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THE ADAPTIVE ADVANTAGE OF SYMBOLIC THEFT OVER SENSORIMOTOR

TOIL: GROUNDING LANGUAGE IN PERCEPTUAL CATEGORIES

Abstract
Using neural nets to simulate learning and the genetic algorithm to simulate
evolution in a toy world of mushrooms and mushroom-foragers, we place two
ways of acquiring categories into direct competition with one another: In (1)
"sensorimotor toil,” new categories are acquired through real-time, feedback-
corrected, trial and error experience in sorting them. In (2) "symbolic theft,” new
categories are acquired by hearsay from propositions – boolean combinations of
symbols describing them. In competition, symbolic theft always beats
sensorimotor toil.  We hypothesize that this is the basis of the adaptive advantage
of language. Entry-level categories must still be learned by toil, however, to avoid
an infinite regress (the “symbol grounding problem”). Changes in the internal
representations of categories must take place during the course of learning by toil.
These changes can be analyzed in terms of the compression of within-category
similarities and the expansion of between-category differences. These allow
regions of similarity space to be separated, bounded and named, and then the
names can be combined and recombined to describe new categories, grounded
recursively in the old ones. Such compression/expansion effects, called
"categorical perception" (CP), have previously been reported with categories
acquired by sensorimotor toil; we show that they can also arise from symbolic
theft alone. The picture of natural language and its origins that emerges from this
analysis is that of a powerful hybrid symbolic/sensorimotor capacity, infinitely
superior to its purely sensorimotor precursors, but still grounded in and dependent
on them. It can spare us from untold time and effort learning things the hard way,
through direct experience, but it remain anchored in and translatable into the
language of experience.
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THE ADAPTIVE ADVANTAGE OF SYMBOLIC THEFT OVER SENSORIMOTOR

TOIL: GROUNDING LANGUAGE IN PERCEPTUAL CATEGORIES

1. Language Evolution: A Martian Perspective

Whatever the adaptive advantage of language was, it was indisputably triumphant. If all our

linguistic capabili ties were subtracted from the repertoire of our species today, very little

would be left. Not only would all the fruits of science, technology and culture vanish, but our

development and socialization would be arrested at the stage still occupied currently by the

members of all other species, along with only the severely retarded members of our own.

Buried somewhere among all those undeniable benefits that we would lose if we lost language

there must be a clue to what language’s original bonus was, the competitive edge that set us

inexorably on our unique evolutionary path, distinct from all the nonspeaking species (Harnad,

Steklis & Lancaster 1976; Steels 1997).

There has been no scarcity of conjectures as to what that competitive edge might have been: It

helped us hunt; it helped us make tools; it helped us socialize. There is undoubtedly some merit

in such speculations, but it is hard to imagine how to test them. Language is famously silent in

the archeological and paleontological record, requiring interpreters to speak for it; but it is the

validity of those very interpretations that is at issue here.

Perhaps we need to take a step back, and look at our linguistic capacity from the proverbial

Martian anthropologist's perspective: Human beings clearly become capable of doing many

things in their world, and from what they can do, it can also be inferred that they know a lot

about that world. Without too much loss of generality, the Martian could describe that

knowledge as being about the kinds of things there are in the world, and what to do with them.

In other words, the knowledge is knowledge of categories: objects, events, states, properties

and actions.

Where do those categories come from? A Martian anthropologist with a sufficiently long-range

database could not fail to notice that some of our categories we already have at birth or soon
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after, whereas others we acquire through our interactions with the world (Harnad 1976). By

analogy with the concept of wealth, the Martian might describe the categories acquired

through the efforts of a lifetime to be those that are earned through honest toil, whereas those

that we are born with and hence not required to earn he might be tempted to regard as ill -

gotten gains -- unless his database was really very long-range, in which case he would notice

that even our inborn categories had to be earned through honest toil: not our own individual

toil, nor even that of our ancestors, but that of a more complicated, collective phenomenon

that our (ingenious) Martian anthropologist might want to call evolution.

So, relieved that none of our categories were acquired other than through honest toil, our

Martian might take a close look at precisely what we had done to earn those that we did not

inherit. He would find that the way we earned our categories was through laborious, real-time

trial and error, guided by corrective feedback from the consequences of sorting things correctly

or incorrectly (Catania & Harnad 1988). As in many cases the basis for sorting things correctly

was far from obvious, he would note that our honest toil was underwritten by a substantial

inborn gift, that of eventually being able to find the basis for sorting things correctly, somehow.

A brilli ant cognitive theorist, our Martian would immediately deduce that in our heads there

must be a very powerful device for learning to detect those critical features of things (as

projected onto our sensory surfaces) on the basis of which they can be categorized correctly

(Harnad 1996b). Hence he would not be surprised that this laborious process takes time and

effort -- time and effort he would call "acquiring categories by Sensorimotor Toil" (henceforth

Toil).

