THE ADAPTIVE ADVANTAGE OF SYMBOLIC THEFT OVER SENSORIMOTOR
TOIL: GROUNDING LANGUAGE IN PERCEPTUAL CATEGORIES

Angelo Cangelos

Centre for Neural and Adaptive Systems
School of Computing
University of Plymouth
Drake Circus
Plymouth PL4 8AA (UK)
angelo@soc.plym.acuk
http://techweb.seeplym.acuk/soc/staff/angelo/

Stevan Harnad

Cognitive Science Centre
University of Southampton
Highfield
Southampton SO17 1BJ (UK)
harnad@cogsci.soton.acuk
http://www.cogsci.soton.ac uk/~harnad/

Corresponding address

Angelo Cangelos

School of Computing
University of Plymouth
Drake Circus

Plymouth PL4 8AA (UK)

Email: angelo@soc.plym.acuk

Tel. +44 1752 232559
Fax +44 1752 232540

Note: Submitted to Evolution of Communication, spedal issue on Grounding Language elited
by L. Steds



THE ADAPTIVE ADVANTAGE OF SYMBOLIC THEFT OVER SENSORIMOTOR
TOIL: GROUNDING LANGUAGE IN PERCEPTUAL CATEGORIES

Abstract

Using neural nets to smulate leaning and the genetic dgorithm to simulate
evolution in a toy world of mushrooms and mushroom-foragers, we place two
ways of aaquiring caegories into dired competition with one another: In (1)
"sensorimotor toil,” new caegories are aquired through red-time, feedbadk-
correded, trial and error experience in sorting them. In (2) "symbolic theft,” new
caegories are aquired by heasay from propositions — boolean combinations of
symbols describing them. In competition, symbolic theft aways beds
sensorimotor toil. We hypothesize that this is the basis of the adaptive advantage
of language. Entry-level categories must still be learned by toil, however, to avoid
an infinite regress (the “symbol grounding problem”). Changes in the internal
representations of categories must take placeduring the wurse of leaning by toil.
These dhanges can be analyzed in terms of the cmpresson of within-caegory
smilarities and the expansion of between-caegory differences. These dlow
regions of similarity spaceto be separated, bounded and named, and then the
names can be cmbined and recombined to describe new caegories, grounded
reaursively in the old ones. Such compresson/expansion effeds, cdled
"categoricd perception” (CP), have previoudy been reported with caegories
aqyuired by sensorimotor toil; we show that they can also arise from symbolic
theft alone. The picture of natural language and its origins that emerges from this
analysis is that of a powerful hybrid symbolic/sensorimotor capadty, infinitely
superior to its purely sensorimotor preaursors, but still grounded in and dependent
on them. It can spare us from untold time and effort leaning things the hard way,
through dired experience, but it remain anchored in and trandatable into the
language of experience



THE ADAPTIVE ADVANTAGE OF SYMBOLIC THEFT OVER SENSORIMOTOR
TOIL: GROUNDING LANGUAGE IN PERCEPTUAL CATEGORIES

1. Language Evolution: A Martian Per spective

Whatever the adaptive advantage of language was, it was indisputably triumphant. If all our
linguistic capabilities were subtraded from the repertoire of our spedes today, very little
would be left. Not only would all the fruits of science, technology and culture vanish, but our
development and socialization would be arested at the stage till occupied currently by the
members of al other spedes, along with only the severely retarded members of our own.
Buried somewhere anong all those undeniable benefits that we would lose if we lost language
there must be a ¢ue to what language’'s original bonus was, the competitive alge that set us
inexorably on our unique evolutionary path, distinct from all the nonspeaking spedes (Harnad,
Steklis & Lancaster 1976 Steds 1997).

There has been no scarcity of conjedures as to what that competitive edge might have been: It
helped us hunt; it helped us make toals; it helped us cidize There is undoubtedly some merit
in such speaulations, but it is hard to imagine how to test them. Language is famoudly silent in
the acheologicd and paleontologicd record, requiring interpreters to spek for it; but it is the

validity of those very interpretations that is at issue here.

Perhaps we need to take astep bad, and look at our linguistic cgpadty from the proverbial
Martian anthropologist's perspedive: Human beings clealy become caable of doing many
things in their world, and from what they can do, it can aso be inferred that they know a lot
about that world. Without too much loss of generdity, the Martian could describe that
knowledge & being about the kinds of things there ae in the world, and what to do with them.
In other words, the knowledge is knowledge of categories. objeds, events, states, properties

and adions.

Where do those cdegories come from? A Martian anthropologist with a sufficiently long-range

database could not fail to notice that some of our categories we drealy have & birth or soon
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after, whereas others we aajuire through our interadions with the world (Harnad 1976. By
analogy with the oncept of wedth, the Martian might describe the cdegories aquired
through the dforts of a lifetime to be those that are earned through honest toil, wherees those
that we ae born with and hence not required to ean he might be tempted to regard as ill -
gotten gains -- unless his database was redly very long-range, in which case he would notice
that even our inborn caegories had to be eaned through honest toil: not our own individual
toil, nor even that of our ancestors, but that of a more mmplicaed, colledive phenomenon

that our (ingenious) Martian anthropologist might want to cdl evolution.

