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Abstract 
This research uses grounded adaptive agents for 
investigating the evolutionary origins of syntactic 
categories, such as nouns and verbs. To analyze the 
sensorimotor bases of linguistic structure, the 
techniques of categorical perception and of 
synthetic brain imaging are employed. The 
simulation uses two different architectures for the 
adaptive agent’s neural controller. Analyses show 
that the neural processing of verbs is consistently 
localized in the regions of the networks that 
perform sensorimotor integration, while nouns are 
associated with sensory processing areas. The 
general implications of such model and of the 
analysis techniques for adaptive behavior and 
language evolution research are discussed. 

1. Modeling language evolution in 
grounded adaptive agents 
Investigations on the emergence of language, both in 
evolutionary and developmental terms (MacWhinney 
1999; Cangelosi & Parisi 2002), have greatly 
benefited from the use of computational models. This 
has resulted in an alternative approach to the nature 
vs. nurture (and biological vs. cultural) dilemma in 
language emergence. Models demonstrate that 
language is a complex system that emerges from 
intricate interactions between various biological and 
environmental processes. Adaptive behavior and 
artificial life provide useful modeling methodologies 
(Kirby 2002; Wagner et al. 2003) for dealing with 
such a complex system vision of language. In 
adaptive behavior models, populations of autonomous 
agents interact via language games to exchange 
information about the environment. Their coordinated 
communication system emerges from the direct 
interaction between agents.  

Amongst the various adaptive behavior 
approaches, some provide a more integrative vision of 
language and treat it as an integral part of the whole 
cognitive system. The agent’s linguistic abilities are 
strictly dependent on, and grounded in, other 
behaviors and skills. Various sensorimotor, cognitive, 
neural, social and evolutionary factors contribute to 

the emergence and establishment of communication 
and language. For example, in these models there 
exists an intrinsic link between the communication 
symbols (words) used by the agent and its own 
cognitive representations (meanings) of the perceptual 
and sensorimotor interaction with the external world 
(referents). We call this grounded adaptive agent 
modeling of the emergence of language. This is 
consistent with the psychologically-plausible theories 
of the grounding of language in the organism’s 
perceptual and action systems (Barsalou 1999; 
Glenberg & Kaschak in press; Joyce et al. 2003). 
Such an approach is in opposition to other adaptive 
modeling systems that view language as an 
independent and autonomous capability of the agent, 
and are subject to the symbol grounding problems 
(Harnad, 1990).  

There are various language models based on 
grounded adaptive agents. Some use real (or realistic) 
robots interacting in physical environments, while 
others use simulated adaptive agents. In robotic 
models, communication results from the dynamical 
interaction between the robot’s physical body, its 
cognitive system and the external physical and social 
environment. Some studies stress the grounding in 
sensorimotor processes, such as Marocco’s et al. 
(2003) model of robotic arms in a physics dynamics 
simulator and Vogt’s (2002) mobile robots. Other 
robotic models highlight the grounding through social 
interaction, such as Steels’  (2002) talking heads and 
Kaplan’s (2000) interactive toy robot. On the other 
hand, some studies are based on simulation adaptive 
agents. They model the agent and its environment 
with a good degree of detail upon which emergent 
meanings can be directly constructed. These 
simulation models have focused on grounding in 
perceptual experience (Cangelosi et al. 2000; Dyer 
1994) and in cognitive representations and 
sensorimotor interactions (Cangelosi & Harnad 2000; 
Hazlehurst & Hutchins 1998).  

Both robotic and simulation models have been 
used to study the emergence of simple 
communication systems, and that of more complex 
syntactic languages. Of the models focusing on 
syntax, some have specifically addressed the 
evolutionary transition from non-compositional 



communication to syntactic language. This is an 
important issue in the field of language origins, 
because it can shed light on the evolutionary 
emergence and diversification of word categories, 
such as nouns, verbs and functions words (e.g. 
prepositions and quantifiers). This topic is also very 
important for studies on the ontogenetic development 
of language based on the emergentist/constructivist 
approach (Tomasello & Brooks, 1999; MacWhinney 
1998).  

