor, 1975). According to this 

account, the meaning of words comes from the contexts in which these words are used 

(Burgess & Lund, 1997; Landauer & Dumais, 1997) and there is no need for direct 

correspondence between the symbolic system and perceptual states. Proponents of symbolic 

theories acknowledge the role of perceptual and sensorimotor factors in the acquisition of 

language, but after assume the autonomy of language and symbolic processes in cognitive 

tasks. Embodiment theories of language, instead, stress the on-line effects of sensorimotor 

processes in language use. 



 

1.2 Grounding language in action and perception: Computational models 

 

Grounded approaches to modeling language are based on the principles of autonomous and 

embodied communication. Cognitive agents can autonomously acquire communication 

capabilities through interaction with each other and with humans. An important characteristic 

of this approach is the fact that the properties of the robots’ own body and their physical 

environment influence, and contribute to, the acquisition of a lexicon directly grounded in 

world they live in (Steels, 2003; Cangelosi et al., 2005). 

Some of these models focus on the emergence of shared lexicons through biological 

and/or cultural evolution mechanisms (Cangelosi & Parisi, 2002). In these models, a 

population of cognitive agents is initialized that use random languages. Agents are able to 

interact with the physical entities in the environment and to construct a sensorimotor 

representation of it. Through an iterative process of communication and language games, 

agents converge toward a shared lexicon. For example, Luc Steels and collaborators (Steels, 

2003; Steels, Kaplan, McIntyre & Van Looveren, 2002) use hybrid population of robots, 

internet agents and humans engaged in language games. Agents are in turn embodied into 

two “talking head” robots to play language games. A shared lexicon gradually emerges to 

describe a world made of colored shapes. This model has been also extended to study the 

emergence of communication between humans and robots, suing the SONY AIBO interactive 

toy robot (Steels & Kaplan, 2000). Steels’s approach is characterized for the focus on the 

naming of perceptual categories and for the stress of social mechanisms in the grounding and 

emergence of language. Marocco, Cangelosi and Nolfi (2003) use evolutionary robotics for 

the self-organization of simple lexicons in a group of simulated robots. Agents are first 

evolved for their ability to manipulate objects (e.g. touché spheres, avoid cubes). 



Subsequently, they are allowed to communicate with each other. Populations of agents are 

able to evolve a shared lexicon to name the objects and the actions being performed on them. 

In other models of language grounding, robotic agents acquire a lexicon through 

interaction with human users. For example, Roy, Hsiao and Mavridis (2003) have developed 

an architecture that provides perceptual, procedural and affordance representations for 

grounding the meaning of words in conversational robots. Sugita & Tani (2004) use a mobile 

robot that follows human instructions based on the combinations of five basic commands. Yu 

(2005) focuses on the combination of word learning and category acquisition to show 

improvements in both word-to-world mapping and perceptual categorization. This suggests a 

unified view of lexical and category learning in an integrative framework.  

The above models clearly support the view that language is intrinsically linked to the 

constraints imposed by the human perceptual, cognitive and embodiment system. However, 

they have seldom been used to address specific issues and findings in language embodiment 

research. For example, Coventry, Cangelosi and collaborators (Joyce, Richards, Cangelosi 

and Coventry, 2003; Coventry et al. 2004); have developed a neural network model of spatial 

language that directly simulates the perceptual symbol system hypothesis of Barsalou. They 

use simple recurrent network (Elman, 1990), within a hybrid connectionist/vision 

architecture, to simulate and integrate perceptual factors in the production of spatial 

quantifiers. Dominey (2005) carried out some human-robot communication experiments on 

the emergence of grammar. This study provides insight into a developmental and 

evolutionary passage from unitary idiom-like holophrases to progressively more abstract 

grammatical constructions. Finally, in a computational model based on population of agents, 

Cangelosi and Parisi (2004) use synthetic brain imaging methods to analyze the activity of 

the agents’ neural networks. Results show that different linguistic categories, such as nouns 

and verbs, share the neural substrate of different sensorimotor processes. Results show that 



nouns (names of objects) produce more neural activity in the hidden layer dedicated to 

sensory processing of visual stimuli, while verbs (names of actions) produce enhanced 

synaptic activity in the layer where sensory information is integrated with proprioceptive 

input. Such findings are qualitatively compared with human brain imaging data that indicate 

that nouns activate more the posterior areas of the brain related to sensory and associative 

processing while verbs activate more the anterior motor areas (Cappa & Perani, 2003). 