So, relieved that none of our caegories were aquired other than through honest toil, our
Martian might take a d¢ose look at predsely what we had done to ean those that we did not
inherit. He would find that the way we eaned our caegories was through laborious, red-time
trial and error, guided by corredive feedbad from the amnsequences of sorting things corredly
or incorredly (Catania & Harnad 198§. Asin many cases the basis for sorting things correaly
was far from obvious, he would note that our honest toil was underwritten by a substantial
inborn gift, that of eventually being able to find the basis for sorting things corredly, somehow.
A brilli ant cognitive theorist, our Martian would immediately deduce that in our heals there
must be avery powerful device for leaning to deted those aiticd feaures of things (as
projeded onto our sensory surfaces) on the basis of which they can be cdegorized corredaly
(Harnad 1996). Hence he would not be surprised that this laborious processtakes time and
effort -- time and effort he would cdl "aauiring categories by Sensorimotor Toil" (henceforth
Tail).

Our Martian moralist would be surprised, however, indead shocked, that the vast mgjority of
our caegories turn out not to be learned by Toail after al, even after discounting the ones we
are born with. At first the Martian thinks that these uneaned caegories smply appea
spontaneoudly; but upon closer inspedion of his data he deduces that we must in fad be
stealing them from one another somehow. For whenever there is evidence that one of us has
aqjuired a new caegory without first having performed the prerequisite hours, weeks or yeas
of Tail, in the laborious red-time ¢ycle of tria, error and feadbad, there is aways a relatively
brief vocd episode between that individual and another one who has himself either previously
eaned that category through sensorimotor Toil, or has had a very brief vocd encounter with

yet another individual who has himself either... and so on.
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Without blinking, our Martian dubs this violation of his own planet's Protestant work ethic "the
aqjuisition of categories by Theft," and immediately begins to search for the damage done to
the victims of this heinous epistemic aime. To his surprise, however, he finds that (except in
very rare caes, dubbed "plagiarism,” in which the thief falsely claims to have aquired the
stolen category through his own honest toil), category Theft seems to be largely a victimless

crime.

Ever the brilliant cognitive theorist, our Martian would quickly discern that the mechanism
underlying Theft must be related to the one underlying Toil, and that in principle it was all
guite smple. The due was in the vocd episode: All eathlings dart with an initial repertoire of
caegories aquired by sensorimotor Toil (supdemented by some inborn ones); these
caegories are grounded by the internal medhanism that leans to deted their distinguishing
feaures from their sensorimotor projedions. These grounded caegories are then assgned an
arbitrary symbolic name (lately a vocd one, but long ago a gestural one, his database tells him
[Steklis & Harnad 1976). This name resembles neither the members of the cdegory, nor their
feaures, nor isit part of any instrumental adion that one might perform on the members of the
caegory. It is an arbitrary symbol, of a kind with which our Martian theorist is already quite
familiar with, from his knowledge of the @ernal Platonic truths of logic and mathematics, valid
everywhere in the Universe, which can al be excoded in forma symbolic notation (Harnad
1990).

When our Martian analyses more dosely the brief vocd interadions that always sem to
mediate Theft, he finds that they can aways be wnstrued in the form of a proposition that has
been head by the thief. A proposition is just a series of symbols that can be interpreted as
making a dam that cen be ather true or fase. The Martian knows that propositions can
aways be interpreted as tatements about caegory membership. He quickly deduces that
propositions make it possble to aajuire new categories in the form of recombinations of old
ones, as long as al the symbols for the old caegories are drealy grounded in Toil (individual
or evolutionary). He acordingly conjedures that the alaptive alvantage of language is
spedficdly the advantage of Symbolic Theft over Sensorimotor Toil, a victimless crime that

allows knowledge to be a@uired without the risks or costs of dired trial and error experience



Can the aaptive alvantage of Symbolic Theft over Sensorimotor Toil be demonstrated
without the benefit of the Martian Anthropologist's evolutionary database (in which he can
review at leisure the videotape of the red-time origins of language)? We will try to
demonstrate them in a computer smulated toy world considerably more impoverished than the
one studied by the Martian. It will be aworld consisting of mushrooms and mushroom foragers
who must learn what to do with which kind of mushroom in order to survive and reproduce
(Paris, Ceconi & Nolfi 1990 Cangelos & Paris 1998. But before we describe the
smulation we must introduce some theoreticd considerations that are too falible to be
attributed to our Martian theorist: One concerns a fundamental limitation on the aquisition of
caegories by Symbolic Theft (the symbol grounding problem) and the other concerns the
medhanism underlying the aquisition of caegories by Sensorimotor Toil (caegoricd

perception).