This paper will focus on the use of grounded 
adaptive agents for investigating the evolutionary 
origins of syntactic categories, such as nouns and 
verbs. It will use grounded adaptive agents in which 
neural networks control all behaviors, including 
sensorimotor, cognitive and linguistic abilities. In 
order to better understand how all these behaviors 
interact, two techniques will be adopted for 
examining the agents’  internal (neural) 
representations. These analyses can identify and 
highlight the sensorimotor bases of linguistic 
structure, such as the role of perceptual and motor 
knowledge in differentiating the syntactic categories 
of verbs and nouns. The first methodology considers 
the phenomena of categorical perception in the hidden 
representations of neural networks. The second 
technique applies neuroimaging principles to artificial 
neural networks for comparing neural representations 
in different linguistic and behavioral tasks. The 
results of such analyzes will also be related to our 
current knowledge of the neural basis of language 
processing. 

2. The neural processing of 
language and cognition 
The neuropsychological and neurocognitive literature 
on language processing in the brain is quite extensive 
(Pulvermuller, 2003). This has been possible through 
the use of a variety of scientific methods, such as 
neuropsychological experiments of patients with 

psycholinguistics deficits, brain imaging studies on 
normal adults and language-impaired patients and 
artificial neural network models. These methods 
support detailed investigations of the neural principles 
and mechanisms behind various linguistic abilities. 
For example, a recent review paper has analyzed 
numerous studies on the neural processing of the 
syntactic categories of nouns and verbs (Cappa & 
Perani, 2003). This review explicitly includes and 
compares brain imaging experiments on verb and 
noun processing (e.g. Martin et al., 1995; Perani et 
al., 1999). Cappa and Perani (2003) report an overall 
agreement on the fact that the left temporal neocortex 
plays a crucial role in lexical-semantic tasks related to 
the processing of nouns. The processing of verbs, 
instead, involves additional regions of the left 
dorsolateral prefrontal cortex.  

Such data show that language processing is 
strictly interconnected with other sensorimotor and 
cognitive abilities. For example, the prefrontal 
cortical areas implicated in verb processing are those 
also involved in motor control. This finding is 
consistent with other work that illustrates a strong 
relationship between language and motor 
development (Greenfield, 1991; Rizzolatti & Arbib, 
1998). More generally, in cognitive psychology and 
neuropsychology it is widely accepted that language 
is not an autonomous function of the organisms, but it 
is strictly dependent on/from other cognitive abilities 
(Gazzaniga, 2000). 

In parallel to neuroscientific investigations, neural 
network models have extensively been used to study 
the neural control of linguistic behavior (Christiansen 
& Chater, 2001; Just et al. 1999). However, most of 
these models tend to study language in isolation. Only 
a few studies have directly and purposely simulated in 
the same model linguistic and motor functions (e.g. 
Reilly, in press). These include grounded adaptive 
agent models (e.g. Cangelosi 2001; Marocco et al. 
2003), where by definition linguistic abilities emerge 
from sensorimotor and cognitive skills. 

Pre-Categorization After category learning After language learning

Figure 1: Typical formation of clusters of points (i.e. square and circle categories) during category and language 
learning. Before category learning (Left), points corresponding to different categories overlap. After categorization 
(Centre) and language learning (Right) points group in distinct areas. Notice the enhancement of compression and 
separation (CP effects) between simple categorization and language learning. These diagrams do not correspond to 
real data, but only provide a sketch of CP effects observed in modeling experiments (e.g. Cangelosi et al. 2000). 



2.1 Categorical perception 
Category learning has been hypothesized to be one of 
the core capabilities supporting the evolution and 
development of language and cognition. In particular, 
categorical perception (CP) is proposed as the basic 
mechanism sustaining our ability to build discrete and 
hierarchically-ordered representations of the 
environment (i.e. categories). Language and other 
higher-order cognitive abilities are then grounded 
upon such categories (Harnad, 1987; Cangelosi & 
Harnad 2000). CP refers to the effect of “warping”  
the similarity space of internal categorical 
representations. This results in the compression of 
within-category differences between members of the 
same category and the expansion of between-category 
distances amongst members of different categories. 
Such phenomena can be graphically represented 
through the process of the formation of clusters of 
points in the similarity space of categories (Figure 1). 
The first diagram (Fig. 1 Left) shows the 
undifferentiated similarity space before category 
acquisition. The other two diagrams represent the 
formation of quite distinct clusters (categories) after 
category learning has occurred without (Fig. 1 
Centre) and with (Fig. 1 Right) language. These 
diagrams show the presence of two distinct categories 
(cluster of squares vs. cluster of circles) in an abstract 
two-dimensional similarity space. Each dimension 
may correspond to some classification component 
(e.g. presence of a feature) or to the hidden unit 
activation of a neural network. Relative distances in 
this space can be calculated using Euclidean measures 
between points. The two dotted circles in each 
diagram represent the within-category distances, 
corresponding to the standard deviation of the 
Euclidean distances between each point and the center 
of its cluster. The continuous straight line represents 
the between-category distance, e.g. the Euclidean 
distance between the centers of the two clusters.  