Our Martian moralist would be surprised, however, indeed shocked, that the vast majority of

our categories turn out not to be learned by Toil after all, even after discounting the ones we

are born with. At first the Martian thinks that these unearned categories simply appear

spontaneously; but upon closer inspection of his data he deduces that we must in fact be

stealing them from one another somehow. For whenever there is evidence that one of us has

acquired a new category without first having performed the prerequisite hours, weeks or years

of Toil, in the laborious real-time cycle of trial, error and feedback, there is always a relatively

brief vocal episode between that individual and another one who has himself either previously

earned that category through sensorimotor Toil, or has had a very brief vocal encounter with

yet another individual who has himself either… and so on.



5

Without blinking, our Martian dubs this violation of his own planet's Protestant work ethic "the

acquisition of categories by Theft," and immediately begins to search for the damage done to

the victims of this heinous epistemic crime. To his surprise, however, he finds that (except in

very rare cases, dubbed "plagiarism," in which the thief falsely claims to have acquired the

stolen category through his own honest toil), category Theft seems to be largely a victimless

crime.

Ever the brilli ant cognitive theorist, our Martian would quickly discern that the mechanism

underlying Theft must be related to the one underlying Toil, and that in principle it was all

quite simple. The clue was in the vocal episode: All earthlings start with an initial repertoire of

categories acquired by sensorimotor Toil (supplemented by some inborn ones); these

categories are grounded by the internal mechanism that learns to detect their distinguishing

features from their sensorimotor projections. These grounded categories are then assigned an

arbitrary symbolic name (lately a vocal one, but long ago a gestural one, his database tells him

[Steklis & Harnad 1976]). This name resembles neither the members of the category, nor their

features, nor is it part of any instrumental action that one might perform on the members of the

category. It is an arbitrary symbol, of a kind with which our Martian theorist is already quite

familiar with, from his knowledge of the eternal Platonic truths of logic and mathematics, valid

everywhere in the Universe, which can all be encoded in formal symbolic notation (Harnad

1990).

When our Martian analyses more closely the brief vocal interactions that always seem to

mediate Theft, he finds that they can always be construed in the form of a proposition that has

been heard by the thief. A proposition is just a series of symbols that can be interpreted as

making a claim that can be either true or false. The Martian knows that propositions can

always be interpreted as statements about category membership. He quickly deduces that

propositions make it possible to acquire new categories in the form of recombinations of old

ones, as long as all the symbols for the old categories are already grounded in Toil (individual

or evolutionary). He accordingly conjectures that the adaptive advantage of language is

specifically the advantage of Symbolic Theft over Sensorimotor Toil, a victimless crime that

allows knowledge to be acquired without the risks or costs of direct trial and error experience.
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Can the adaptive advantage of Symbolic Theft over Sensorimotor Toil be demonstrated

without the benefit of the Martian Anthropologist's evolutionary database (in which he can

review at leisure the videotape of the real-time origins of language)? We will try to

demonstrate them in a computer simulated toy world considerably more impoverished than the

one studied by the Martian. It will be a world consisting of mushrooms and mushroom foragers

who must learn what to do with which kind of mushroom in order to survive and reproduce

(Parisi, Cecconi & Nolfi 1990; Cangelosi & Parisi 1998). But before we describe the

simulation we must introduce some theoretical considerations that are too falli ble to be

attributed to our Martian theorist: One concerns a fundamental limi tation on the acquisition of

categories by Symbolic Theft (the symbol grounding problem) and the other concerns the

mechanism underlying the acquisition of categories by Sensorimotor Toil (categorical

perception).

1.1. The Symbol Grounding Problem.

Just as the values of the tokens in a currency system cannot be based on still further tokens of

currency in the system, on pain of infinite regress -- needing instead to be grounded in

something like a gold standard or some other material resource that has face-value -- so the

meanings of the tokens in a symbol system cannot be based on just further symbol-tokens in

the system. This is called the symbol grounding problem (Harnad 1990). Our candidate for the

face-valid groundwork of meaning is perceptual categories. The meanings of symbols can

always be cashed into further symbols, but ultimately they must be cashed into something in

the world that the symbols denote. Whatever it is inside a symbol system that allows it to pick

out the things its symbols are about, on the basis of sensorimotor interactions with them

(Harnad 1992; 1995), will ground those symbols; those grounded symbols can then be

combined and recombined in higher-level symbolic transactions that inherit the meanings of the

ground-level symbols. A simple example is "zebra," a higher-level symbol that can inherit its

meaning from the symbols "striped" and "horse," provided "striped" and "horse" are either

ground-level symbols, or grounded recursively in ground-level symbols by this same means

(Harnad 1996a).