 

2. An epigenetic robotic model for grounding transfer 

 

The model is based on an on-line imitation learning algorithm for the acquisition of 

behavioral and linguistic knowledge in a group of robots. The combination of imitation and 

language learning is mainly motivated by the fact that imitation has been consistently 

considered as one of the fundamental mechanisms for the acquisition of language 

(Tomasello, 2002). This model will be based on a simple on-line supervised neural network 

algorithm. It uses error backpropagation to continuously correct the motor response of an 

imitator robot so that it closely matches the behavior of a demonstrator robot. The 

backpropagation algorithm is also used to teach the robot the names of actions. 

 

2.1 Robot body 

 

The model consists of a computer simulation of two robotic agents embedded in a virtual 

environment. The simulation program accurately models the physical constraints and object-



object interactions using the physics engine Open Dynamics Engine
1
 (ODE). ODE is an open 

source library for simulating rigid body dynamics, advanced joint types and integrated 

collision detection with friction. It can be used for simulating vehicles, objects in virtual 

reality environments and virtual creatures. Although the ODE robotic model cannot fully take 

into account all the complex embodiment properties of real robots, it permits a good inclusion 

and consideration of physical systems.  

The robot’s body consists of two 3-segment arms (rotating shoulder, upperarm, forearm) 

attached to a torso and a base with 4 wheels (Fig. 1). The details of the robots body are as 

follows (in ODE length points): 

• wheels (4): width 0.2, ray 0.25 

• base: width 0.75, length 0.75, height 0.25 

• torso: width 0.25, length 0.25, height 0.75 

• neck: width 0.25, length 0.25, height 0.25 

• head: width 0.35, length 0.5, height 0.25 

• shoulder (2): width 0.25, length 0.25, height 0.25 

• upperarm (2): width 0.25, length 0.25, height 0.75 

• forearm (2): width 0.25, length 0.25, height 0.75 

The robot has 12 degrees of freedom. The constraints of the degrees of freedom of the 

joints are as follows: 

• wheels-base (4): no limit 

• torso-shoulder (2): 180 degrees (vertical plane) 

• shoulder-upperarm (2): 90 degrees (horizontal plane) 

• upperarm-forearm (2): 90 degrees 

• torso-neck: 90 degrees (vertical plane) 

                                                 
1
 http://opende.sourceforge.net 



• neck-head: 180 degrees (horizontal plane) 

The first agent, called “demonstrator”, has the role of showing the correct performance of 

some basic motor actions. This robot is manually programmed to perform actions on objects, 

i.e. with pre-specified forces to apply to the motor joints at every time-step. The second 

agent, an “imitator”, learns the actions by imitating the demonstrator’s behavior. This agent is 

equipped with an artificial neural network controller. The imitator learns to perform basic 

actions by predicting the demonstrator’s movement trajectories using an "imitation 

algorithm" which supplies teacher input to a neural network. The resulting motion dynamics 

are elaborated by the neural network that is able first to repeat the actions during imitation, 

and successively is able to execute them autonomously in absence of the imitator input and 

feedback. The robot’s neural controller also learns the words associated to the actions, so that 

when the imitator “hears” a word, it can perform the corresponding action. 

 

2.2 Neural network controller 

 

The neural network controller of the imitator consists of a fully connected feed-forward 

network with bipolar sigmoid units. Twenty-six input units encode the names of all possible 

actions. The hidden layer contains eight units. These are modularly connected to the eight 

output motor units (see Fig. 1). The output value of each motor neuron corresponds to the 

force applied to the corresponding motorized joint. The modularity of the hidden layer is 

realized by separately connecting four groups of two hidden nodes to four pairs of output 

nodes. These pairs encode the following motorized joint groups: left upperarm-forearm; right 

upperarm-forearm; shoulder-upperarm; wheels (same for all 4). The modular organization of 

the hidden-output connections has been designed to allow the robotic agents to learn 

combinations of the action words. Such a modular, connectionist architecture has been 



demonstrated to be necessary for action/language tasks requiring the acquisition of higher-

order categories via combinations of their names (Greco, Riga & Cangelosi, 2003). 