1.1. The Symbol Grounding Problem.

Just as the values of the tokens in a aurrency system cannot be based on till further tokens of
currency in the system, on pain of infinite regress -- nealing instead to be grounded in
something like agold standard or some other material resource that has facevalue -- so the
meanings of the tokens in a symbol system cannot be based on just further symbol-tokens in
the system. This is cdled the symbol grounding problem (Harnad 199Q. Our candidate for the
facevalid groundwork of meaning is perceptual categories. The meanings of symbols can
always be cahed into further symbols, but ultimately they must be cahed into something in
the world that the symbols denote. Whatever it is inside asymbol system that allows it to pick
out the things its ymbols are @out, on the basis of sensorimotor interadions with them
(Harnad 1992 1995, will ground those symbols, those grounded symbols can then be
combined and recombined in higher-level symbolic transadions that inherit the meanings of the
ground-level symbols. A simple example is "zebra," a higher-level symbol that can inherit its
meaning from the symbols "striped” and "horse," provided "striped” and "horse” are ather
ground-level symbols, or grounded reaursively in ground-level symbols by this same means
(Harnad 1996).

The key to this hierarchicd system of inheritance is the fad that most if not al symbolic
expressons can be onstrued as propositions about set (i.e.,, caegory) membership. Our
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Martian had immediately intuited this: The smplest proposition "P," which merely asserts that
the truth-value of P is true, is asrting that P belongs to the set of true propositions and not
the set of false propositions. In the dasscd syllogism: "All men are Mortal. Socratesis a Man.
Therefore Socrates is Mortal," it is again transparent that these ae dl propostions about
caegory membership. It requires only a little more refledion to construe d the sentences in
this paragraph in the same way, and even to redraw them as Venn Diagrams depicting set
membership and set inclusion. Perceptual caegories are the gold standard for this network of
abstradions that leads, bottom-up, from "horse" "striped” and "zebra' al the way to
"goodness" "truth" and "beauty."

1.2. Categorical Perception.

Can perceptua caegories bea the weight of grounding an entire symbolic edifice of
abstradtion? Some parts of the world that our senses must caegorize and tag with a symbolic
name do obligingly sort themselves into digunct, discrete cdegories that admit of no overlap
or confusion, so our senses can duly deted and dstinguish them. For these happy caegories it
doeslook asif the perceptua groundwork can bea the burden. But in those parts of the world
where there is anything approacing the "blooming, buzzing confusion” that William James
wrote aout, the world alone, and passve senses (or even adive, moving, Gibsonian ones;
Gibson 1979 are not enough. Here even an adive sensorimotor system needs help in deteding
the invariants in the sensorimotor interadion with the world that afford the ability to sort the
subtler, more confusable things into their proper caegories. Neural networks are natura
candidates for the medhanism that can lean to deted the invariants in the sensorimotor flux
that will eventually allow things to be sorted corredly (Harnad 1992 1993. This is the

processwe have ggreed to cdl Tail.

A sensorimotor system with human-scde cdegory leaning capadties must be a plastic
(modifiable) one: Inside the system, the internal representations of categories must be ale to
change in such a way as to sort themselves, reliably and corredly. It is perhaps an
oversmplification to think of these internal representations as being embedded in a grea,
multidimensional similarity space, in which things position themselves in terms of their
distances from one another, but this smplificaion is behind the many regularities that have

been reveded by the psychophysicd method of multidimensional scding (Livingston &
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Andrews 1995 which has been applied to caegory leaning and representation in human
subjeds (Andrews, Livingston & Harnad 1998. What has been found is that during the murse
of caegory leaning by what we have cdled sensorimotor Toil, the structure of internal
similarity space ¢anges in such a way as to compress the perceved dfferences between
members of the same cdegory and expand the differences between members of different
caegories, with the dfed of separating categories in similarity space that were highly
interconfusable prior to the Toil (Goldstone 1994 Pevtzow & Harnad 1997. This
compresson/separation in turn alows an all-or-none (categorical) boundary to be placed
between the regions of smilarity spaceoccupied by members of different categories, thereby
allowing them to be assgned dstinct symbolic names.

These mmpresgon/separation effed has come to be cdled categorical perception (CP)
(Harnad 1987 and has been observed with both inborn caegories and leant ones, in human
subjeds as well as in animals and in reura nets (Harnad, Hanson & Lubin 1991 1995
Tijseling & Harnad 197§. The neural nets offer the alvantage that they give us an idea of
what the functional role of CP might be, and what they suggest is that CP occurs in the service
of categorizaion. It can be seen, for example, as changes in the receptive fields of hidden units
in the supervised badkpropagation rets that will be used in this dudy. What will be analyzed
for the first time here is how the CP "warping" of similarity spacethat occurs when caegories
are aqguired by sensorimotor Toil is transferred and further warped when caegories are
aqyuired by Theft. Categoricd perception induced by language can thus be seen as an instance
of the Whorfian Hypothesis (Whorf 1964, acording to which our language influences the

way the world looksto us.

2.  The mushroom world

Our smulations take placein a mushroom world (Cangelos & Parisi, 1998 Harnad 1987 in
which little virtual organisms forage among the mushrooms, leaning what to do with them
(ea or don't ed, mark or dont mark, return or dont return). The foragers feed, reproduce and
die. Mushrooms with feaure A (i.e. those with badk spots on their tops, as illustrated in

Figure 1) are to be eden; mushrooms with feaure B (i.e. a dark stalk) are to have their
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locaion marked, and mushrooms with both feaures A and B (i.e. both badk-spotted top and
dark stalk) are to be eden, marked and returned to. All mushrooms also have threeirrelevant

feaures, C, D and E, which the foragers must learn to ignore.