The key to this hierarchical system of inheritance is the fact that most if not all symbolic

expressions can be construed as propositions about set (i.e., category) membership. Our
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Martian had immediately intuited this: The simplest proposition "P," which merely asserts that

the truth-value of P is true, is asserting that P belongs to the set of true propositions and not

the set of false propositions. In the classical syllogism: "All men are Mortal. Socrates is a Man.

Therefore Socrates is Mortal," it is again transparent that these are all propositions about

category membership. It requires only a little more reflection to construe all the sentences in

this paragraph in the same way, and even to redraw them as Venn Diagrams depicting set

membership and set inclusion. Perceptual categories are the gold standard for this network of

abstractions that leads, bottom-up, from "horse," "striped" and "zebra" all the way to

"goodness," "truth" and "beauty."

1.2. Categorical Perception.

Can perceptual categories bear the weight of grounding an entire symbolic edifice of

abstraction? Some parts of the world that our senses must categorize and tag with a symbolic

name do obligingly sort themselves into disjunct, discrete categories that admit of no overlap

or confusion, so our senses can duly detect and distinguish them. For these happy categories it

does look as if the perceptual groundwork can bear the burden. But in those parts of the world

where there is anything approaching the "blooming, buzzing confusion" that Willi am James

wrote about, the world alone, and passive senses (or even active, moving, Gibsonian ones;

Gibson 1979) are not enough. Here even an active sensorimotor system needs help in detecting

the invariants in the sensorimotor interaction with the world that afford the abili ty to sort the

subtler, more confusable things into their proper categories. Neural networks are natural

candidates for the mechanism that can learn to detect the invariants in the sensorimotor flux

that will eventually allow things to be sorted correctly (Harnad 1992, 1993). This is the

process we have agreed to call Toil.

A sensorimotor system with human-scale category learning capacities must be a plastic

(modifiable) one: Inside the system, the internal representations of categories must be able to

change in such a way as to sort themselves, reliably and correctly. It is perhaps an

oversimplification to think of these internal representations as being embedded in a great,

multidimensional similarity space, in which things position themselves in terms of their

distances from one another, but this simplification is behind the many regularities that have

been revealed by the psychophysical method of multidimensional scaling (Livingston &
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Andrews 1995) which has been applied to category learning and representation in human

subjects (Andrews, Livingston & Harnad 1998). What has been found is that during the course

of category learning by what we have called sensorimotor Toil, the structure of internal

similarity space changes in such a way as to compress the perceived differences between

members of the same category and expand the differences between members of different

categories, with the effect of separating categories in similarity space that were highly

interconfusable prior to the Toil (Goldstone 1994; Pevtzow & Harnad 1997). This

compression/separation in turn allows an all-or-none (categorical) boundary to be placed

between the regions of similarity space occupied by members of different categories, thereby

allowing them to be assigned distinct symbolic names.

These compression/separation effect has come to be called categorical perception (CP)

(Harnad 1987) and has been observed with both inborn categories and learnt ones, in human

subjects as well as in animals and in neural nets (Harnad, Hanson & Lubin 1991; 1995;

Tijsseling & Harnad 1978). The neural nets offer the advantage that they give us an idea of

what the functional role of CP might be, and what they suggest is that CP occurs in the service

of categorization. It can be seen, for example, as changes in the receptive fields of hidden units

in the supervised backpropagation nets that will be used in this study. What will be analyzed

for the first time here is how the CP "warping" of similarity space that occurs when categories

are acquired by sensorimotor Toil is transferred and further warped when categories are

acquired by Theft. Categorical perception induced by language can thus be seen as an instance

of the Whorfian Hypothesis (Whorf 1964), according to which our language influences the

way the world looks to us.

2. The mushroom world

Our simulations take place in a mushroom world (Cangelosi & Parisi, 1998; Harnad 1987) in

which little virtual organisms forage among the mushrooms, learning what to do with them

(eat or don't eat, mark or don't mark, return or don't return). The foragers feed, reproduce and

die. Mushrooms with feature A (i.e. those with black spots on their tops, as ill ustrated in

Figure 1) are to be eaten; mushrooms with feature B (i.e. a dark stalk) are to have their
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location marked, and mushrooms with both features A and B (i.e. both black-spotted top and

dark stalk) are to be eaten, marked and returned to. All mushrooms also have three irrelevant

features, C, D and E, which the foragers must learn to ignore.

