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Abstract  
This paper describes different types of models for the 
evolution of communication and language. It uses the 
distinction between signals, symbols, and words for the 
analysis of evolutionary models of language. In particular, it 
show how evolutionary computation techniques, such as 
Artificial Life, can be used to study the emergence of syntax 
and symbols from simple communication signals. Initially, a 
computational model that evolves repertoires of isolated 
signals is presented. This study has simulated the emergence of 
signals for naming foods in a population of foragers. This type 
of model studies communication systems based on simple 
signal-object associations. Subsequently, models that study the 
emergence of grounded symbols are discussed in general, 
including a detailed description of a work on the evolution of 
simple syntactic rules. This model focuses on the emergence of 
symbol-symbol relationships in evolved languages. Finally, 
computational models of syntax acquisition and evolution are 
discussed. These different types of computational models 
provide an operational definition of the signal/symbol/word 
distinction. The simulation and analysis of these types of 
models will help understanding the role of symbols and symbol 
acquisition in the origin of language. 
 
Index Terms: Evolution of language, Artificial Life, Symbol 
grounding, Neural networks 

I. INTRODUCTION 

A. Icons, Indices, and Symbols 

Analyses of linguistic and communication systems are 
mainly based on the semiotic distinction between icons, 
indices, and symbols. These distinctions, originally 
introduced by Peirce [22], have been reproposed and 
slightly revised in recent language origin works (e.g., [12], 
[9]). Briefly, Peirce’s original distinction between icons, 
indices, and symbols is based on the fact that an "icon" has 
physical resemblance with the object it refers to, an "index" 
is associated in time/space with an objects, and a "symbol" 
is based on a social convention or implicit agreement. 
 
Harnad [11,12] distinguishes between three types of 
representations that are used by natural (and artificial) 
cognitive systems to build mental representations and 
classifications of the external environment. He hypothesises 
that symbols (words) originated as the names of perceptual 
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categories that are based on iconic and categorical 
representations. Initially, each cognitive system builds an 
iconic representation of the perceived object. It corresponds 
to the sensory representation of an object, such as its 
projection in the retina. The retinal image of a horse is an 
iconic representation. Subsequently, this representation is 
processed and used to build a categorical representation. 
The object is represented by some essential (indexical) 
features that define its membership in a category. The 
category of horses is an example of categorical 
representation. These categorical representations [12] are 
useful to sort out the extensive perceptual variability of 
objects in the real world. Indeed, the ability of humans and 
animals to create categories, e.g. through categorical 
perception, constitutes the “groundwork”  of cognition [11]. 
Upon this basis, it is possible to build more complex 
cognitive skills, such as language. The next level of 
representation is called symbolic. Symbolic representation 
makes it possible for us to name and describe our 
environment, in terms of objects’  categories, their 
memberships, and their invariant features. The word 
“horse”  is such a type of symbolic representation. Symbolic 
representations can be combined together to describe new 
entities and relations. For example, the word “horse”  and 
“stripe”  can be used together to describe the concept of 
“zebra.”  Symbols constitute the basis of language, 
especially in human languages. 
 
Deacon [8,9] uses a hierarchy of referencing systems based 
on the three levels of iconic, indexical, and symbolic 
relationships. Icons are associated with entities in the world 
because of stimulus generalisation and conventional 
similarity. Indices are associated to world entities by spatio-
temporal correlation or part-whole contiguity. They are 
typical of conditional learning based on simple stimulus 
association. Indexical references are used in common 
animal communication systems. Symbols have referential 
relationships to indexical relationships, and also to other 
symbols1. Human languages are based on the use of such 
symbols. 
 
Recently, Deacon [9] proposed an explanation of the origin 
of language that is based on this hierarchical referencing 
system. His theory relies on the main distinction between 
communication with and without the use of symbolic 
representations to explain the evolutionary gap between 
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animal and human communication systems. In fact, a 
variety of animal communication systems exist and have 
been studied in detail [14]. There is no apparent continuity 
between animal communication systems and complex 
human languages. No animal “simple languages”  have been 
discovered, i.e., communication systems using some 
elementary forms of word combinations or syntax. The lack 
of simple languages helps explain the gap between animal 
and human communication. Deacon [8,9] ascribes this to 
the symbol acquisition problem. Indeed, the main difference 
between animal and human communication pertains to 
symbolic references. There is a significant difference 
between the animal indexical referencing system of simple 
object-signal associations and that of humans’  symbolic 
associations. In animals, simple associations between world 
entities and signals (e.g., monkeys’  calls) are mostly innate 
and can be explained by mere mechanisms of rote learning 
and conditional learning. A Vervet monkey always uses a 
call in association with a specific predator [5]. Instead, 
symbolic associations have double references, one between 
the symbol and the object, and the second between the 
symbol itself and other symbols. When a complex set of 
logical and syntactical relationships exist between symbols, 
we can call them words and distinguish grammatical classes 
of words. A language-speaking human knows that a word 
refers to an object and also that the same word has 
grammatical relationships with other words. Due to the 
possible combinatorial interrelationships between words, 
there can be an exponential growth of reference with each 
newly added word. Syntax allows the combination of more 
words to express new meanings. Therefore, each new word 
of the lexicon can be used to exponentially increase the 
overall number of meanings that the language can express. 