Apart from being able to move aound in the environment and to lean to caegorize the
mushrooms they encounter, the foragers also have the aility to vocdize When they approach
a mushroom, they emit a cdl associated with what they are aout to do to that mushroom
(EAT, MARK). Both the mrred adion pattern (ea, mark) and the corred cdl (EAT, MARK)
are leaned duing the foragers lifetime through supervised leaning (Sensorimotor Toil).
Under some anditions, the foragers also recave & input, over and above the feaures of the
mushroom itself (+/-A, +/-B, +/-C, +/-D, +/-E), the cdl of another forager. Thiswill be used to
test the adaptive role of the Theft strategy. (Note, however, that except in spedal cases --
reported and analyzed elsewhere (Cangelos & Harnad, in preparation) -- in the present
simulations the thief steds only the knowledge, not the mushroom.)

The foragers world is a 2-dimensional (2D) grid of 400 cdls (20x20). The environment
contains 40 randomly locaed mushrooms. Mushrooms are grouped in four caegories
acording to the presence/absence of feaures A and B: 00, AQ, 0B, and AB (Figure 1). In eat
world there ae 40 mushrooms: 10 instances of ead of the four caegories. Our ewlogicd
interpretation of the marking behavior is that it has two functions: Both the inedible OB and
the edible AB mushrooms have atoxin that is painful when inhaled, but digging into the eath
(marking) immediately after exposure blocks al negative dfeds. There is aso a delayed
contingency on the AB mushrooms only, which is that wherever they appea, many more
mushrooms of the same kind will soon grow in their place So with AB mushrooms it is

adaptive to remember to return to the marked spots.
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Figure 1: 2D world with one forager and the four samples of mushrooms. Mushroom feaure A
is the presence of bladk dots on the top; feaure B is adark stalk. Mushroom position
corresponds to the normalized relative angle between forager's orientation and the dosest
mushroom.

Feaure A is the bladk-spotted top and feaure B is the dark stalk. Mushroom position is
encoded as the normalized relative angle between the diredion the forager is fadng and the
diredion of the dosest mushroom. In this smulation, the foraging is done by only one forager
at atime. Asit moves, the forager percaves only the dosest mushroom. For ead mushroom,
the input to the forager consists of the 5 +/- feaures plus its locaion relative to the forager,
expresed as the angle a, between its position and the diredion the forager is fadng. The angle
isthen normalized to the interval [0, 1]. The five visual feaures A, B, C, D, E are ercoded in a
binary locdist representation consisting of five units ead of which encodes the
presence/absence of one feaure. An AO mushroom would be ewcoded as 10***, with 1
standing for the presence of feaure A, O for the dsence of feaure B and *** being either O or
1 for the 3 irrelevant fedures, C, D, and E. OB mushrooms are encoded as 01*** , and AB as
11***  The cdlsthat can be produced in the presence of the mushroom are dso encoded in a
locdist binary system. There ae 3 wnits for ead of the three cdls: 1** EAT, *1* MARK and
**1 RETURN, so EAT+MARK+RETURN would be 111 Like the Calls, the three ations of

eding, marking and returning are excoded locdisticdly.
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3. TheNeural Network and Genetic Algorithm

The forager's neural network processs the sensory information about the dosest mushroom
and adivates the output units corresponding to the movement, adion and cdl patterns. The net
has a feedforward architedure (Figure 2) with 8 input, 5 hidden and 8 output units. The first
input unit encodes the angle to the dosest mushroom. Five input units encode the visua
feaures and threeinput units encode incoming cdls (if any). Two output units encode the four
possble movements (one step forward, turn 90 degrees right, turn 90 degrees left, or stay in
placg in hinary. Three ation units encode the adion patterns ea, mark, and return, and three
cdl units encode the mrresponding three cdls, EAT, MARK, and RETURN.

actions vocalizations
&
movement

OO OO0 OO0

>~

OO000O0

OO
C D

>

O OO000 00
o« A B qu.fsg

N
§
<

N

&

Figure 2 - Neural network architedure.

A forager's lifetime lasts for 2000adions (100 adions in 20 epochs, ead of them sampling a
different distribution of 40 mushrooms). For ead epoch there ae two spreads of adivation,
one for the adion (movement and adion/cdl) and one for an imitation task. The forager first
produces a movement and an adion/cdl output using the input information from the physicd
feaures of the mushroom. The forager's neural network then undergoes a oy/cle of leaning
based on the badkpropagation algorithm (Rumelhart, Hinton, & Willi ams, 1986.

11



The net's adion and cdl outputs are mmpared with what they should have been; this difference
is then badkpropagated so as to wegen incorred connedions and strengthen corred ones. In
this way the forager leans to caegorize the mushrooms by performing the wrred adion and
cdl. In the second spread of adivation the forager also leans to imitate the cdl. It recaves as
input only the crrea cdl for that kind of mushroom, which it must imitate in its cdl output
units. Thisleaning is likewise supervised by badkpropagation.