Apart from being able to move around in the environment and to learn to categorize the

mushrooms they encounter, the foragers also have the abili ty to vocalize. When they approach

a mushroom, they emit a call associated with what they are about to do to that mushroom

(EAT, MARK). Both the correct action pattern (eat, mark) and the correct call (EAT, MARK)

are learned during the foragers' lifetime through supervised learning (Sensorimotor Toil).

Under some conditions, the foragers also receive as input, over and above the features of the

mushroom itself (+/-A, +/-B, +/-C, +/-D, +/-E), the call of another forager. This will be used to

test the adaptive role of the Theft strategy. (Note, however, that except in special cases --

reported and analyzed elsewhere (Cangelosi & Harnad, in preparation) -- in the present

simulations the thief steals only the knowledge, not the mushroom.)

The foragers' world is a 2-dimensional (2D) grid of 400 cells (20x20). The environment

contains 40 randomly located mushrooms. Mushrooms are grouped in four categories

according to the presence/absence of features A and B: 00, A0, 0B, and AB (Figure 1). In each

world there are 40 mushrooms: 10 instances of each of the four categories. Our ecological

interpretation of the marking behavior is that it has two functions: Both the inedible 0B and

the edible AB mushrooms have a toxin that is painful when inhaled, but digging into the earth

(marking) immediately after exposure blocks all negative effects. There is also a delayed

contingency on the AB mushrooms only, which is that wherever they appear, many more

mushrooms of the same kind will soon grow in their place. So with AB mushrooms it is

adaptive to remember to return to the marked spots.
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Figure 1: 2D world with one forager and the four samples of mushrooms. Mushroom feature A
is the presence of black dots on the top; feature B is a dark stalk. Mushroom position

corresponds to the normalized relative angle between forager's orientation and the closest
mushroom.

Feature A is the black-spotted top and feature B is the dark stalk. Mushroom position is

encoded as the normalized relative angle between the direction the forager is facing and the

direction of the closest mushroom. In this simulation, the foraging is done by only one forager

at a time. As it moves, the forager perceives only the closest mushroom. For each mushroom,

the input to the forager consists of the 5 +/- features plus its location relative to the forager,

expressed as the angle α, between its position and the direction the forager is facing. The angle

is then normalized to the interval [0, 1]. The five visual features A, B, C, D, E are encoded in a

binary localist representation consisting of five units each of which encodes the

presence/absence of one feature. An A0 mushroom would be encoded as 10*** , with 1

standing for the presence of feature A, 0 for the absence of feature B and *** being either 0 or

1 for the 3 irrelevant features, C, D, and E. 0B mushrooms are encoded as 01*** , and AB as

11*** . The calls that can be produced in the presence of the mushroom are also encoded in a

localist binary system. There are 3 units for each of the three calls: 1** EAT, *1* MARK and

**1 RETURN, so EAT+MARK+RETURN would be 111. Like the Calls, the three actions of

eating, marking and returning are encoded localistically.
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3. The Neural Network and Genetic Algorithm

The forager's neural network processes the sensory information about the closest mushroom

and activates the output units corresponding to the movement, action and call patterns. The net

has a feedforward architecture (Figure 2) with 8 input, 5 hidden and 8 output units. The first

input unit encodes the angle to the closest mushroom. Five input units encode the visual

features and three input units encode incoming calls (if any). Two output units encode the four

possible movements (one step forward, turn 90 degrees right, turn 90 degrees left, or stay in

place) in binary. Three action units encode the action patterns eat, mark, and return, and three

call units encode the corresponding three calls, EAT, MARK, and RETURN.

Figure 2 - Neural network architecture.

A forager's lifetime lasts for 2000 actions (100 actions in 20 epochs, each of them sampling a

different distribution of 40 mushrooms). For each epoch there are two spreads of activation,

one for the action (movement and action/call) and one for an imitation task. The forager first

produces a movement and an action/call output using the input information from the physical

features of the mushroom. The forager's neural network then undergoes a cycle of learning

based on the backpropagation algorithm (Rumelhart, Hinton, & Willi ams, 1986).
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The net's action and call outputs are compared with what they should have been; this difference

is then backpropagated so as to weaken incorrect connections and strengthen correct ones. In

this way the forager learns to categorize the mushrooms by performing the correct action and

call. In the second spread of activation the forager also learns to imitate the call. It receives as

input only the correct call for that kind of mushroom, which it must imitate in its call output

units. This learning is likewise supervised by backpropagation.

The population of foragers is also subject to selection and reproduction as generated by the

genetic algorithm (Goldberg, 1989). The population size is 100 foragers and remains constant

across generations. The initial population consists of 100 neural nets with a random weight

matrix. During the forager's lifetime its individual fitness is computed according to a formula

that assigns points for each time a forager reaches a mushroom and performs the right action

on it (eat/mark/return) according to features A and B. At the beginning of its life, a forager

does not become much fitter from the first mushrooms it encounters because it takes some

time to learn to categorize them correctly. As errors decrease, the forager's fitness increases.