CP has been shown to occur in animals (Zental et 
al. 1986) and human subjects (Goldstone 1994; 
Andrews, Livingstone & Harnad, 1998). The 
compression effects have also been analyzed in real 
neural systems (Kosslyn et al. 1989) and in artificial 
neural networks (Tijsseling & Harnad 1997; 
Cangelosi, Greco & Harnad 2000; Nakisa & Plunkett 
1998). CP effects have been reported in models 
performing both category and language learning. 
Specifically, language appears to enhance the CP 
warping effects. The acquisition of categories via 
linguistic instruction produces stronger compression 
effects than those obtained in categories acquired 
through direct experience with stimuli. This is 
sketched out in the comparison of Figure 1 Left (after 
simple category learning) and Right (after category 
learning via language).  

More recently, CP effects have been investigated 
in different syntactic categories. In a grounded model 
of the evolutionary acquisition of verbs and nouns 
(Cangelosi & Parisi 2001), it was reported that the 

strength of language-enhanced CP effects varies 
depending on the word type used by agents. Verbs 
produce stronger warping effects than nouns (Figure 
2). These distinct internal representation patterns for 
the processing of verbs and nouns are also shown to 
generate differential benefits on the agent. This is 
because more similar representations of different 
situations help the agents to respond with the same 
action, albeit they are used in tasks with more 
variable environmental contexts (e.g. different 
objects/category may require the use of the same 
action, and its corresponding verb). Nouns, on the 
other end, tend to co-vary with the features of input 
stimuli (categories) and require less differentiated 
categorical representations (Cangelosi & Parisi, 
2001).  

In this paper further investigations of such 
differential verb/noun effects will be presented. 
Specifically, CP measurements will be performed in 
two neural architectures where the integration of 
sensorimotor information varies depending on the 
input of motor-related (proprioceptive) signals. 
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Figure 2: Categorical perception (CP) effects with 
verbs and nouns. Notice the enhanced CP effects in 
verbs, compared to the other conditions (adapted from 
Cangelosi & Parisi 2001) 

2.2 Synthetic brain imaging 
Experimental brain imaging techniques (also known 
as neuroimaging) permit the visualization and 
identification of neural activity in accurate regions of 
the brain in response to controlled tasks. 
Neuroimaging is based on comparisons of differences 
in brain activity (rCBF, regional Cerebral Blood 
Flow) between tasks. The two most commonly used 
techniques are Positron Emission Tomography (PET) 
and functional Magnetic Resonance Imaging (fMRI).  

Synthetic brain imaging (SBI) (Arbib et al. 2000; 
Horwitz et al. 1999; Cangelosi & Parisi, in press) is a 
modeling technique used to highlight the regions of 
an artificial neural network that are functionally 
active in response to specific stimulations and tasks. 
SBI can be used to compare directly PET and fMRI 
imaging data in empirical studies and in 
computational models. This permits the development 
of more detailed and neurally-plausible models of 
behavioral functions. In analogy with experimental 



neuroimaging, SBI is based on differences in artificial 
neural “activity”  between tasks. For example, 
following Arbib et al.’s (2000) assumptions, in 
synthetic PET the involvement of a region in a 
specific task is correlated with local integrated 
synaptic activity. Synaptic activity is computed by 
summing together the synaptic inputs arriving to the 
artificial neurons of a specific area (ignoring the 
positive/negative sign of the connections). Arbib and 
colleagues (2002) used synthetic PET to test their 
FARS model of parietal-premotor interactions in the 
grasping control of primates. In a study on language 
processing, Just et al. (1999) applied synthetic 
neuroimaging in a computational model of sentence 
comprehension. They found good agreement between 
the number of activated voxels in human fMRI 
experiments and the predictions of their model for 
sentence of different complexity.  

In this paper SBI techniques will be used to 
analyze the internal activations in the neural 
controllers of adaptive agents. Various linguistic 
conditions will be compared, in particular to show 
differences in the neural processing of verbs and 
nouns. 

