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This paper presents a new connectionist model of spatial language based on real 

psycholinguistic data. It puts together various constraints on object knowledge (“what”) 

and on object localisation (“where”) in order to influence the comprehension of a range 

of linguistic terms, mirroring what participants do in experiments. The computational 

model consists of a vision processing module for input scenes, an Elman network module 

for the representation of object dynamics, and a dual-route network for the production of 

object names and linguistic prepositions describing the scene. Preliminary simulations on 

the prediction of spatial term ratings are presented, and extensions of the model  to vague 

quantifiers and other syntactic categories are considered. 

1. Introduction 

Spatial language and cognition is concerned with the understanding of the 

cognitive and linguistic mechanisms affecting the appraisal of spatial tasks. One 

very important issue is the relative extent to which various constraints on object 

knowledge (“what” information) and on object localisation (“where” 

information) influence the comprehension of a range of linguistic terms. 

Extensive research has been dedicated to the understanding of the effects of 

“where” information, that is geometric factors related to the relative position and 

orientation of the objects, in the use of spatial prepositions. For example, Logan 

and Sadler (1996) have proposed the existence of individual spatial templates for 

prepositions such as above and under. These templates specify the level of 

appropriateness of each spatial term for the different positions (in a 7x7 grid) of 

a located object with respect to a reference point. Regier (1996) developed a 



  

constrained connectionist model of spatial language able to deal with the effects 

of geometric factors on various spatial terms. More recently, Regier and Carlson 

(2001) have studied the combined effects of attentional and geometric factors in 

their Attention Vector Sum (AVS) model. In parallel with these studies on 

geometric factors, significant evidence has been gathered on the role of a range 

of “extra-geometric” factors on spatial language comprehension. These extra-

geometric factors include the knowledge of object properties and function, and 

general knowledge of object interaction dynamics. For example, Coventry et al. 

(2001) have investigated the relative importance of object function and 

geometric position on the comprehension of over, under, above and below. 

Whether an object is depicted as fulfilling its function or not (e.g. rain shown to 

fall on an umbrella protecting a man from getting wet, or shown to miss the 

umbrella and therefore failing to protect the man) is a better predictor of the 

acceptability of over and under to describe such scenes than the relative 

positions of umbrella and man, for example, while conversely the relative 

positions of umbrella and man are a better predictor the acceptability of above 

and below than function.  

More recently, Coventry and Garrod (2004) have developed the “functional 

geometric framework” to explain the integration of the “what” and “where” 

factors in spatial language. They argue that the application of geometric and 

extra-geometric routines underlie the comprehension of spatial prepositions. The 

application of such routines is driven by knowledge of the objects involved in 

the scene and how those objects typically interact in past learned interactions 

between those objects. Such a framework is also consistent with growing 

theoretical arguments and experimental evidence on the role of grounding 

language in action and perception (Barsalou 1999; Glenberg & Kashak 2002; 

Glenberg, this volume; Cangelosi, in press). For example, the idea that meaning 

is constructed as a result of putting together multiple constraints fits with recent 

work by Glenberg and Kaschak. They have proposed that the meaning of a 

sentence is constructed by indexing words or phrases to real objects or 

perceptual analog symbols for those objects, deriving affordances from the 

objects and symbols and then meshing the affordances under the guidance of 

syntax. Barsalou (1999) places similar emphasis on perceptual representation for 

objects and nouns in his perceptual symbol systems account. For Barsalou, 

words are associated with schematic memories extracted from perceptual states 

which become integrated into what Barsalou terms simulators. Cangelosi (in 

press) uses the Cognitive Symbol Grounding framework based on the hypothesis 

that symbols are directly grounded in internal categorical representations, whilst 



  

at the same time having logical (e.g. syntactic) relationships with other symbols. 