At the end of their life-cycles, the 20 foragers with the highest fitness in each generation are

selected and allowed to reproduce by engendering 5 offspring each. The new population of

100 (20x5) newborns is subject to random mutation of their initial connection weights for the

motor behavior, as well as for the actions and calls (thick arrows in Figure 2); in other words,

there is neither any Lamarckian inheritance of learned weights nor any Baldwinian evolution of

initial weights to set them closer to the final stage of the learning of 00, A0, 0B and AB

categories. This selection cycle is repeated until the final generation.

4. Grounding Eat and Mark Directly Through Toil.

Two experimental conditions were compared: Toil and Theft. Foragers live for two life-stages

of 2000 actions each. The first life-stage is identical for both populations: they all learn,

through sensorimotor Toil, to eat mushrooms with feature A and to mark mushrooms with

feature B. (AB mushrooms are accordingly both eaten and marked.) Return is not taught

during the first life-stage. The input is always the mushroom's position and features, as shown

in Table 1. In the second life-stage, foragers in the Toil condition go on to learn to return to

AB mushrooms in the same way they had learned to eat and mark them through honest toil:
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trial and error supervised by the consequences of returning or not returning (Catania & Harnad

1988). In contrast, foragers in the Theft condition learn to return on the basis of hearing the

vocalization of the mushrooms' names.

Condition
Feature

Input
Call
Input

Behavior
Backprop

Call
Backprop

TOIL EAT-MARK YES NO YES YES

TOIL RETURN YES NO YES YES

THEFT RETURN NO YES YES YES

IMITATION NO YES NO YES

Table 1 - Input and backpropagation for Toil and Theft learning and for imitation learning

We ran ten replications for each of the two conditions. In the first 200 generations, the

foragers only live for the first life-stage. From generation 200 to generation 210 they live on

for a second life-stage and must learn the return behavior. The first 200 generations are

necessary to evolve and stabili ze the abili ty to explore the world and to approach mushrooms.

After the foragers are able to move in the 2D environment and to approach mushrooms, they

learn the basic categories plus their names, EAT and MARK. The average fitness of the ten

replications is shown in Figure 3. The populations that evolve in these 10 runs are the same

ones that are then used in the Toil and Theft conditions from generations 200 to 210.
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Figure 3 - Average fitness of the best 20 individuals in ten replications. Foragers lived one life-
stage and only eating and marking was taught.



14

In the next runs, the second life-stage differs for the Toil and Theft groups: The Toil group

learns to return and to vocalize RETURN on the basis of the feature input alone, as in the

previous life-stage. Their input and supervision conditions are shown in Table 1. In the Theft

condition the foragers rely on other foragers' calls to learn to return. They do not receive the

feature input, only the vocalization input.

Our hypothesis is that the Theft strategy is more adaptive (i.e. results in greater fitness and

more mushroom collection) than the Toil strategy. To test this, we compare foragers' behavior

for the two conditions statistically. For our purposes we count the number of AB mushrooms

that are correctly returned to. The average of the best 20 foragers in all 10 replications is 54.7

AB mushrooms for Theft and 44.1 for Toil. That is, Thieves successfully return to more AB

mushrooms than do Toilers. This means that learning to return from the grounded names EAT

and MARK is more adaptive than learning it through direct toil based on sampling the physical

features of the mushrooms. To compare the two conditions, we performed a repeated

measures analysis of variance (MANOVA) on the 10 seeds. The dependent variables were the

number of AB mushrooms collected at generation 210 averaged over the 20 fittest individuals

in all 10 generations. The independent variable was Theft vs. Toil. The difference between the

two conditions was significant [F(1,9)=136.7 p<0.0001]. Means and standard deviations are

shown in Figure 4.
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5. Theft vs Toil: Simulating direct competition

A direct way to study the adaptive advantage of Theft over Toil is to see how they fare in

competition against one another. We ran 10 competitive simulations, starting with the 10

populations from generation 200 of the previous runs. Foragers again live for two life-stages.