 

 

------------------------ Insert Figure 1 about here -------------------------------------- 

 

  

The diagram in Fig. 1 gives an overview of the imitator agent’s functional modules, its 

neural controller, and a view of the 3D robots and environment. When the demonstrator agent 

performs an action and utters the corresponding word, the imitator agent activates the 

following procedure: the symbolic parser filters the linguistic input and converts it to a format 

suitable for the network (localist encoding of one word per linguistic input unit). In parallel, 

the imitation algorithm computes an estimation of the motor output necessary to perform the 

same action. The neural network then computes the actual motor output at the current time-

step. This output is sent to the actuators to produce the action. Successively, an on-line error 

backpropagation is applied to the imitator’s neural controller, using the motor output 

estimated by the imitation algorithm as teaching input. All weights and biases are subject to 

change. The backpropagation algorithm is applied at each time-step.  

The imitation algorithm, based on a hyperbolic tangent function, is defined by the 

following functions:   
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The first function computes an estimation of the necessary force f(t + 1) to apply to each 

motorized joint in the next time-step, so that it approximates the posture currently exhibited 

by the demonstrator. It takes as input the joint angles x(t) of the demonstrator agent and the 

joint angles y(t) and motor forces f(t) of the imitator agent for all joints in the current time-

step. Experimental evidence has demonstrated that joint angles are used for postural control 

in imitation (Desmurget & Prablanc, 1997). The scale α and gain β are constant values, set to 

0.5 in the present simulation. The scale parameter α is similar to the learning rate in the error 

backpropagation algorithm, where higher values produce bigger weight changes and faster 

learning. The gain parameter β changes the hyperbolic function (lower values correspond to 

flatter sigmoids). 

For simplicity of implementation, the input regarding the posture of the teacher is 

assumed to have been preprocessed in order to identify and compute the demonstrator’s 

posture angles. Thus the imitator agent directly receives the joint angle values, instead of 

having to analyze the scene of a moving arm and generate the values of the joint angles. The 

implementation based on direct imitation is justified by the need to have a process of 

grounding based on the pre-acquisition of action categories from a teacher or parent agent. 

The choice of direct overt imitation for action and language learning is also motivated by the 

central role of imitation in the evolution and acquisition of language and cognition (e.g. 

Tomasello, 2002; Charman, Baron-Cohen, Swettenham, Baird, Cox & Drew, 2000). The 

overt imitation setup has also been chosen for the potential is has of allowing the imitator 

agent to learn to imitate actions directly performed by a human participant, e.g. through 

motion capture software. However, at this stage we did not want to deal with the complexity 

of robotics and motion capture systems (Schaal, 1999; Dautenhahn & Nehaniv, 2002), 

because of the focus on language learning and grounding transfer. 

 



2.3 Robot training 

 

The simulation consists of three training stages and a testing phase. Training is incremental 

and follows these three stages: (i) Basic Grounding (BG), (ii) Higher-order Grounding 1 

(HG1) and (iii) Higher-order Grounding 2 (HG2). The testing stage, at the end of the training, 

consists of the autonomous execution of all basic and higher-order actions, following the 

input of the corresponding action names. 

 

2.2.1 Basic Grounding BG 

 

During the BG training stage, the imitator learns to execute eight basic actions by observing 

the demonstrator and mimicking its movement. Words corresponding to the action names are 

presented in input to the learner’s neural controller. The imitator simultaneously learns the 

actions and their names, thus directly grounding the word in the perception of the imitator’s 

action and the production of its own motor response. This constitutes the basic grounding of 

action words. The following eight basic actions/words are taught during each BG training 

epoch: CLOSE_LEFT_ARM; CLOSE_RIGHT_ARM; OPEN_LEFT_ARM; OPEN_RIGHT_ARM; 

LIFT_LEFT_ARM; LIFT_RIGHT_ARM; MOVE_FORWARD; MOVE_BACKWARD. To perform each 

of these basic actions, the robot always starts from a default position with an angle of 45
o
 for 

both the joints upperarm-lowearm and shoulder-upperarm. Each action lasts for 100 time-

steps. The error backpropagation is applied on-line at every time-step. The basic grounding 

learning lasts for 50 training epochs. 