The population of foragers is aso subjed to seledion and reproduction as generated by the
genetic dgorithm (Goldberg, 1989. The population size is 100 foragers and remains constant
aaoss generations. The initial population consists of 100 neura nets with a random weight
matrix. During the forager's lifetime its individual fitnessis computed acmrding to a formula
that assgns points for ead time aforager readies a mushroom and performs the right adion
on it (ea/mark/return) acording to feaures A and B. At the beginning of its life, a forager
does not become much fitter from the first mushrooms it encounters becaise it takes sme
time to lean to caegorize them corredly. As errors deaease, the forager's fitnessincreases.
At the end of their life-cycles, the 20 foragers with the highest fitnessin ead generation are
seleded and allowed to reproduce by engendering 5 offspring ead. The new population of
100 (20x5) newborns is sibjed to random mutation of their initial connedion weights for the
motor behavior, as well as for the adions and cdls (thick arrows in Figure 2); in other words,
there is neither any Lamarckian inheritance of leaned weights nor any Baldwinian evolution of
initial weights to set them closer to the final stage of the leaning of 00, A0, OB and AB
caegories. This ledion cycle isrepeaed until the final generation.

4. Grounding Eat and Mark Directly Through Tail.

Two experimenta conditions were compared: Toil and Theft. Foragers live for two life-stages
of 2000 adions ead. The first life-stage is identicad for both populations. they all lean,
through sensorimotor Toil, to ead mushrooms with feaure A and to mark mushrooms with
feaure B. (AB mushrooms are acordingly both eaen and marked.) Return is not taught
during the first life-stage. The input is always the mushroom's position and feaures, as $1own
in Table 1. In the second life-stage, foragers in the Toil condition go on to lean to return to

AB mushrooms in the same way they had learned to ea and mark them through honest toil :
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trial and error supervised by the cnsequences of returning or not returning (Catania & Harnad
1988. In contrast, foragers in the Theft condition lean to return on the basis of heaing the

vocdizaion of the mushrooms names.

Feature Call Behavior Call

Condition Input Input Backprop  Backprop
TOIL EAT-MARK YES NO YES YES
TOIL RETURN YES NO YES YES
THEFT RETURN NO YES YES YES
IMITATION NO YES NO YES

Table 1 - Input and badkpropagation for Toil and Theft leaning and for imitation learning

We ran ten replicaions for ead of the two conditions. In the first 200 generations, the
foragers only live for the first life-stage. From generation 200 to generation 210 they live on
for a seond life-stage and must lean the return behavior. The first 200 enerations are
necessary to evolve and stabili ze the aility to explore the world and to approach mushrooms.
After the foragers are ale to move in the 2D environment and to approach mushrooms, they
lean the basic caegories plus their names, EAT and MARK. The average fitness of the ten
replicaions is siown in Figure 3. The populations that evolve in these 10 runs are the same

ones that are then used in the Toil and Theft conditions from generations 200to 210.
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Figure 3 - Average fitnessof the best 20 individuals in ten replications. Foragers lived one life-
stage and only eaing and marking was taught.
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In the next runs, the second life-stage differs for the Toil and Theft groups: The Toil group
leans to return and to vocdize RETURN on the basis of the feaure input alone, as in the
previous life-stage. Their input and supervision conditions are shown in Table 1. In the Theft
condition the foragers rely on other foragers cdls to lean to return. They do not receve the

feaure input, only the vocdizaion inpui.

Our hypothesis is that the Theft strategy is more alaptive (i.e. results in greaer fitness and
more mushroom colledion) than the Tail strategy. To test this, we compare foragers behavior
for the two conditions gatisticdly. For our purposes we count the number of AB mushrooms
that are rredly returned to. The average of the best 20 foragersin all 10 replications is 54.7
AB mushrooms for Theft and 441 for Toil. That is, Thieves siccesdully return to more AB
mushrooms than do Toilers. This means that learning to return from the grounded names EAT
and MARK is more alaptive than leaning it through dired toil based on sampling the physicd
feaures of the mushrooms. To compare the two conditions, we performed a repeaed
measures analysis of variance (MANOVA) on the 10 seals. The dependent variables were the
number of AB mushrooms colleded at generation 210 averaged over the 20 fittest individuals
in all 10 generations. The independent variable was Theft vs. Toil. The difference between the
two conditions was sgnificant [F(1,9)=136.7 p<0.000]. Means and standard deviations are

shown in Figure 4.
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Figure 4 - Mean number of AB mushrooms corredly returned to in Toil and Theft simulations
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5. Theft vsToil: Simulating direct competition

A dired way to study the adaptive alvantage of Theft over Toil is to see how they fare in
competition against one another. We ran 10 competitive simulations, starting with the 10
populations from generation 200 of the previous runs. Foragers again live for two life-stages.
In thefirst, all lean to ea and mark through Toil. In the second life-stage, the 100 foragers are
randomly divided into 50 Thieves and 50Toilers for the learning to return. There is no red on-
line competition in our smulations becaise in ead run, only one individual is tested in its
world. The number of AB mushrooms to which a forager is able to return will strongly affed
its fitness Dired competition occurs only at the end of the life o/cle, in the seledion of the
fittest 20 to reproduce Direa competition for scarce mushrooms has been studied separately
in other smulations (note 1); in the present ewlogy, the asumption is that mushrooms are
abundant and that the only fitnesschallenge is to emerge among the top 20 eaersmarkers of
the generation. Figure 5 shows the proportion of Thieves in the overall population of the 10
replicaions of Theft vs Toil (from generation 200to 210). Even though Thieves are only 50%
of the population at generation 201, they gradualy come to outnumber Toilers, so that in less

than 10 generations the whole population consists of Thieves.
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Figure 5 - Proportion of Thievesin the 10 competitive smulations.
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6. What Changes During L earning? Analysis of internal representations