In the first, all learn to eat and mark through Toil. In the second life-stage, the 100 foragers are

randomly divided into 50 Thieves and 50 Toilers for the learning to return. There is no real on-

line competition in our simulations because in each run, only one individual is tested in its

world. The number of AB mushrooms to which a forager is able to return will strongly affect

its fitness. Direct competition occurs only at the end of the life cycle, in the selection of the

fittest 20 to reproduce. Direct competition for scarce mushrooms has been studied separately

in other simulations (note 1); in the present ecology, the assumption is that mushrooms are

abundant and that the only fitness challenge is to emerge among the top 20 eaters/markers of

the generation. Figure 5 shows the proportion of Thieves in the overall population of the 10

replications of Theft vs Toil (from generation 200 to 210). Even though Thieves are only 50%

of the population at generation 201, they gradually come to outnumber Toilers, so that in less

than 10 generations the whole population consists of Thieves.
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6. What Changes During Learning? Analysis of internal representations

In this section we compare the changes in the foragers' hidden-unit representations for the

mushrooms to determine what it is that changes internally during Toil and Theft. The

activations of the 5 hidden units are recorded during a test cycle in which the forager is

exposed to all the mushrooms as input. We will report the analysis of a single case study using

the network of the fittest individual in seed 8. These results are representative of the learning

dynamics in all nets that successfully learned to categorize mushrooms.

We first used Principal Components Analysis (PCA) to display the network's internal states in

two dimensions, thereby reducing the 5 activations to 2 factor scores. PCA, however, has the

limitation that the different conditions cannot be compared directly because of differences in

scale. For each PCA, factor scores are normalized to a distribution with a mean of 0 and a

standard deviation of 1. Hence this analysis can only be used to compare internal

representations within each condition, not between conditions.
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Figure 6 - Similarity space for network with random weights. Factors are obtained after PCA
on the activation values of the five hidden units.
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Figure 7 - Similarity space for network that learned to eat, mark, and return by Toil.

Figure 6 and 7 show the effect of category learning (Toil) on the distances between the internal

representations of the mushrooms in hidden unit similarity space. In Figure 6, prior to Toil, the

four kinds of mushroom are not clearly distinguishable. During the course of learning the

actions/calls eat-mark-return, the representations form four separable clusters. We will now

show how these representations can be used to analyze the effects of Toil and Theft learning

on similarity space directly.

7. Categorical Perception Effects

The change in our networks' hidden-unit representations during the course of category learning

can be analyzed and understood in terms of learned categorical perception (CP) effects

(Harnad 1987, Goldstone 1994; Andrews et al., 1998), i.e. the compression of within-category

distances and the expansion of between-category distances. CP has already been demonstrated

to occur with Toil learning (Harnad et al. 1991, 1995; Goldstone et al., 1996, Csato et al.,

submitted); we will now extend this to an examination of what happens to the internal

representations with Theft learning.
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To overcome the limitations of the previous analysis, we record the Euclidean distances

between and within categories using the coordinates of the five hidden unit activations directly.

At the end of each simulation, the 5 fittest foragers in each population are tested by giving

them 40-mushroom samples as input. The hidden unit activations for each kind of mushroom

are saved for three input conditions: (1) Features-only (only the 5-bit feature input); (2) Calls-

only (only the 3-bit call input) and (3) Features+Calls (both types of input). The within-

category distances are calculated as the mean squared Euclidean distances between each

individual mushroom's coordinates and its category mean. There are four means, one for 00,

A0, 0B, and AB respectively. Between-category distances are calculated as the distances

between the category means.

Four learning conditions are used to analyze within-category and between-category distances

for CP effects: (1) Pre-learning, for random-weight nets before learning; (2) No-return, for

nets that were only taught to eat and to call EAT, and to mark and to call MARK, (3) Toil, for

nets that also learned to return and to call RETURN with feature input, (4) and Theft for

learning to return from calls alone. In every replication one mean was obtained for each of the

10 between- and within-category distances (4 within measures for each category, plus 6

between measures for all the possible pairings of the 4 categories) by averaging the distances

derived from the 5 fittest foragers. These 10 mean distances were collected for each of the

three input conditions. Because we have 10 replications, the 10 means for each distance can be

used as dependent variables in two separate analyses of variance, one for within-category, the

other for between-category distances. Our MANOVA for the within-category distances had

two independent variables: LEARNING CONDITIONS with 3 levels (Pre, No, Toil) and

CATEGORY TYPE with 4 levels (Eat, Mark, Return, Do-nothing) (note 2).

We used a repeated measures MANOVA because all levels of CATEGORY TYPE and

LEARNING CONDITIONS involve repeated measures in the same set of nets. (We excluded

the Theft condition in which the within-category distance is 0 because all ten samples of

mushrooms use the same call input.) The average within-category distances in the 4x3

conditions are shown in Table 2 and Figure 8.
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CATEGORY PRE NO-RET TOIL

Do-nothing .34 .16 .14

Eat .32 .14 .12

Mark .30 .13 .12

Eat+Mark(+Return) .29 .11 .09

Table 2 - Table of means for the MANOVA of within-category distances

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PRE-LEARNING NO-RETURN TOIL

Eat+Mark+Return

Eat

Do-nothing

Figure 8 - Average within-category distances in the three conditions. The curve for Mark is not
shown because it coincides with the curve for Eat.