Some symbols, those corresponding to the basic vocabulary, need to be learned 

and directly grounded, through experience, in the objects they refer to (and the 

categorical representations that they activate). This is the case, for example, of 

words learned during early lexical development. Other symbols can then be 

grounded in representations of categorical entities constructed by the individuals, 

not necessarily through direct experience and interaction (e.g. when new 

concepts are learned through deduction). The internal categorical 

representations, constituting the meanings upon which symbols are grounded, 

include perceptual, sensorimotor, and social categories, as well as internal state 

representations. He considers two modelling approaches to symbol grounding: 

(i) the connectionist approach, based on artificial neural networks for category 

learning and naming tasks, and (ii) the embodied modelling approach, based on 

adaptive agent simulations and cognitive robots. These models provide an 

integrative view of cognitive systems and help our understanding of the 

relationships between vision, action and language. 

In this paper we present a new computational model for spatial language, in 

which visual scenes are described by selecting the spatial terms that most 

appropriately describe them (i.e. consistent with human subjects’ acceptability 

ratings). Due to the fact that the model is able to ground the selection of the 

spatial terms directly into the visual scene, this work helps bridge the gap 

between theories of meaning which capture meaning in terms of symbol-symbol 

relations (Landauer & Dumais, 1997) versus those which “ground” language 

directly in perceptual representation (Regier and Carlson, 2001). In particular, 

the new model will be able to directly ground the names of objects in visual 

scenes. Spatial terms, such as the prepositions over, under, above and below will 

also be grounded in information on objects’ locations and interaction provided in 

the input scenes. This will also create a system in which symbol-symbol 

relationships (e.g. between prepositions and nouns) also permit a prediction of 

the interaction between objects.  

2. The Computational Model 

The computational model has a hybrid vision-connectionist architecture (Figure 

1) with three main modules: (1) Visual Routines, (2) Elman Networks, (3) Dual-

Route Network.  

The Visual Routine module uses a series of Ullman-type vision processing 

routines (Joyce et al. 2002) to identify the constituent objects of a visual scene. It 

is directly inspired by recent findings and theories of visual object processing, 



  

such as Edelman’s (1999) feedforward chorus model. The input to the Visual 

routine module consists of seven frames from 60-second movies (one frame 

every ten seconds). The scene involves three objects: a located object (e.g. 

teapot), a liquid substance (e.g. water) and a reference object (e.g. a container 

such as a cup). The frames are presented to the model, which processes them at a 

variety of spatial scales and resolutions for object form and motion features 

yielding a visual buffer. In addition to the basic scale representation, texture, 

edge and region boundary features are extracted. The processing of each frame 

results in three arrays of 9x12 activations, representing retinotopically organised 

and isotropic receptive fields for each of the three objects.  
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Figure 1 – Dual-route network with input from Visual Routines and the Elman Networks modules. 

 

The Elman Network module utilises the output information from the vision 

module to produce a compressed neural representation of the dynamics of the 

scene (e.g. movement of liquid flow between the located and reference objects). 

Three separate Elman networks are used, respectively for each of the three 

object types in the scene (located object, liquid, reference objects). Three 



  

different networks are currently needed, because the vision module is not 

currently able to segment and identify objects autonomously. All networks have 

108 input and output units. The networks perform a typical prediction task, by 

producing in output the matrix of the next frame in the 7-frame sequence. The 

Elman network predicting the liquid flow has 20 hidden units and 20 context 

(memory) units. The two networks for the located and reference objects only 

require 5 hidden and context units, because the prediction task is trivial (objects 

are static). The scope of the Elman network module is to compress the temporal 

and dynamic information in the scene. This is achieved in the hidden units’ 

activation at the last frame presentation, when the networks have been able to 

predict all the frames of the scene. The network training protocol consists of a 

collection of sequences shown to the network in random order (but with fixed 

sequential order for the seven frames of each scene). Networks are able to 

correctly learn the prediction task for both training and generalization scenes 

(Joyce et al., 2003). 