 

2.2.1 Grounding transfer during higher-order learning HG1 and HG2  

 



During the next two higher-order grounding stages (HG1 and HG2), the imitator robots learn 

the names of combined actions by receiving linguistic descriptions through a natural language 

interface, or directly from the teacher agent. The higher-order learning has the role of 

acquiring the names (and concepts) of new actions. This is possible through the process of 

symbol grounding transfer by which the sensorimotor grounding of basic action names is 

indirectly transferred to that of new words. 

A human operator can communicate with the agent using a keyboard to write simple 

instructions using an ad-hoc pidgin English language. Two types of utterances are possible: 

Higher order descriptions and commands. Higher-order descriptions consist of three words 

respectively naming a new higher-order action word and two basic/lower-order actions. 

These instructions serve to learn the new word and its associated action pattern. Commands 

consist of the name for an action. They cause the agent to execute the appropriate action by 

activating the corresponding input node in the network and producing the motor action. 

Higher-order descriptions are used during learning, while commands are used for testing. For 

speed of execution, the higher-order linguistic descriptions and commands are recorded 

before the simulation so that the teacher agent can send them in input to the learner during the 

higher-order training stages. 

A higher-order action based on the combination of two basic actions is called 1
st
 level 

higher-order behavior (HG1). For example, one of such behaviors is object grabbing and has 

the following description
2
: “GRAB [is] CLOSE_LEFT_ARM [and] CLOSE_RIGHT_ARM” (see 

top row of Fig. 2). Grounding transfer takes place from the directly grounded 

“CLOSE_LEFT_ARM” and “CLOSE_RIGHT_ARM” words to the new “GRAB” word. This 

enables the agent to correctly execute the command “GRAB” by combining the actions of 

pushing both arms towards the object and grabbing it.  

                                                 
2
 The words between bracket are filtered out by the parsing and ignored during the training. 



A higher-order behavior consisting of the combination of one basic action and one 1
st
 

order action is called 2
nd

 order action (HG2). For example, the description “CARRY [is] GRAB 

[and] MOVE_FORWARD” is a 2
nd

 order action (see bottom row of Fig. 2). 

After the last BG epoch, the imitator robot receives HG1 linguistic descriptions (i.e. a 

new word and two known words referring to basic actions). Each HG1 training epoch 

contains 13 learning trials, i.e. five 1
st
 order actions (GRAB, PUSH_LEFT, PUSH_RIGHT, 

OPEN_ARMS, ARMS_UP) and eight BG actions. HG1 training stage lasts for 100 epochs.  

The imitator agent starts HG2 training at the 151
st
 epoch. Three 2

nd
 level higher order 

actions (CARRY, PULL, CHEER) are taught during HG2 stage for 150 additional epochs. The 

current implementation with 50 epochs for the BG stage, 100 epochs for HG1 and 150 epochs 

for HG2 training reflects the increasing difficulty of the incremental learning task the imitator 

agent needs to master.  

 

 

------------------------ Insert Figure 2 about here -------------------------------------- 

 

 

To achieve grounding transfer, the imitator agent learns to use some of the neural 

representations acquired during BG to those of stages HG1 and HG2. This process grounds 

new words in the neural controller by adaptively linking the hidden units’ activations of the 

words contained in the description, as previously demonstrated in Cangelosi et al. (2000). In 

the present model, this is achieved first by separately providing each defining (i.e. 

basic/lower-order) word in input to the network and temporarily recording the motor response 

(without applying error backpropagation). Successively, the network receives as input only 



the newly defined (i.e. higher-order) word so that the resulting output is corrected through 

backpropagation by using as teaching input the output previously recorded.  