B. Signals, Symbols, and Words in Language Evolution 

In the last decade, computational modelling has been 
applied to the study of the evolution of language and 
communication. These models deal with different types of 
communication systems. Some rely on the use of simple 
signals, while others use symbolic communication systems 
or complex syntactical structures. Amongst the different 
types of computational approaches, evolutionary 
computation techniques, such as the synthetic approach of 
artificial life [20, 25], can be used to study the emergence of 
communication. This approach permits the study of the 
different stages of semiotic complexity, from simple 
associations between signals and objects to symbolic 
representations, and then to complex syntactic relationships 
between words.  
 
Evolutionary computational models also offer the 
advantage to deal with the symbol grounding problem [12]. 
Computational cognitive models require an intrinsic link 
between the symbols used in the model, such as words, and 
their semantic referent in the external environment. In 
classical rule-based cognitive models, and in some 
evolutionary models of language, the intrinsic link between 
symbols and a world's entities does not exist. Organisms' 
internal symbols need sensorimotor grounding, otherwise 

the role of these models for understanding the evolution of 
cognition would be diminished. Instead, evolutionary and 
artificial life methodologies overcome the symbol 
grounding problem. For example, neural networks can be 
used for modelling organisms' neural and cognitive systems 
to build iconic and categorical representations. 
Subsequently, these representations can be used for high-
level symbolic representations. In fact, simulated organisms 
can use symbols whose semantic referents are made up of 
categorical representations, such as the internal 
representations of a neural network. Organisms' iconic and 
categorical representations can be activated by the actual 
presence of their referents in the organism's world, 
therefore by directly grounded symbols in the external 
world. 
 
The difference between different types of associations (e.g., 
simple indexical relationships versus symbolic associations) 
and their relation to the computational models of language 
evolution is represented graphically in Figure 1. The objects 
and symbols used in this example are taken from Savage-
Rumbaugh & Rumbaugh’s [24] experimental stimulus set 
in ape language research. In this figure, the upper level 
always refers to the linguistic representations of 
signals/symbols, whilst the lower level refers to the objects 
present in the environment. Note that the relationship 
between symbols and objects, which constitutes the 
grounding of symbols into entities of the real world, is not a 
direct link between mental symbols and real objects. 
Instead, it is a link between mental entities (the symbols or 
words) and other mental entities (such as concepts) that 
constitute the semantic reference. Therefore, the objects in 
the lower level refer to a semantic categorisation that 
organisms can make of these objects. These representations 
are mediated by the organisms' sensorimotor and cognitive 
abilities. Solid foods, such as a banana and an orange, are 
represented with a link between themselves, and the two 
drinks are also linked. In fact, apes group food together 
because they require similar sensorimotor behaviour. In 
Rumbaugh's experiments, apes obtain food using a vending 
machine that gives solid food and pours drinks. Therefore 
animals learn that foods are "given," while drinks are 
"poured."  
 
Figure 1a represents a communication system based on 
grounded signals. Communication relies on simple 
indexical associations between objects and signals. This 
situation refers to the models of the evolution of language 
that only focus on lexicon emergence (e.g., [4], [27]). 
Communication signals, that are directly grounded in the 
organisms' environment, do not have any symbolic or 
syntactic properties.  
 
Figure 1b shows a system based on grounded symbols (e.g., 
[26], [2]). In the top layer there are links between symbols, 
and references between symbols and objects. Following the 
previous definition of symbol by Deacon [9] and [13], we 
can categorise this as a symbolic communication system 
due to the relationships between symbols.  



 
A symbolic communication system based on words is one 
that simulates the evolution of grounded symbols, where the 
relationships between symbols are syntactic. For example, 
when the use of communication symbols is governed by a 
set of grammatical rules, these symbols can be classified 
into word classes, such as verbs, nouns, prepositions.  
 