3. The evolution of nouns and verbs: 
An adaptive behavior model 
A grounded simulation model of the evolution of 
nouns and verbs was employed. This uses a 
population of object manipulation agents that are able 
to understand the names of objects (nouns) and the 
names of actions (verbs)1. The simulation extends a 
previous language evolution model (Cangelosi & 
Parisi, 2001, in press), by employing different 
architectures in the agent’s neural controller.  

3.1 The agent and the tasks 
The simulated agent (Figure 3) consists of an 
organism with a retina and a two-segment arm (e.g. 
Schlesinger & Barto, 1999). The arm moves in a 2D 
environment in front of the agent. One of two 
different objects (object A = vertical bar; object B = 
horizontal bar) can appear at any time in the 
environment. The object occupies either three vertical 
cells or three horizontal cells and is centered in one of 
the 9 central cells of a 5x5 grid. The pixel values (0 
for empty cell, 1 for cell occupied by a portion of the 
object) will be projected to the 25 units of the agent’s 
retina. The agent’s arm is transparent and absent from 
the retinal image. 

During each task, an agent begins by grasping an 
object with its hand and it has either to pull the object 
toward itself or to push the object away from itself. 
The agent may responds to visual stimuli, linguistic 
instructions (nouns, verbs), or both. There are 11 

                                                        
1 This is a model of language comprehension only. A 
related model that deals with both linguistic comprehension 
and production is described in Cangelosi (2001). 

different tasks which combine these two sensory 
modalities (Figure 4). The agent always receives 
proprioceptive input regarding the current position of 
the two segments of its arm. 

In the first task (No_Language), the retina 
receives a 5x5 image of the object location and shape. 
No linguistic input is present. When object A is 
present in the scene, the agent must push it. Instead, 
object B must be pulled towards the agent’s shoulder. 

 
Figure 3: Agent interaction with environment. The 
two-segment arm grasps the object and has to pull it 
toward itself or push it away from itself. This depends 
on the type of object and the linguistic command that 
the agent may receive. 

 OBJECT A  OBJECT B 
 retina language retina language 

No_language   + * *   + * * 

Noun only   + * A   + * B 

    “      “  * + * A * + * B 

Verb only   + Push �    + Pull * 

    “      “  * + Push �  * + Pull * 

    “      “   + Pull �    + Push * 

    “      “  * + Pull �  * + Push * 

Noun Verb   + Push A   + Pull B 

    “      “  * + Push A * + Pull B 

    “      “   + Pull A   + Push B 

    “      “  * + Pull A * + Push B 

Figure 4: List of the retina and language input for the 
11 tasks. The *  symbol indicates the absence of input 
(i.e. a series of 0s) 

 The remaining 10 tasks involve language 
understanding. In 5 Vision+Language tasks, in 
addition to the retina and proprioceptive input, the 
following linguistic instructions are received by the 
agent: (1) “A”  or “B” , as the nouns of objects A and 
B; (2) “Push”  or “Pull”  for the verbs describing the 
default action (push for object A; pull for B); (3) 
“Push”  or “Pull”  for the verbs describing the opposite 
action (pull for object A; push for object B); (4) 
“Push A”  or “Pull B”  for describing the default 
actions by combining a noun and a verb; (5) “Push B”  
or “Pull A”  for describing the opposite actions. When 



the verb is received as input, the agent must do 
whatever the verb meaning indicates, thus overriding 
the default action if the verb describes the opposite 
action. In the 5 Language-only tasks, only the 
linguistic instruction and the proprioceptive input are 
provided. 

The use of the terms “noun”  and “verb”  is not 
intended to correspond to the full blown grammatical 
categories of verbs and nouns. Nevertheless, the 
nouns and verbs of the present simulation capture 
some of the fundamental properties of nouns and 
verbs of real human languages (Parisi et al., 2002). 
Nouns co-vary with the input stimuli and can act as 
attentional cues. Verbs co-vary with the motor action 
performed by the agents. These simple properties may 
have been those of primitive proto-nouns and proto-
verbs which, through cultural and linguistic evolution, 
have given way to the complex, full blown 
grammatical categories. As suggested by Pinker 
(1994) the use of mental labels for different types of 
objects and actions has clear adaptive advantages. 

3.2 The neural networks 
The behavior of the agent is controlled by a 
feedforward neural network. Two different 
architectures will be used (Figure 5). They differ in 
the connection pattern between some input and 
hidden nodes. 