 

 

------------------------ Insert Figure 3 about here -------------------------------------- 

 

 

The backpropagation weight-correction procedure consists of two training cycles, 

respectively for each of the two basic words used in the description (Fig. 3). For example, to 

learn the novel behavior of grabbing from the description “GRAB [is] CLOSE_LEFT_ARM 

[and] CLOSE_RIGHT_ARM”, the agent’s controller first produces the output corresponding to 

the input of the first word “CLOSE_LEFT_ARM”. This force is not applied to the joint motors, 

but is temporarily stored to be used as teaching input in the next activation cycle. The joints 

values are generated and recorded for all the 100 time-steps of action execution. 

Subsequently, the input node corresponding to the “GRAB” action is activated and the 

network produces a motor response in the output nodes. The previous teaching input is now 

used to compute the error and apply the backpropagation algorithm for 100 time-steps. 

During the second phase, the same procedure is repeated for the generation of the teaching 

input signal from the activation of the input node “CLOSE_RIGHT_ARM” and the subsequent 

weight correction from the input of the word “Grab”. These two steps are repeated for each 

combined action description in training stages HG1 and HG2.  

This grounding transfer mechanism enables an agent to learn new actions not only 

through direct experience and trial-and-error learning, as during BG, but also indirectly 

through the exchange of linguistic utterances with other agents. New actions are learned 

without the need of direct observation and imitation of the demonstrator agent.  



 

3. Simulation results 

 

Each simulation experiment consisted of 300 training epochs (50 BG, 100 HG1, 150 HG2). 

Each action lasts for 100 time-steps, so each simulation lasts for 30,000 cycles. Ten 

replications of such an experiment were performed, using neural networks with different 

initial random weights. Weights were initialized in the range ±1.0 at the first epoch. The 

learning rate was 0.05 during BG learning, and 0.01 during the grounding transfer process of 

HG1 and HG2. 

The final posture errors and the average posture errors were registered for the BG, HG1, 

HG2 and testing stages of every epoch. The final posture error measures the difference in 

posture between the two agents only at the last (100
th

) time-step of each action. This error 

does not consider the movement trajectories, but only the final posture. The average posture 

error records the difference in posture (i.e. 8 joint angles) between the imitator and the 

demonstrator averaged over all 100 time-steps, thus taking into account the movement 

trajectories. All error values are computed as Root Mean Square values (RMS), using as 

correct value the joint angles of the demonstrator. Note that although the imitator’s joints are 

compared with those of the demonstrator for visualizing the RMS errors during training, 

during the HG stages these errors are never used by the imitator during backpropagation 

learning. 

The imitation learning of the 8 basic actions was successful. All actions are correctly 

acquired, with a final average posture error of 0.08 after the last epoch (average error over the 

10 replications). All five 1
st
 order actions/names were also successfully learned with a final 

posture error of 0.05 after the last epoch. The three 2
nd

 order actions/names were successfully 



acquired with a final posture RMS error of 0.09 after the last epoch. Thus agents correctly 

execute all basic, 1
st
 and 2

nd
 order actions in response to the input of their names. For 

example, after hearing the 2
nd

 order action name “PULL”, agents pushed both arms against the 

object and moved backward, effectively exhibiting the behavior of dragging the object 

backward as defined in the current experiment.  

Overall the average posture error remains higher than the final posture error. This means 

that the imitator agent gradually approximates the movement trajectory towards the target 

posture, but finishes in the desired position with great accuracy. This effect is present in the 

basic behaviors, but becomes more evident when executing 1
st
 level composite actions and is 

very clear in the 2
nd

 level behaviors (Fig. 4). The level of grounding transfer of a word has a 

clear effect on the behavior it generates, as the ideal trajectory to a target position is not 

followed accurately, though always leading to the correct final posture.  

This pattern of results, i.e. the learning of all basic and HG actions up to an final posture 

RMS error of between 0.05 and 0.09, is found in all replications and there are no major 

qualitative or quantitative differences between the 10 simulations. 