In this ®dion we @mmpare the dcanges in the foragers hidden-unit representations for the
mushrooms to determine what it is that changes internally during Toil and Theft. The
adivations of the 5 hidden units are recorded duing a test cycle in which the forager is
exposed to al the mushrooms as input. We will report the analysis of a single case study using
the network of the fittest individual in seed 8 These results are representative of the learning

dynamicsin al netsthat successully learned to categorize mushrooms.

We first used Principal Components Analysis (PCA) to display the network's internal states in
two dimensions, thereby reducing the 5 adivations to 2 fador scores. PCA, however, has the
limitation that the different conditions cannot be compared dredly becaise of differences in
scde. For ead PCA, fador scores are normalized to a distribution with a mean of 0 and a
standard deviation of 1. Hence this analysis can only be used to compare interna

representations within ead condition, not between conditions.

: -A-B °
2 ‘ At
.ot B ©
Lt AB X
.
1 X ‘ ¥
I N
,,,,,,,,,,,,,,, o XX ]
FACTOR 2 ‘
@ ‘ X
5] &
o]
1°r a °
]
2r .
2 1 0 1 2
FACTOR 1

Figure 6 - Similarity spacefor network with random weights. Fadors are obtained after PCA
on the adivation values of the five hidden units.
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Figure 7 - Similarity spacefor network that leaned to ea, mark, and return by Toll.

Figure 6 and 7 show the dfed of caegory leaning (Toil) on the distances between the internal
representations of the mushrooms in hidden unit similarity space In Figure 6, prior to Toil, the
four kinds of mushroom are not clealy distinguishable. During the wurse of leaning the
adiong/cdls ea-mark-return, the representations form four separable dusters. We will now
show how these representations can be used to analyze the dfeds of Toil and Theft leaning

on similarity spacediredly.

7. Categorical Perception Effects

The change in our networks hidden-unit representations during the wurse of category learning
can be andlyzed and understood in terms of leaned caegoricd perception (CP) effeds
(Harnad 1987 Goldstone 1994 Andrews et al., 1998, i.e. the compresson of within-category
distances and the expansion of between-category distances. CP has already been demonstrated
to occur with Toil leaning (Harnad et al. 1991 1995 Goldstone ¢ al., 1996 Csato et al.,
submitted); we will now extend this to an examination of what happens to the interna

representations with Theft learning.
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To overcome the limitations of the previous analysis, we record the Euclidean distances
between and within categories using the aordinates of the five hidden unit adivations diredly.
At the end of ead smulation, the 5 fittest foragers in ead population are tested by giving
them 40-mushroom samples as input. The hidden unit adivations for ead kind of mushroom
are saved for threeinput conditions: (1) Feaures-only (only the 5-bit feaure input); (2) Calls-
only (only the 3-bit cdl input) and (3) Feaurest+Calls (both types of input). The within-
caegory distances are cdculated as the mean squared Euclidean distances between ead
individual mushroom's coordinates and its category mean. There ae four means, one for 00,
A0, 0B, and AB respedively. Between-caegory distances are cdculated as the distances

between the cdegory means.

Four leaning conditions are used to analyze within-category and between-caegory distances
for CP effeds. (1) Pre-learning, for random-weight nets before learning; (2) No-return, for
nets that were only taught to ea and to cdl EAT, and to mark and to cdl MARK, (3) Tail, for
nets that also leaned to return and to cdl RETURN with feaure input, (4) and Theft for
learning to return from cdls alone. In every replication one mean was obtained for ead of the
10 between- and within-category distances (4 within measures for ead caegory, plus 6
between measures for all the possble pairings of the 4 categories) by averaging the distances
derived from the 5 fittest foragers. These 10 mean distances were olleded for ead of the
threeinput conditions. Because we have 10 replicaions, the 10 means for ead distance can be
used as dependent variables in two separate analyses of variance, one for within-caegory, the
other for between-category distances. Our MANOVA for the within-category distances had
two independent variables: LEARNING CONDITIONS with 3 levels (Pre, No, Toil) and
CATEGORY TYPE with 4 levels (Eat, Mark, Return, Do-nothing) (note 2).