The input layer contains 33 units. The 
proprioceptive input is encoded in 4 units. These 
encode the position of the arm through the input of 
the angles of the two pairs of muscles (extensor and 
flexor) of each of the two arm’s segments (shoulder 
and elbow). The visual object is perceived through a 
retina of 25 units corresponding to the 5x5 cells of the 
environment grid. Four localist-encoding linguistic 
units are used for language input, two respectively for 
the nouns “A”  and “B”  and two for the verbs “Push”  
and “Pull” .  

The output layer contains four motor units. These 
control the extension/contraction of the four arm 
muscles (a pair of extension/contraction muscles per 
arm segment). The output activation corresponds to 
the force that is applied to each muscle.  

The network has two layers of hidden units, 
whose organization varies in the two different 
architectures. In the first network configuration 
(Figure 5 top), the first hidden layer has two separate 
modules: a group of 5 units for the preprocessing of 
proprioceptive information and a group of 10 units for 
the preprocessing on linguistic and visual stimuli. In 
the other network architecture (Figure 5 bottom), all 
14 first-layer hidden nodes preprocess the input 
coming from all input units. In all networks, the 
second hidden layer contains 5 units with connections 
to the previous layer of hidden nodes. The motivation 
behind such manipulations of the neural architecture 
is to create a first network with a full modular 
organization, where separate sensory processing 
modules for motor information (proprioceptive input) 

and visual information (retina input) exist, in addition 
to the sensorimotor integration module of the second 
hidden layer. The second architecture, instead, uses a 
fully distributed approach where proprioceptive and 
visual information are integrated since the first hidden 
layer. 
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Figure 5: The two neural network architectures used in 
the simulation: Modular (Top) and distributed 
(Bottom) architectures. The connection patterns 
between the proprioceptive input units and the two 
hidden layers (shaded rectangles) are varied in the two 
networks. 

The two architectures resulting from the different 
organization of the hidden layers will be used to 
compare the categorical perception effects in two 
experimental conditions: (1) use of a modular 
architecture, with separated sensory-processing and 
sensorimotor integration modules; (2) use of a fully 
connected network directly based on sensorimotor 
integration. These two architectures permit the 
analysis of the functional organization of verb and 
noun processing in the networks in relationship to 
their sensorimotor abilities. In addition, the first 
architecture will be used to make qualitative 
comparisons with brain imaging data on modular 
language processing in humans. In all networks, the 
input language units are always connected to both 
hidden layers in the two networks. This is to better 
control the specific effects of the differential 
sensorimotor processing levels on linguistic input. 

3.3 The evolutionary algorithm 
A genetic algorithm is used to evolve the connection 
weights of the agents’  neural networks. During the 



agent’s lifetime, the weights do not change. The 
motor behavior and language understanding improves 
(i.e. is learned) during evolution. 

During each generation, a population of 80 agents 
is used. At the beginning of the simulation, 80 
genotypes (connection weights) are randomly 
generated in the range of ±1. Weights are encoded as 
real numbers. A single task in the lifetime of an 
individual consists of a total of 18 subtasks (2 objects 
x 9 positions). Each subtask lasts for 20 input/output 
cycles, necessary for the arm to move an object from 
its initial position to the target. The fitness formula 
computes the total number of subtasks successfully 
completed by each agent in all conditions. A subtask 
is considered successful when (a) object A is pulled to 
a distance of 5 points or less from the agent’s 
shoulder, or (b) object B is pushed to a distance of 45 
points or more from the agent’s shoulder.  

At the end of the generation, agents are ranked on 
the basis of their fitness formula. The 20 agents with 
highest fitness are selected for reproduction. Each 
individual asexually generates 4 offspring with the 
same genotype of its single parent except for the 
addition of random changes (mutations) to some of 
the weights. Five percent of weights are mutated by 
adding a random quantity between ±1.  

In the first 1000 generations, agents only perform 
the No_language task. These initial generations are 
needed for evolving a set of connection weights that 
allows agents to respond appropriately to the two 
objects (before language is introduced). From 
generation 1001 to 2000, agents have a longer 
lifetime and are exposed to all 11 tasks. These are 
experienced by each individual in a random order. In 
the fitness formula for the 10 tasks with language, a 
subtask is successful if the agent pushes or pulls the 
object according to the linguistic input.  

3.4 Fitness results 
For each network architecture, 20 replications were 
performed using different random initial populations. 
In all replications, agents evolved an ability to 
respond appropriately to the different input 
conditions. At the end of generation 2000, over 90% 
of the objects are responded to with the appropriate 
pushing or pulling behavior in all tasks.  