 

 

------------------------ Insert Figure 4 about here -------------------------------------- 

 

 

 

4. Discussion and conclusions 

 



The simulation presented here provides a clear demonstration of the grounding transfer 

mechanism for simulated linguistic robots. New actions are acquired through the process of 

symbol grounding transfer from basic, directly-grounded action categories to higher-order, 

indirectly-grounded behaviors. The grounding transfer is a very important aspect of research 

on autonomous cognitive systems. For a system to be fully autonomous it is important that it 

is able to use its own linguistic and cognitive abilities to further expand its knowledge of the 

environment. The design of a linguistic agent able to acquire and ground language only 

through direct perception and experience of the external world is not enough (Harnad, 1990). 

One of the most important aspects of human language is productivity, by which new concepts 

can be expressed through combinations of the words. Although the robotic agents studied in 

this simulation do not have full linguistic and compositional abilities (e.g. the use of a 

syntactic lexicon), they can rely on simple compositional mechanisms to enrich their lexicon. 

The grounding transfer makes sure that new concepts are grounded into the agents’ own 

sensorimotor repertoire. In addition, the agents do not necessarily need to rely on the external 

input of the demonstrator robot (or a human experimenter) to acquire new concepts, since 

they can autonomously combined the basic words to construct new composite action 

categories.  

The procedure used for the autonomous acquisition (production) of high-order action 

categories (see Fig. 3) can be considered an implementation of Barsalou’s (1999: section 3.1) 

symbol productivity mechanism in the perceptual symbol system framework. The agent plays 

some kind of internal “mental” simulation when they produce and record the output values 

corresponding to the input activation of the two basic action names (e.g. CLOSE_LEFT_ARM; 

and CLOSE_RIGHT_ARM). These mental records are then used by the agent to merge the 

results of the two motor simulations and auto-teach the output values corresponding to the 

name of the new action (GRAB). In addition, the type of higher-order composite actions 



described here also related to research on conceptual combination, such as in the categories 

based on noun-noun combinations (Wisnieski, 1997). 

The design and test of this first robotic model of symbol grounding transfer required some 

simplifications, both in the repertoire of behavior/lexicon and the imitation algorithm. 

However, ongoing research is focusing on the scaling up of this model. For example, in 

Hourkadis and Cangelosi (2005; Cangelosi, Hourdakis & Tikhanoff, 2006), we have 

expanded the neural network controller of the robot to include both language production and 

comprehension capabilities. The neural network receives in input both visual information and 

language so that the agent can produce linguistic descriptions (vision input to language 

output) as well as being able to understand language (from language input to motor output). 

In Massera, Nolfi and Cangelosi (2005), new simulations have focuses on the autonomous 

acquisition of arm control capabilities without the need for direct imitation. This advances 

model of the robotic arm model uses evolutionary algorithms. Other simulations are 

explicitly addressing the scaling up of the lexicon to hundreds of words and the use of more 

structured lexicons. This is based on the gradual introducing of syntactic structures. For 

example, the first step will consist in the ability to use arguments for the learned actions. For 

example, through the introduction of three types of objects (e.g. round spheres for balls, flat 

objects for books, long cylinders for sticks) it is possible to train robots to apply the same 

action to different objects, such as “Grab(Ball)”, “Grab(Book)”. At the same time, the use of 

objects with different shapes will permit the construction of a variety of linguistic categories 

whose representation might vary depending on the interaction between the robot’s own 

embodiment properties and the object motor affordances.  

The potential extensions discussed above will permit the use of this model as an 

embodied simulation platform for new computational investigations that replicate the well 

known grounding effects. For example, a model able to learn actions in response to objects 



requiring different motor affordances could be used to replicate the action-sentence 

compatibility effects (ACE) found by Glenberg and collaborators (e.g. Glenberg & Kaschak, 

2002). One could train a robot to perform various sets of action all following specific spatial 

directions (e.g. pull/push, open/close) and to learn linguistic descriptions of scenes involving 

the manipulation of objects with front/backward movements. The analyses of the activity of 

the neural networks during the successful replication of ACE effects could permit a detailed 

investigation of the interaction and sharing between sensorimotor and linguistic 

representations. Embodied simulation agents have been already used to study embodiment 

effects, although not linked to language. Tsiotas, Borghi and Parisi (2005) have built an 

evolutionary agent model of the action compatibility effects. Tucker and Ellis (2001) have 

demonstrated action compatibility effect between the type of grasp (precision vs. power grip 

in the response to micro-affordances for a pen vs. apple) and a task-irrelevant dimension (e.g. 