The third module consists of a Dual-Route neural network. This architecture 

combines visual and linguistic information for both linguistic production and 

comprehension tasks (Plunkett et al., 1992; Cangelosi et a., 2000). This is the 

core component of the model, as it integrates visual and linguistic knowledge to 

produce a description of the visual scene. The network receives in input 

information on the scene through the activation values of the Elman networks’ 

hidden units. It will then produce in output a judgment regarding the appropriate 

spatial terms describing the visual scene and the names of the objects involved in 

the scene. The activation values of the linguistic output nodes correspond to 

rating values given by subjects for the spatial prepositions. 

 The network used in this simulation had 30 input visual units and 12 input 

linguistic nodes. The 30 visual nodes corresponded to the 30 hidden units of the 

three Elman networks (respectively 5 for the network processing the teapot, 20 

the liquid and 5 the containers).The linguistic units consisted of the 8 names of 

objects and the 4 prepositions over, under, above and below. The dual route 

network has 40 hidden nodes. The output layer had the same number and type of 

units as those in input. As a matter of fact, the dual route network can be 

considered to be an autoassociator. 



  

3. Simulation and Results 

3.1.Experimental Data and Training of the Network 

Preliminary simulations of the model focussed on the spatial prepositions over, 

under, above and below. For the model training, experimental data from a series 

of experiments on spatial language were used (Coventry et al., submitted). The 

visual scenes, used for both the experiment and the model, involved: 3 different 

reference objects (containers: a plate, a dish and a bowl), 2 levels of closure of 

container (lid on/closed and lid off/open), 6 different positions for the located 

objects (in a 3x2 grid position “higher” than the other objects), 2 directions of 

the located object (left and rightward facing), and 3 functional conditions (the 

liquid ends in the contained, or misses it, or no liquid is present). This constitutes 

a stimulus set of 216 movies in total (i.e. 3x2x6x2x3 experimental design). 

Figure 2 shows the initial and final frames of a sample scene.  

The methodology used for these experiments involved the presentation of 

pictures together with sentences of the form “The teapot is over the cup”. 

Participants had to rate the appropriateness of each sentence to describe the 

movies using a Lickert scale (range from 1 = totally unacceptable to 9 = totally 

acceptable). Typically, these experiments show effects of geometry and function, 

together with interactions between these variables and over/under versus 

above/below (see also Coventry et al., 2001).  

 

    
 
Figure 2. Example of training stimuli. First (left) and last (right) frame of the 60 second movie. This 

represents a functional scene, i.e. when the liquid finishes in the container. 

 

The subjects’ ratings were used to train the dual-route neural network 

through error backpropagation. An innovative method for backpropagation 

training was used, where ratings were converted into probability of scene-

preposition pairings. This is to avoid a training regime in which the network is 

assumed to be giving four simultaneous judgments for each scene. Instead 



  

human subjects, especially during developmental learning, tend to choose only 

one preposition to describe a scene (although the choice of a preposition may 

depend on various contextual factors). To simulate such a learning strategy, the 

original ratings of each scene-preposition pair were converted into frequency of 

presentation of a stimulus with an associated localist teaching input. At each 

learning cycle, only one output preposition unit is set to 1 (maximum 

activation/choice), whilst the other 3 prepositions units are trained to be inactive. 

To obtain such a frequency, the original average ratings were scaled and 

normalized within each scene and within the whole training set. For example, 

two quite extreme ratings of 7.12 and 3.96 (range 1-10) respectively correspond 

to presentation frequencies of 28 and 7.  

The conversion of ratings into preposition frequencies resulted in a training 

epoch of 21611 stimuli (scene-preposition pairs) for the dual-route network. 

Three networks were trained using different initial random weights and different 

random sets of generalisation test stimuli (10% of scenes that were never used 

during training). The training parameters included a learning rate of 0.01 and 

momentum of 0.8, and a total number of training epochs of 500. 