We used a repeded measures MANOVA becaise d levels of CATEGORY TYPE and
LEARNING CONDITIONS involve repeaed measures in the same set of nets. (We excluded
the Theft condition in which the within-category distance is 0 becaise dl ten samples of
mushrooms use the same cdl input.) The average within-category distances in the 4x3

conditions are shown in Table 2 and Figure 8.
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CATEGORY PRE |NO-RET| TOIL
Do-nothing 34 .16 14
Eat 32 14 A2

Mark .30 13 A2
Eat+Mark(+Return) .29 A1 .09

Table 2 - Table of means for the MANOVA of within-caegory distances

035
L

—"— Eat+Mark+Return

0.3 +
—*  Eat

0.25 + —°®— Do-nothing

0.2 +

0.15 —+

01 + '\_

0.05 —+

WITHIN-CATEGORY DISTANCE

0 T 1
PRE-LEARNING NO-RETURN TOIL

Figure 8 - Average within-caegory distances in the three onditions. The airve for Mark is not
shown because it coincides with the aurve for Eat.

The two main effeds are datigticdly significant ( F(2,18)=917.6 and p<0.00001 for
LEARNING and F(3,27)=18.8 and p<0.00001for CATEGORY TY PE); the interadion is not
significant. Using the post-hoc Duncan test with a significance threshold of p<.01 to compare
the means for ead independent variable, al the cmparisons in the LEARNING condition
were significant. That is, within-category distances deaease significantly from Pre-learning to
No-return to Toil. The biggest deaease is between the (random) Pre-learning and all the post-
leaning nets (see Table 2 and Figure 8). In the four levels of CATEGORY TYPE, al means
differ from ead other except the Eat and Mark within-distances. That is, the within-category
distancefor Eat and Mark is the same, whereas the within distance of Do-nothing is the biggest

and that of Return the smallest.

MANOVA for the between-caegory distances had two repeaed variabless LEARNING
CONDITIONS with 4 levels (Pre, No, Tail, Theft) and CATEGORY COMPARISONS with 4
levels (Eat Versus Mark, Eat vs Return, Eat vs Do-nothing, Return vs Do-nothing). The Mark
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vs Return and Mark vs Do-nothing comparisons are not included in the analysis because their
means are very similar to the parallel comparisons Eat vs Return and Eat vs Do-nothing,
respedively (Table 3). We then go on to generaize the results for the Eat vs Mark
comparisons. The between-caegory distances for the 4x4 repeaed measure design are shown
in Table 3 and Figure 9.

COMPARISON PRE NO-RET | TOIL THEFT
EAT - MARK .57 1.47 1.47 1.42
RETURN « EAT 42 1.01 1.10 1.25
RETURN « MARK .39 1.01 1.12 1.25
EAT - Do-nothing 42 1.04 1.02 .93
MARK o Do-nothing 45 1.04 1.02 .95
RETURN o Do-nothing .54 1.42 1.52 1.61

Table 3 - Table of means for the MANOVA of within-caegory distances

18 +

16 + //D
® - - - - - —— - - - e - - . _

14 + o .

12 +

1,,

0.8 +

= Return Vs Eat

0.6 &~

BETWEEN—-CATEGORY DISTANCE

— U~ Return Vs Do-nothing

04 - ~® - EatVs Mark

0.2 ——A— Eat Vs Do-nothing

O T T T 1
PRE-LEARNING NO-RETURN TOIL THEFT

Figure 9 - Betwean-caegory distances in the four conditions. Return vs Mark and Mark vs
Do-nothing are not shown because they are congruent with Return vs Eat and Eat vs Do-
nothing respedively.

The two main effeds are significant ( F(3,27)=37716 and p<0.00001for LEARNING and
F(3,27)=8686 and p<0.00001for COMPARISONS) as is their interadion (F(9,81)=75.7 and
p<.0000). Duncan tests reveded, first, a significant difference in the distance between the
Pre-leaning nets and all the post-learning nets. (This expeded effea only shows that any kind

of systematic learning will increase between-category distances compared to random initial
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distances.) Comparing Toil vs Theft spedficdly, we seethat all distances between Return and
the other three caéegories are greaer in the Theft nets. Leaning Return by Theft has the dfea
of separating this caegory more from the others. The mean differences were dl significant for
Return vs Eat, Return vs Mark, and Return vs Do-nothing, 1.25, 1.25 and 1.25, respedively,
in the Theft nets, and 1.10, 1.12, and 1.52 in the Tail nets. The Theft learning of Return caused
the between-category distances not involving Return to deaease. [A last effed is that in all
leaning conditions the Eat vs Mark and Return vs Do-nothing distances are greder then the
other pairs becaise the Hamming dstances of their 1/O codes are maximal (e.g. feaures A and

B for Eat Vs Mark have the input contrast: 10Vs01).]

Figure 10 shows the change in the distances between the internal representations of the A (Eat
only), B (Mark only), A&B (Eat & Mark & Return), and not-A&not-B (neither Mark nor Eat
nor Return) Mushrooms. Prior to Toil, the drcles, proportional to the within-caegory
distances, are large, and the redangle, proportional to the between-caegory distances is snall.
After Toil leaning, the within-category differences drink and the between-category distances

expand.