It is important to note that all these types of grounded 
symbolic communication systems can be simulated easily 
through evolutionary and artificial life methodologies. 
Other computational modelling techniques can simulate 
symbol systems but are limited in how they deal with the 
problem of symbol grounding. Figure 1c refers to models of 
the origin of symbols and words with no direct symbol 
grounding. At the top, only symbol-symbol associations 
exist. This type of system is not based on grounded 
symbolic associations as the links between symbols and 
objects are missing. Symbols are self-referencing and lack a 
direct grounding in the organisms’ environment. These 
models are normally used to simulate the origin of syntax 
and words (e.g., [17]) 
 
The following two sections present models for the evolution 
of communication systems based on signals (section II) and 
symbols (section III). Section IV briefly discusses the use 
of computational models for the evolution of syntax and 
words. 

II. EVOLUTION OF COMMUNICATION USING SIGNALS 

Evolutionary computation has recently been applied to 
studying the emergence and auto-organisation of 
communication lexicons. Some models have been used for 
the simulation of the emergence of simple lexicons in 
populations of simulated organisms (e.g., [23], [4], [19]), in 
small communities of robots [27], or in on line Internet 
agents [26]. In these studies, organisms evolve shared 
lexicons for describing entities and relations of the 

environment. These models, that focus on lexicon 
emergence, do not make any explicit and direct reference to 
the role of syntax in language origin. Their aim is to model 
the early stages of the evolution of animal-like 
communication.  
 
A recent study by Cangelosi and Parisi [4] has simulated 
the evolution of signals for naming foods in a population of 
foragers. This type of model studies communication 
systems based on simple signal-object associations. 
Organisms learn and evolve simple stimulus associations 
between objects in the environment and signals. 
Communication signals only have referential relationships 
with the world’s entities.  

A. Evolution of Signals: Model Setup 

The simulation scenario is inspired by the use of 
communication signals observed in small groups of 
animals. Animals have evolved the use of signals to 
communicate about predators [5] or to communicate 
information about the location and quality of food [14]. The 
simulation scenario uses the exchange of communicative 
signals between pairs of organisms concerning the quality 
of food. More specifically, individual organisms signal each 
other if encountered “mushrooms”  are edible or poisonous. 
The organisms live in an environment that contains two 
types of mushrooms: edible and poisonous. Organisms 
reproduce on the basis of their ability to eat the edible 
mushrooms and avoid the poisonous ones. They must first 
categorise an encountered mushroom as either edible or 
poisonous, and then they must respond by approaching and 
eating edible mushrooms and by going away from 
poisonous ones. 
 
The simulation methodology is based on Econet models 
[21]. There is a population of 100 organisms. Each 
individual lives in an environment of 20x20 cells that 
contains 20 randomly distributed mushrooms (e.g., Figure 

“ pour” “ give"

“ coke”

“ juice”

“ pour” “ give"

“ coke” “ orange”
“ banana”“ juice”

“ pour” “ give"

“ coke” “ orange”
“ banana”

a b c

“ juice”
“ orange”

“ banana”

 
 

Figure 1 - Visualisation of the different types of associations in computational models of language evolution. 
1a: Language based on simple indexical relationships between objects and signals, 1b: Language with 
grounded symbolic associations, 1c: Language with non-grounded symbolic associations. Object and word are 
inspired by Savage-Rumbaugh & Rumbaugh’s (1978) experiments on ape language. See text for explanation. 

 



2). Ten mushrooms are edible and the other 10 are 
poisonous. At the beginning of its life, an individual 
organism is placed in a randomly selected cell with a 
randomly selected orientation. When an organism happens 
to step on a cell containing a mushroom, the organism eats 
the mushroom and it disappears. 
 

 

Figure 2 - Environment for the foraging task 
with edible and poisonous mushrooms. Each 
organism is controlled by a neural network. 

 
The behaviour of each organism is controlled by a 
feedforward neural network with 14 input units, 5 output 
units, and 5 hidden units (Figure 3). One input unit encodes 
the location of the single nearest mushroom as the 
mushroom’s angle measured clockwise from the organism’s 
current facing direction. This angle is mapped in the 
interval from 0 to 1. Ten input units encode the mushroom’s 
perceptual properties. The 10 edible mushrooms are 
encoded as 10 patterns of 10 bit, with each pattern obtained 
by changing a single bit, randomly chosen, in the 
prototypical pattern 1111100000. Similarly, the 10 
poisonous mushrooms are encoded as 10 single-bit 
deviations from the prototype 0000011111. The 3 
remaining input units (signal-encoding input units) encode 
one of 8 possible perceived signals: 111, 110, 100, etc. Two 
of the 5 output units encode a movement of the organism in 
the environment. The organism can either proceed one step 
forward (11), turn 90 degrees to the left (10) or to the right 
(01), or just do nothing (00). The remaining 3 output units 
(signal-encoding output units) encode one of 8 possible 
emitted signals in the same way as the signal encoding 
input units. 
 