In this paper the focus is on the neural processing 
of nouns and verbs, rather than on evolutionary and 
fitness results. Therefore the following sections will 
discuss only the categorical perception analyses and 
the synthetic brain imaging data. For a more detailed 
discussion of fitness and evolutionary data in this type 
of model, see Cangelosi & Parisi (2001). 

4. Analyses on language processing 

4.1 Categorical Perception (CP) results 
In previous simulations of this language evolution 
model (Cangelosi & Parisi, 2001), it was shown that 

categorical perception (CP) varied in the word 
categories of verbs and nouns. Verbs produced an 
enhancement of between-category distances and 
reduction of within-category sizes when compared 
with nouns (Figure 2). These results refer to the 
activation patterns of the second hidden layer where 
sensorimotor integration happens2. The proposed 
explanation for such phenomenon is that verbs are 
better than nouns in shaping the internal 
representations (i.e. enhanced CP effects) because 
they “prepare the motor output with which the 
organism must respond to the input”  (Cangelosi & 
Parisi 2001: 174).  

This explanatory hypothesis, based on CP data 
taken from the hidden layer preceding the output 
units, can have two possible interpretations. The first 
hypothesis assumes that verbs distinguish themselves 
from nouns in the hidden layers next to the motor 
layer. As a consequence, the closer a hidden layer is 
to the output motor layer, the more action-oriented the 
representation is (which is the case of verbs that co-
vary with the action to be performed). The alternative 
interpretation is that verbs produce CP effects 
whenever hidden units play a direct role in shaping 
the type of motor response through the integration of 
internal sensory (visual and linguistic) representations 
and motor (proprioceptive) information. The analyses 
on the two architectures will resolve such an 
ambiguity and shed light on the relationship between 
sensorimotor processing and linguistic categories. 

In this study the CP data were computed for both 
hidden layers3 of each of the two architectures. Figure 
6 reports the between-category data for the modular 
(top) and the fully distributed (bottom) architecture. 
Data in Figure 6 were computed and averaged using 
the hidden unit activations of the best agent in each of 
the 20 replications. To compute the between-category 
distances, the sets of N hidden activation values h for 
the object A (h1A,h2A…hnA) and B (h1B,h2B…hnB) are 
necessary. These constitute the coordinates of two 
points in a N-dimensional Cartesian plane. Then the 
Pythagoras theorem is applied to obtain the Euclidean 
distance dA-B between the two points: 

 ( ) ( ) ( )222 ...2211 BABABABA hnhnhhhhd −++−+−=−
 (1) 

Results clearly indicate that in the modular 
network (Figure 6 Top) verbs differ from nouns only 
in the second hidden layer, i.e. where motor 
(proprioceptive) information integrates with sensory 
(visual) input. Instead, in the distributed architecture 
(Figure 6 Bottom) verbs differentiate from nouns 
starting from the first sensorimotor hidden layer. 

                                                        
2 In Cangelosi & Parisi (2001), the network architecture is 
similar to that of Figure 5 (top). The only difference was in 
the linguistic input solely connected to the second hidden 
layer. 
3 The CP data on the proprioception preprocessing layer of 
the first architecture were not computed because they do not 
receive linguistic input. 



These data supports the hypothesis that verbs produce 
enhanced CP effects whenever hidden units play a 
direct role in shaping the motor response through 
sensorimotor integration. This is independent from 
the relative proximity to the motor output layer.  

The localization of the CP effects also highlights 
the specific sensorimotor basis of verbs, and the 
sensorial characterization of nouns. The linguistic 
structure behind the differentiation of the word 
categories of verbs and nouns is strictly 
interconnected with sensorimotor representations. 
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Figure 6: Between-category distances for both layers 
of the modular network (Top) and the fully-distributed 
architecture (Bottom). The Euclidean distances in the 
Y axes are normalized to permit direct comparisons 
between layers with different number of units. 

4.2 Synthetic Brain Imaging (SBI) 
results 
Synthetic brain imaging analyses were performed 
only on both neural architectures. SBI will be used to 
make some qualitative comparisons between these 
artificial models and known data on syntax processing 
in the human brain. 

The SBI technique presented here will compare 
the neural activity of the two hidden layers in 
different linguistic tasks. This method is called 
Integrated Neural Activity (INA) and generally 
follows Arbib et al. (2000) synthetic fMRI procedure. 
A related synthetic brain imaging method, called 
Integrated Synaptic Activity (ISA), has also been 
developed to make comparisons with PET data. ISA 

will not be described and applied here, but for a 
comparison of INA and ISA analyses in grounded 
neural networks see Cangelosi & Parisi (in press). 