color). Tsiotas et al. first trained agents (consisting of an arm with by two fingers) to grasp 

objects according to their size – e.g. precision grip for small objects and power grip for large 

objects (compatible condition). These corresponded to the default object affordances. Then 

they also trained agents to grasp objects according to their color, ignoring their size 

(incompatible condition). Agents produced the same compatibility effects in terms of shorter 

training cycles for the compatibility condition versus the incompatible. In addition, analyses 

of the agents’ neural networks showed that in the hidden units the visual input of an object 

automatically activates information on how to grasp them, also when this information is not 

relevant to the task. This study demonstrates the potential of computational agent-based 

models for studying embodiment effects. 

This study also has important potential implications for robotics research, in particular in 

cognitive robotics. In this area, epigenetic robotics is one of the most promising approaches 

for the design of autonomous robots (Weng et al., 2001; McClelland et al., in press; Smith & 



Gasser, 2005). This approach takes inspiration from research in developmental psychology 

and neuroscience and focuses on the emergence of complex cognitive and perceptual 

structures as a result of the interaction of an embodied system with a physical and social 

environment. The present simulation mostly focuses on the grounding of linguistic abilities 

and the acquisition of early words. As a consequence, the other cognitive capabilities of the 

robotic agent are based on simplified assumptions. For example, the model is based on the 

technical assumption that the imitator can “read” the demonstrator’s joints angle and use 

them as teaching input. A variety of models of imitation have been proposed, some of which 

are based on more psychologically-plausible mechanisms. Demiris and Johnson (2003) have 

recently focused on the fact that the robot must infer and predict the actions being 

demonstrated. The future integration of various imitation, cognitive and linguistic abilities in 

one integrated cognitive system can better help the epigenetic design of autonomous robotic 

systems. 

Finally, this research also has a general practical and technological bearing. In robotics 

and artificial intelligence, language grounding models can provide novel algorithms and 

methodologies for the development of effective interaction between humans and autonomous 

computer and robotic systems. If robots are to be introduced into everyday life, they will need 

to be “programmable” by users that don’t necessarily have formal computer programming 

skills. Humans acquire language through a rich combination of learning strategies, including 

imitation, attentional cues, feedback cues, gestures and verbal instructions. These modalities 

could be combined in a linguistic robotic model to achieve a natural, intuitive, way of 

programming robots.  
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FIGURE CAPTIONS 

 

 

 

 

 

Fig. 1. Functional organization of the robotic model. The picture (bottom left) shows the 3D 

simulation environment with the demonstrator and imitator robots. The diagram on the right 

describes the linguistic input from the parser to the neural controller, and the corresponding 

motor output. The imitation algorithm compares the demonstrator’s joint angles with those 

of the imitator. 

 

 

 



 

 

 

 

Fig. 2 - Two example sequences for the acquisition of higher-level behaviors HG1 (top 

row) and HG2 (bottom row). Top row (from left to right): “GRAB is CLOSE_LEFT_ARM 

and CLOSE_RIGHT_ARM” (BG & BG = HG1). Bottom row: ”CARRY is MOVE_FORWARD 

and GRAB” (BG + HG1 = HG2). 

 

 

 

 

 

 

 

 



 

 

 

Fig. 3. The procedure that implements the grounding transfer from two basic action 

words to a combined action word consists of multiple steps, one for each basic word 

involved. Each of these steps is composed of a feed-forward phase, during which a 

desirable output is computed, and a learning phase, during which this output is used as a 

target input for backpropagation learning. Input patterns are binary representations of 

words, while output patterns are forces applied to each motorized joint. 
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Fig. 4 - Left graph: average posture errors after training for the basic, 1
st 

and 2
nd

 level of 

word groups. Right graph: final posture errors after training for each level. Data are 

averaged over the 10 replications. 

 

 



 

 

 