3.2.Results 

The average final error (RMS) for the 30 vision units was 0.008 for both training 

and testing data, and 0.003 for the 6 output units of the object names. More 

importantly, for the 4 spatial preposition output units, the error was 0.044 with 

training data and 0.05 with generalisation data. The error values in the 

preposition units were calculated off-line by comparing the actual output of the 4 

preposition units and the rating data converted to produce the stimulus 

frequencies (the actual error values used for the weight correction are always 

higher because they use localist teaching input).  

These results clearly indicate that the networks produce rating values similar 

to that of experimental subjects. The networks’ ability to correctly generalize the 

use (ratings) of the four prepositions with the novel scenes of the generalization 

set indicates that the model has learned the relationships between the objects 

involved in their scene, their geometrical and functional properties and the 

linguistic terms. They also indicate that the training algorithm based on 

presentation frequency, instead of rating teaching input, works well and provides 

a psychologically-plausible learning regime. 

Additional simulations (Coventry et al., in submission) have also shown that 

the model can accurately predict new experimental rating data for new scenes. 

For example, this is the case where only the initial frames are shown and the 



  

networks (i.e. the Elman nets) must “replay” the scene and predict its end frame 

(i.e. where the liquid ends). The Elman network hidden activation values were 

then passed to the dual route network to generate new rating for the four spatial 

prepositions. To compare the model’s prediction with the performance of real 

subjects, a new experiment was conducted. Subjects had to predict the end states 

of the initial frames of movie and rate the appropriateness of the linguistic 

descriptions. The acceptability ratings for both networks and subjects were 

overall lower for the predicted scenes rather than the end state scenes. The dual 

rout network error for the four preposition units was below 5%. In addition, in 

both networks and subjects the effects of geometry, function and interactions 

between these variables and over/under versus above/below were still present, 

indicating that participants do predict where the liquid will go in order to 

ascertain the appropriateness of these prepositions.  

4. Discussions and Future Work 

The preliminary results of this hybrid vision and connectionist model of spatial 

prepositions demonstrated the feasibility of building a language processing 

model directly grounded in perception. In addition, the model’s ability to 

replicate accurately subjects’ performance in the liquid-flow prediction 

simulation (and experiment) further supports its psychological validity.    

 
 

Figure 3. Example of stimuli for quantifier experiments. Subjects (and networks) have to rate 

sentences such as “There are several  striped fish.   

 

This model is currently being extended to deal with further linguistic terms, 

namely vague quantifiers such as some, few, a few, lots of (Figure 3). The 

hypothesis is that this grounded connectionist approach will permit the 

identification of the main mechanisms responsible for quantification judgment 

and their linguistic expression. Vague quantifiers like a few and several exhibit 



  

many of the same context effects that have been observed for spatial 

prepositions. For example, relative size of objects and their expected frequency 

(e.g. Hormann 1983; Newstead & Coventry 2000) have both been shown to 

affect the comprehension of quantifiers. “A few cars” is associated with a 

smaller number than “a few crumbs”. In addition, new experiments (Coventry et 

al., in preparation) have demonstrated that the rating of vague quantifiers is 

affected by the extent to which objects are grouped together and the degree of 

spacing between objects. The issue we are exploring with the new model is that 

these context effects originate from visual processing constraints such that 

information regarding specific numbers of objects in a scene cannot be derived 

very easily from visual processing of that scene. 

We also hope to be able to extend the model further by considering the 

direct interaction of the model (e.g. a cognitive agent) with objects in its 

environment. This is in contrast with the use of a “passive” model that observes 

interactions between objects through the presentations of movies. This new 

model might involve the use of a robotic arm (Massera et al., this volume; 

Cangelosi in press) that builds categorical and linguistic representation of the 

world by learning to manipulate objects and interact with them. This approach is 

consistent with the embodied framework in cognitive psychology (e.g. 

Barsalou’s and Glenberg’s grounded theories of cognition) and in cognitive 

systems studies (e.g. Steels, 2003). 