Figure 11 then traces the between-category expansion to Theft Leaning: The thin dashed
redangle is proportiona to the between-caegory distances before leaning (random). The
thick dashed line iswhat they look like dter Toil leaning of Eat and Mark without Return; the
thin continuous line isidenticd to Figure 9, that is, Toil learning of Eat and Mark, with Return,
and the thick continuous line is for Theft learning of Return. Note the increased separation
between A& B and not-A&not-B induced by Theft aone.
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Figure 10 - 2D projedions of between-caegory distances (quadrilateral sides) and within-
caegory distances (circle radius) in the Pre-learning condition and after Toil |earning of Eat,
Mark,and Return. All distances except Eat vs Mark correspond to the ad¢ual Euclidean
distancesin 5 dmensional hidden unit space
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Figure 11 - 2D projedions of the between-caegory distances (quadrilateral sides) in the four
conditions. The distances, except Eat vs Mark, are comparable and refled the ad¢ual Euclidean
distances between caegories. Note that the distances between Return and all the other
caegories (Return vs Eat, Return vs Mark, Return vs Do-nothing) are the highest in the Theft
condition.

8. Conclusions

We have shown that a strategy of aaqquiring new categories by Symbolic Theft completely
outperforms a strategy of aaquiring them by Sensorimotor Toil as long as it is grounded in
caegories aqquired by Toil. The internal medhanism that makes both kinds of caegory
aqjuisition possble does © by deforming or “warping” internal similarity space so as to
compressthe internal representation of members of the same caegory and to separate those of
different categories. The warping occurs primarily in the service of Toil, but Theft not only
inherits the warped similarity spacebut can warp it further. This warping of similarity spacein
the service of sensorimotor and symbolic leaning is cdled caegoricd perception and can be
interpreted as a form of Whorfian effed (Whorf 1964) in which language influences how the

world looks to us.

From the standpoint of our Martian anthropologist, the influence would run roughly like this:
All other spedes on this planet get their caegories by toil alone, either cumulative,
evolutionary toil or individual lifetime toil: Individuals encounter things, must learn by trial and
error what to do with what, and to do so, they must form internal representations that reliably
sort things into their proper categories. In the process of doing so, they keep leaning to see
the world dfferently, deteding the invariants, compressng the similarities and enhancing the
differences that allow them to sort things the way they need to be sorted, guided by feedbadk
from the mnsequences of sorting adaptively and maladaptively (as in the mushroom world).

That’s how it proceaded on our planet until one spedes discovered a better way: First aoquire
an entry-level set of caegories the honest way, like everyone dse, but then assgn them
arbitrary names. (Those names could start as nonarbitrary functional or imitative gestures at

first, by-products of pradicd, colledive social adions or even deliberate mimicry, but their
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nonarbitrary feaures would be irrelevant once they were used just to name; and vocd gestures
would be least encumbered with other pradicd tasks, hence most readily available for arbitrary
naming, espedally aaoss distances, out of eye-shot, and in the dark.) Once the etry-level
caegories had accompanying names, the whole world of combinatory possbilities opened up
and a lively trade in new caegories could begin (probably more in the spirit of barter than
theft, and, within a kin-line, one of sharing caegories along with other goods). In trading
caegories as they traded combinations of symbols, our spedes aso traded “world-views,” for
eat caegory aquired by heasay also brought with it some rearangement of the internal
representation of caegories, a “warping” that was Whorfian, whether merely the subtle
compresgon that results from leaning that A is always conjoined with B, or the fundamental
restructuring dctated by aradicd scientific

discovery.

Only our Martian knows the spedfic initial conditions in which the generative power of names
and their boolean combinations made themselves felt biologicdly on our planet, but perhaps
our simulations suggest how its benefits might have mushroomed, inducing a series of
Baldwinian adaptations inclining ever our succesful ancestors to name cdegories and to string
names together so as to describe new caegories to one another with ever more fervor and

commitment.

Can results from a 3-bit toy world redly cast light on the rich and complex phenomenon of the
origin and adaptive value of natural language? This is redly a question about whether such
findings will “scde up’ to human size in the red world. This ding problem -- common to
most fields of cognitive modeling where the tasks themselves tend not to be lifesize or to have
facevalidity -- can only be solved by acually trying to scae our models upward, incorporating
more and more of the red-world complexity and constraints into them. This is how our own
reseach programme will continue. For now, however, we wanted to enter our own toy
candidate into the cmpetition with the other toy models (tool-make, hunt-help, chit-chat, etc.;

Knight et al. in presg for the provenance of our spedes most powerful and remarkable trait.
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Notes

(1) In smulations conducted by Emma Smith (in prep.) and Gianni Vaenti (in prep.) we have
shown that when the scarcity of the mushrooms is varied, Theft beas Toil when there ae
plenty of mushrooms for everyone, but when the mushrooms are scarce and vocdising
risks losing the mushroom to the Thief, Toil beas Theft and the foragers are mute. Further
studies analysing kinship showed that under conditions of scarcity vocdising to relatives
only beas vocdising to everyone. Of course amushroom world istoo smple, and foraging
caegories are not the only ones that can benefit from Theft. The pattern may be different
for categories related to danger, territory, mating, dominance, or instructing off spring.

(2) We will use the names Eat, Mark, Return, and Do-nothing (i.e. non-A, non-B mushrooms)
to refer to the four caegories. Return categories could also be cdled Eat+Mark+Return

because the Return category implies the m-occurrence of behaviours/cdls Eat and Mark
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