The overall value of the integrated neural activity 
INAA(1/2) reflects the difference of activation 
between the two tasks 1 and 2 in the region A (e.g. 
hidden layer). It can be computed using the following 
formula: 

 ( ) ( ) ( )212/1 AAA rINArINAINA −=   (2) 

where the regional Integrated Neural Activity for each 
task rINAA is  
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with N being to the number of units in the hidden 
layer, and ai the activation of each individual neuron 
in the region A.  

In small networks like the ones used here, it is 
possible to consider the INAA(1/2) as the average of 
differences between individual neuron activations in 
the two tasks. In this case, the following formula can 
be used: 
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Formula (4) will be used here, due to the small 
number of units in each hidden layer. Only the first 
activation value produced at the beginning of each 
task is used. Observations of the behavior showed that 
agents produce distinct push/pull movements since 
the first activation cycle. The INA values for all 
possible pairs of task subtractions were calculated 
separately for each hidden layer. Subsequently, all 
subtractions were averaged for the two linguistic 
classes of verbs and nouns. For example, the average 
of the values No_language–Noun_only and 
Verb_only–Noun_verb contribute to the INA value 
for Noun processing.  

Figure 7 contains the average INA values over the 
80 individuals of the 20 populations at generation 
2000. Means and standard errors were computed for 
both the modular architecture (Figure 7 Top) and the 
fully distributed architecture (Figure 7 Bottom). In 
general, higher columns correspond to more activity 
in the specific hidden layer and linguistic task to 
which they refer.  

For each network, an analysis of variance with 
repeated factors (MANOVA) was computed to 
compare the average differential activities in the two 
hidden layers and in the two linguistic tasks of noun 
and verbs. A sample size of 20 was considered, i.e. 
one data point for each of the 20 populations. The 
dependent variable was the INA value averaged over 
the 80 networks of each population. In computing the 
INA values for each individual network, only the 
values when the individual agent correctly 
manipulates the two objects (over 90% of the cases) 



were used. The two independent variables used in the 
MANOVA were HIDDEN_LAYER (2 levels: 1st and 
2nd) and NOUN_VERB (2 levels: noun tasks and verb 
tasks).  
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Figure 7: Data on the synthetic brain imaging of verb 
and noun processing in the two networks. Black 
arrows indicate significant statistical difference 
between the two verb/noun columns. The modular 
network (Top) has no significant differential activity 
for nouns in the first hidden layer. Verbs are 
significantly more active in the second hidden layer. 
In the network with fully distributed architecture 
(Bottom) verbs are significantly more active in both 
layers.  

Two individual MANOVAs were carried out, one 
for the modular network and one for the distributed 
architecture. In both analyses, only the 
NOUN_VERB factor and the interaction between the 
two factors were significant. In particular, to identify 
the specific differences between the 4 means of the 
interaction, some post hoc test were carried out. In the 
first network (Figure 7 Top), there is no significant 
difference of activity between nouns and verbs in the 
first hidden layer (p=0.281). Instead, verbs produce 
significantly more neural activity than nouns in the 
second hidden layer (p=0.009). In the second network 
(Figure 7b) verbs are significantly more active than 
nouns in both layers (p=0.017 in the first layer, and 
p<0.001 in the second).  

Overall, this pattern of results confirms that verb 
processing is “ localized”  in the regions of the network 
specialized for sensorimotor integration. This is the 
case of only the second hidden layer in the modular 
network, and of both layers in the fully distributed 
architecture. In addition, the results are consistent 

with the categorical perception analyses in the two 
neural architectures. 

5. Discussion and Conclusions 
This research was based on grounded adaptive agents 
for simulating the evolutionary acquisition of simple 
lexicons based on verbs and nouns. The use of neural 
networks that control all behaviors (sensorimotor, 
cognitive and linguistic) has permitted a better 
understanding of the interaction between such 
abilities. The manipulation of the connectivity in the 
two networks had the scope of designing agents with 
different neural processing strategies for the control 
of sensorimotor and linguistic behavior. The CP and 
SBI analyses have highlighted that the linguistic 
structure differentiating the two categories of nouns 
and verbs is strictly dependent on the perceptual and 
sensorimotor representations evolved by the agents. 
For example, tasks involving the use of verbs require 
the activation of the same neurons (and hidden layers) 
that play the function of integrating sensorial 
information (e.g. vision for identifying the shape and 
position of the object) with motor signals 
(proprioception for planning arm movement) to 
produce action. 