Acknowledgments 

This research was supported by the UK Engineering and Physical Research Sciences 

Council (EPSRC Grants GR/N38145 and GR/S26569) 

References 

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 

22(4), 577-660. 

Cangelosi (in press). Grounding symbols in perceptual and sensorimotor categories: 

Connectionist and embodied approaches. In H. Cohen & C. Lefebvre (Eds), 

Categorization in Cognitive Science, Elsevier 

Cangelosi A., Greco A. & Harnad S. (2000). From robotic toil to symbolic theft: 

Grounding transfer from entry-level to higher-level categories. Connection Science, 

12(2), 143-162. 

Coventry, K. R. & Garrod, S. C. (2004). Saying, Seeing and Acting: The Psychological 

Semantics of Spatial Prepositions. Psychology Press, Hove. 

Coventry K.R., Prat-Sala M., Richards L.V. (2001). The interplay between geometry and 

function in the comprehension of ‘over’, ‘under’, ‘above’ and ‘below’. Journal of 

Memory and Language, 44, 376-398. 



  

Coventry K.R. et al. (in submission). Spatial language and perceptual symbol symbols: 

Implementing the functional geometric framework. 

Edelman S. (1999). Representation and Recognition in Vision. MIT Press. 

Glenberg A.M., Kaschak M. (2002). Grounding language in action. Psychonomic 

Bulletin and Review, 9(3), 558-565. 

Joyce D., Richards L., Cangelosi A., Coventry K.R. (2002), Object representation-by-

fragments in the visual system: A neurocomputational model. In L. Wang et al. (Eds), 

Proceedings of the 9th International Conference on Neural Information Processing 

(ICONP02) IEEE Press. 

Joyce. D. W., Richards, L. V., Cangelosi, A. & Coventry, K. R. (2003). On the 

foundations of perceptual symbol systems: Specifying embodied representations via 

connectionism. In F. Dretje et al. (Eds.), The Logic of Cognitive Systems. 

Proceedings of the Fifth International Conference on Cognitive Modelling, pp147-

152. Universitats-Verlag Bamberg, Germany. 

Hormann H. (1983). Then calculating listener, or how many are einige, mehrere and ein 

paar (some, several and a few). In R. Bauerle, C. Schwarze, & A, von Stechow 

(Eds.), Meaning, use and interpretation of language. Berlin. 

Landauer, T., & Dumais, S. (1997). A solution to Plato’s problem: the latent semantic 

analysis theory of acquisition, induction and representation of knowledge. 

Psychological Review, 104, 211-240. 

Logan G.D., Sadler D.D. (1996). A computational analysis of the apprehension of spatial 

relations. In P. Bloom, M.A. Peterson, L. Nadel, M.F. Garrett (Eds.), Language and 

Space (pp. 493-530). Cambridge, Mass.: MIT Press. 

Massera G., Nolfi S., Cangelosi A. (in press), Evolving a simulated robotic arm able to 

grasp objects. In A. Cangelosi A., G. Bugmann & R. Borisyuk (Eds.), Modelling 

Language, Cognition and Action: Proceedings of the 9th Neural Computation and 

Psychology Workshop. Singapore: World Scientific 

Newstead S.E., Coventry K.R. (2000). The role of context and functionality in the 

interpretation of quantifiers. European Journal of Cognitive Psychology, 12(2), 243-

259. 

Plunkett, K., Sinha, C., Moller, M.F & Strandsry, O. (1992). Symbol grounding or the 

emergence of symbols? Vocabulary growth in children and a connectionist net. 

Connection Science, 4(3-4), 293-312. 

Regier T. (1996). The human semantic potential: Spatial language and constrained 

connectionism. Cambridge Mass.: MIT Press. 

Regier T., Carlson L.A. (2001) Grounding spatial language in perception: An empirical 

and computational investigation. Journal of Experimental Psychology: General, 

130(2), 273-298. 

Steels L. (2003). Evolving grounded communication for robots. Trends in Cognitive 

Science. 7(7), 308-312. 