A starting population of 100 neural networks with the same 
architecture and randomly assigned connection weights is 
generated initially in each simulation. The individual’s 
energy (fitness) is increased every time the organism eats an 
edible mushroom and it is decreased if the organism eats a 

poisonous mushroom. At the end of life, the organisms are 
ranked in terms of their energy and the 20 individuals with 
the most energy are allowed to reproduce by generating 5 
offspring each. An offspring has the same connection 
weights of its single parent with the exception of some 
genetic mutations. Ten percent of the weights are modified 
by adding or subtracting a small random number. The 
process is repeated for 1000 generations. The selective 
reproduction of the individuals with most energy and the 
constant addition of variation to the genetic pool of 
connection weights through the genetic mutations results in 
an increase in average energy across the 1000 generations 
and the evolutionary emergence of the behaviour of 
approaching and eating the edible mushrooms and avoiding 
the poisonous ones. 

 

Figure 3 - Neural network architecture for the 
listener and speaker organisms. Note the 
exchange of the communication signal 
between the three linguistic units. 

 
During its lifetime, an organism wanders in its 
environment. In each cycle, one particular mushroom 
happens to be the mushroom closest to the organism. If the 
mushroom is sufficiently near to the organism, i.e., it is 
located in one of the 8 cells adjacent to the organism’s cell, 
the organism perceives both the location of the mushroom 
(its angle with respect to the organism’s facing direction) 
and its perceptual properties (the pattern of 10 bits). 
However, if the mushroom is more distant, the organism 
can perceive the mushroom’s location but not its perceptual 
properties. The 10 input units encoding the mushroom’s 
perceptual properties all have 0 activation value. 
 
The evolution across 1000 generations of three different 
populations is compared. One population has no language. 
When an individual encounters a mushroom that is not 
located in one of the 8 cells adjacent to the individual’s cell, 



the organism can perceive the direction in which the 
mushroom lies but not the mushroom’s perceptual 
properties. In a second type of population the language is 
provided externally by the researcher and it does not 
evolve. When an individual belonging to this population 
encounters a mushroom, the three input units of its neural 
network that encode perceived signals have an activation 
pattern of ’100’ if the encountered mushroom is edible and 
an activation pattern of ’010’ if it is poisonous. The signals 
produced by the organisms are ignored.  
 
In the third type of population, language is not externally 
provided but it instead evolves autonomously. The scenario, 
which has been inspired by [16], is the following. Like the 
organisms of the other two populations, an individual can 
perceive the nearest mushroom’s perceptual properties only 
if the mushroom is close enough. However, in each cycle, a 
second individual is selected randomly from the population 
and is placed next to the first individual. This way it is 
exposed to the same perceptual input as the first individual 
with the only difference that the second individual has 
access to the perceptual properties of the mushroom 
whatever the distance of the mushroom. The only task for 
the second individual is to label the mushroom for the first 
individual. The binary output of its signal-encoding output 
units in response to the perceptual properties of the 
mushroom is used as input to the signal-encoding input 
units of the first individual. Therefore, in this last 
population, when an individual encounters a mushroom, it 
has always access to a linguistic signal produced by a 
conspecific. However, in this population, unlike the 
previous population, the quality of the signals provided by 
conspecifics is not guaranteed. Whatever signal is generated 
by the conspecific’s neural network, the signal is input to 
the neural network of the individual that must decide 
whether to approach or go away from the mushroom. 
Hence, the language can be useful to these organisms only 
if it evolves appropriately. The fitness of the listening 
organism only depends on its own ability to reach/avoid 
mushroom, and not on its linguistic ability. The speaking 
organism does not receive any fitness payoff. 

B. Evolution of Signals: Results 

We ran 10 replications and analysed the final fitness at 
generation 1000 and the structure of evolved lexicons in 
populations with auto-organisation of communication. The 
comparison of the fitness values in the three populations 
shows that language is a useful addition to the evolutionary 
adaptation of these organisms. The organisms with no 
language have an average energy of a little more than 150 
units at the end of evolution while the two populations with 
language have an average energy of more than 250 units. 
On the other hand, the two populations with language do 
not differ very much from each other. Although, 
predictably, the population with externally provided 
language has a more regular increase in average energy than 
the population with evolved language, the two populations 
reach an equivalent level of energy at the end of evolution.  
 