The two main effects are statistically significant ( F(2,18)=917.6 and p<0.00001 for

LEARNING and F(3,27)=18.8 and p<0.00001 for CATEGORY TYPE); the interaction is not

significant. Using the post-hoc Duncan test with a significance threshold of p<.01 to compare

the means for each independent variable, all the comparisons in the LEARNING condition

were significant. That is, within-category distances decrease significantly from Pre-learning to

No-return to Toil. The biggest decrease is between the (random) Pre-learning and all the post-

learning nets (see Table 2 and Figure 8). In the four levels of CATEGORY TYPE, all means

differ from each other except the Eat and Mark within-distances. That is, the within-category

distance for Eat and Mark is the same, whereas the within distance of Do-nothing is the biggest

and that of Return the smallest.

MANOVA for the between-category distances had two repeated variables: LEARNING

CONDITIONS with 4 levels (Pre, No, Toil, Theft) and CATEGORY COMPARISONS with 4

levels (Eat Versus Mark, Eat vs Return, Eat vs Do-nothing, Return vs Do-nothing). The Mark
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vs Return and Mark vs Do-nothing comparisons are not included in the analysis because their

means are very similar to the parallel comparisons Eat vs Return and Eat vs Do-nothing,

respectively (Table 3). We then go on to generalize the results for the Eat vs Mark

comparisons. The between-category distances for the 4x4 repeated measure design are shown

in Table 3 and Figure 9.

COMPARISON PRE NO-RET TOIL THEFT

EAT ↔↔ MARK .57 1.47 1.47 1.42

RETURN ↔↔ EAT .42 1.01 1.10 1.25

RETURN ↔↔ MARK .39 1.01 1.12 1.25

EAT ↔↔ Do-nothing .42 1.04 1.02 .93

MARK ↔↔ Do-nothing .45 1.04 1.02 .95

RETURN ↔↔ Do-nothing .54 1.42 1.52 1.61

Table 3 - Table of means for the MANOVA of within-category distances

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

PRE-LEARNING NO-RETURN TOIL THEFT

Return Vs Eat

Return Vs Do-nothing

Eat Vs Mark

Eat Vs Do-nothing

Figure 9 - Between-category distances in the four conditions. Return vs Mark and Mark vs
Do-nothing are not shown because they are congruent with Return vs Eat and Eat vs Do-

nothing respectively.

The two main effects are significant ( F(3,27)=3771.6 and p<0.00001 for LEARNING and

F(3,27)=868.6 and p<0.00001 for COMPARISONS) as is their interaction (F(9,81)=75.7 and

p<.00001). Duncan tests revealed, first, a significant difference in the distance between the

Pre-learning nets and all the post-learning nets. (This expected effect only shows that any kind

of systematic learning will i ncrease between-category distances compared to random initial
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distances.) Comparing Toil vs Theft specifically, we see that all distances between Return and

the other three categories are greater in the Theft nets. Learning Return by Theft has the effect

of separating this category more from the others. The mean differences were all significant for

Return vs Eat, Return vs Mark, and Return vs Do-nothing, 1.25, 1.25 and 1.25, respectively,

in the Theft nets, and 1.10, 1.12, and 1.52 in the Toil nets. The Theft learning of Return caused

the between-category distances not involving Return to decrease. [A last effect is that in all

learning conditions the Eat vs Mark and Return vs Do-nothing distances are greater then the

other pairs because the Hamming distances of their I/O codes are maximal (e.g. features A and

B for Eat Vs Mark have the input contrast: 10 Vs 01).]

Figure 10 shows the change in the distances between the internal representations of the A (Eat

only), B (Mark only), A&B (Eat & Mark & Return), and not-A&not-B (neither Mark nor Eat

nor Return) Mushrooms. Prior to Toil, the circles, proportional to the within-category

distances, are large, and the rectangle, proportional to the between-category distances is small.

After Toil learning, the within-category differences shrink and the between-category distances

expand.

Figure 11 then traces the between-category expansion to Theft Learning: The thin dashed

rectangle is proportional to the between-category distances before learning (random). The

thick dashed line is what they look like after Toil learning of Eat and Mark without Return; the

thin continuous line is identical to Figure 9, that is, Toil learning of Eat and Mark, with Return,

and the thick continuous line is for Theft learning of Return. Note the increased separation

between A&B and not-A&not-B induced by Theft alone.
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Figure 10 - 2D projections of between-category distances (quadrilateral sides) and within-
category distances (circle radius) in the Pre-learning condition and after Toil learning of Eat,

Mark,and Return. All distances except Eat vs Mark correspond to the actual Euclidean
distances in 5 dimensional hidden unit space.
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Figure 11 - 2D projections of the between-category distances (quadrilateral sides) in the four
conditions. The distances, except Eat vs Mark, are comparable and reflect the actual Euclidean

distances between categories. Note that the distances between Return and all the other
categories (Return vs Eat, Return vs Mark, Return vs Do-nothing) are the highest in the Theft

condition.