In section 4.1, two alternative mechanisms where 
hypothesized for explaining differences in the neural 
processing of verbs and nouns. The first hypothesis 
suggests that the closer the hidden layer is to the 
motor output units, the more it will be specialized for 
verb representation and processing (e.g. verbs will 
produce enhanced CP effects and higher SBI 
activity). The alternative hypothesis is that a hidden 
layer specializes for verb processing when it 
integrates sensory information, such as vision and 
language, with proprioceptive information. Both CP 
and SBI analyses support the second hypothesis. For 
example, verbs produce enhanced CP effects in the 
hidden layers that play a direct role in determining the 
motor response through sensorimotor integration. 
This is the case of the second hidden layer in the 
modular network and of both layers in the fully-
distributed network. This also contradicts the first 
interpretative hypothesis on the correlation between 
specialization for verb processing and relative 
proximity to the motor layer. In fact, in the distributed 
architecture, both layers show enhanced CP effects, 
whit stronger effects in the layer more distant from 
the output units.  

The value of this model in highlighting the 
sensorimotor grounding of the linguistic categories is 
strengthened by the similarity between the model 
performance and data on the neuroscience of 
language processing. In section 2.2 it was illustrated 
that experimental brain imaging studies have 
consistently established that nouns activate more the 
posterior areas of the brain related to sensory and 
associative processing, while verbs activate more the 
anterior motor areas (Cappa & Perani, 2003). 
Although the aim of this simulation and the SBI 



analyses is not that of building a neurally-plausible 
model of language processing in the brain, it is 
nevertheless remarkable that such a simple neural 
network model can be constrained to exhibit some 
functional and architectural similarities with the 
neural processing of language. This outcome further 
supports the use of grounded adaptive agent models 
for testing language evolution hypothesis. For 
example, the current model could be easily expanded 
to manipulate known constraints on the animal and 
human brains that have been hypothesized to affect 
the evolution of cognitive and linguistics abilities 
(Deacon, 1997). Simulations would then investigate 
the validity of such hypotheses. 

From a more general perspective on language 
origins, one of the most important contributions of 
this simulation is the demonstration that syntax 
evolution is directly grounded in sensorimotor and 
cognitive representations. The CP and SBI analyses 
show that verbs systematically “ follow”  the 
sensorimotor integration processing units, regardless 
of their position in the neural network. Therefore we 
can say that there is some kind of functional and 
neural equivalence between understanding the name 
of an action and performing the action (also 
regardless of any linguistic input). This coupling of 
language and sensorimotor processing abilities is 
consistent with cognitive grammar literature 
(Langacker 1987). According to such a theoretical 
approach, the formation of linguistic constructs leads 
back to cognitive constraints and functions.  

This work also has more general methodological 
implications for research in adaptive agents. The two 
techniques of CP and SBI have been used here to 
visualize and analyze the internal representation used 
by agents in various tasks and behavioral contexts. 
With these methodologies, the neural and categorical 
representations can be not only visually represented, 
but can also be compared using quantitative methods 
(e.g. Figure 7 with statistically comparisons of means 
in different hidden layers and linguistic tasks). 
Information visualization has become an important 
issue in adaptive behavior and artificial life research 
(Smith et al. 2002; Marocco et al. 2003). Current 
adaptive behavior models are becoming increasingly 
more complex in terms of evolutionary, behavioral 
and structural properties. Simulations and robotic 
studies can produce huge sets of data that are often 
difficult to analyze using existing methodologies. The 
development of information visualization tools, 
widespread in other areas such as genomic and 
neuroscience research (Stuart et al. 2001), can be 
fruitfully adopted in adaptive behavior. The two 
techniques used here can be easily adapted and used 
to visualize and interpret the internal representations 
that adaptive agents use to control complex behaviors. 

The model is currently being extended to study the 
emergence of syntactic languages. The lexicon will 
not be provided by the experimenter, but rather it will 
self-organize through the communicative interaction 

between agents (e.g. Cangelosi 1999). In addition, 
agents will learn language from their own peers and 
parents, so that the simulation can combine both the 
evolutionary and developmental acquisition of 
language. New simulations will focus on the 
transition from a non-symbolic and non-
compositional lexicon to the emergence of 
combinatorial and syntactic languages. Further 
manipulations of the neural network architectures will 
be conducted to determine the modular organizations 
favoring the transition to syntactic languages. 
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