8. Conclusions

We have shown that a strategy of acquiring new categories by Symbolic Theft completely

outperforms a strategy of acquiring them by Sensorimotor Toil as long as it is grounded in

categories acquired by Toil. The internal mechanism that makes both kinds of category

acquisition possible does so by deforming or “warping” internal similarity space so as to

compress the internal representation of members of the same category and to separate those of

different categories. The warping occurs primarily in the service of Toil, but Theft not only

inherits the warped similarity space but can warp it further. This warping of similarity space in

the service of sensorimotor and symbolic learning is called categorical perception and can be

interpreted as a form of Whorfian effect (Whorf 1964) in which language influences how the

world looks to us.

From the standpoint of our Martian anthropologist, the influence would run roughly like this:

All other species on this planet get their categories by toil alone, either cumulative,

evolutionary toil or individual li fetime toil: Individuals encounter things, must learn by trial and

error what to do with what, and to do so, they must form internal representations that reliably

sort things into their proper categories. In the process of doing so, they keep learning to see

the world differently, detecting the invariants, compressing the similarities and enhancing the

differences that allow them to sort things the way they need to be sorted, guided by feedback

from the consequences of sorting adaptively and maladaptively (as in the mushroom world).

That’s how it proceeded on our planet until one species discovered a better way: First acquire

an entry-level set of categories the honest way, like everyone else, but then assign them

arbitrary names. (Those names could start as nonarbitrary functional or imitative gestures at

first, by-products of practical, collective social actions or even deliberate mimicry, but their
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nonarbitrary features would be irrelevant once they were used just to name; and vocal gestures

would be least encumbered with other practical tasks, hence most readily available for arbitrary

naming, especially across distances, out of eye-shot, and in the dark.) Once the entry-level

categories had accompanying names, the whole world of combinatory possibili ties opened up

and a lively trade in new categories could begin (probably more in the spirit of barter than

theft, and, within a kin-line, one of sharing categories along with other goods). In trading

categories as they traded combinations of symbols, our species also traded “world-views,” for

each category acquired by hearsay also brought with it some rearrangement of the internal

representation of categories, a “warping” that was Whorfian, whether merely the subtle

compression that results from learning that A is always conjoined with B, or the fundamental

restructuring dictated by a radical scientific

discovery.

Only our Martian knows the specific initial conditions in which the generative power of names

and their boolean combinations made themselves felt biologically on our planet, but perhaps

our simulations suggest how its benefits might have mushroomed, inducing a series of

Baldwinian adaptations inclining ever our successful ancestors to name categories and to string

names together so as to describe new categories to one another with ever more fervor and

commitment.

Can results from a 3-bit toy world really cast light on the rich and complex phenomenon of the

origin and adaptive value of natural language? This is really a question about whether such

findings will “scale up” to human size in the real world. This scaling problem -- common to

most fields of cognitive modeling where the tasks themselves tend not to be lifesize or to have

face validity -- can only be solved by actually trying to scale our models upward, incorporating

more and more of the real-world complexity and constraints into them. This is how our own

research programme will continue. For now, however, we wanted to enter our own toy

candidate into the competition with the other toy models (tool-make, hunt-help, chit-chat, etc.;

Knight et al. in press) for the provenance of our species’ most powerful and remarkable trait.
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Notes

(1) In simulations conducted by Emma Smith (in prep.) and Gianni Valenti (in prep.) we have

shown that when the scarcity of the mushrooms is varied, Theft beats Toil when there are

plenty of mushrooms for everyone, but when the mushrooms are scarce and vocalising

risks losing the mushroom to the Thief, Toil beats Theft and the foragers are mute. Further

studies analysing kinship showed that under conditions of scarcity vocalising to relatives

only beats vocalising to everyone. Of course a mushroom world is too simple, and foraging

categories are not the only ones that can benefit from Theft. The pattern may be different

for categories related to danger, territory, mating, dominance, or instructing offspring.

(2) We will use the names Eat, Mark, Return, and Do-nothing (i.e. non-A, non-B mushrooms)

to refer to the four categories. Return categories could also be called Eat+Mark+Return

because the Return category implies the co-occurrence of behaviours/calls Eat and Mark