 

Figure 4 - Frequency distribution of the 8 
possible signals for the edible mushrooms. 
Although there are some oscillations, the 
population evolves a language that tends to 
consistently use the pattern ’010’ to label 
edible mushrooms. 

 
It is interesting to examine what linguistic signals evolve in 
the third population. Figure 4 shows the frequency 
distribution of the 8 possible signals for the edible 
mushrooms in a sample simulation. Although there are 
some oscillations, the population evolves a language that 
tends to consistently use the pattern ’010’ to label edible 
mushrooms (the pattern ’110’ is evolved to label poisonous 
mushrooms). In other populations, a similar tendency to 
evolve the use of only two signals was found. However, no 
consistent pattern was observed in evolved signals. A 
population can be said to possess an efficient language if (a) 
functionally distinct categories (in our case, edible and 
poisonous mushrooms) are labelled with distinct signals, (b) 
a single signal tends to be used to label all the instances 
within a category, (c) all the individuals in the population 
tend to use the same signal to label the same category. 
(Clark [7] has argued that principles similar to these govern 
the child’s acquisition of the lexicon.) According to these 
criteria, the language evolved by our population appears to 
be rather efficient. Similar results were obtained in the other 
replications of the simulation although different pairs of 
signals emerged for the two categories of mushrooms. 
 
This simulation shows that a population of simple artificial 
organisms living in a simple environment can evolve an 
efficient language with an informative function to help the 
individuals interact with their environment. Due to sensory 
limitations, an individual can perceive the location but not 
the perceptual properties of a distant mushroom. This 
represents a serious handicap because an individual can 
adopt an informed decision on whether to approach or go 
away from an encountered mushroom only if the mushroom 
is very close. In these circumstances, the population evolves 



a simple language in the sense that individuals tend to 
generate distinctive signals for edible and for poisonous 
mushrooms and these signals are used by other individuals 
to decide whether to approach or avoid a mushroom. This 
type of language is based on signal use, rather than on 
symbolic communication, because there are independent 
pairs of signal-object associations between the elements of 
the lexicon and the mushrooms existing in the organisms’  
environment. There are no relationships between the two 
signals indicating poisonous and edible mushrooms. 

III. EVOLUTION OF SYMBOLIC COMMUNICATION 

Some language evolution models have focused on 
symbolisation and the use of communication systems based 
on symbolic representations. The use of symbolic 
representations implies some form of symbol combination, 
since symbols have double references: one with external 
world’s entities, another with some of the existing symbols.  
This type of model can be seen as a first approach to the 
study of the evolution of syntax. It also permits a systematic 
analysis of the problem of symbol acquisition. For example, 
comparisons can be made between symbol acquisition in 
animal models (e.g., chimpanzees) and computational 
models (e.g., artificial neural networks). An example of 
such models is Cangelosi's [2] work on the emergence of 
simple syntactic rules based on symbol combination. 

A. Evolution of Symbols: Model Setup 

In this study, an evolutionary computation methodology is 
used which is similar to that used in the previous model. 
The model's behavioural task is influenced directly by 
Savage-Rumbaugh & Rumbaugh’s [24] ape language 
experiments. A population of 80 organisms must perform a 
foraging task by collecting edible mushrooms and avoiding 
toadstools. There are six categories of mushrooms: three 
edible mushrooms (big, medium, and small) and three 
toadstools (big, medium, and small). Once an edible 
mushroom is approached, organisms must identify its size 
category in order to gain fitness. As toadstools must be 
avoided, no further classification of their type is required. 
These foraging stimuli resemble those in Savage-
Rumbaugh & Rumbaugh’s [24] study on ape language. As 
we already mention in Section I, chimpanzees were fed 
through a vending machine that could "give" solid foods 
and "pour" drinks. Therefore animals had to learn not only 
the names (lexigrams) for the single foods/drinks but also a 
lexigram for the different types of solid foods to be “given”  
and another lexigram for different types of liquid to be 
“poured.”   
 
Organisms live in a 2D environment measuring 100 by 100 
cells. At the beginning of each epoch there are 1200 
randomly distributed mushrooms, 200 per category. A 
mushroom is characterised by a binary string of 18 
perceptual features. These features will be used by the 
organism's neural network to identify the mushroom type 
and appropriate action. A set of 3 binary features always set 
to 1 identifies the mushroom category whilst the remaining 
bits are either 0 or 1. Therefore, the 200 mushrooms of each 

category share a common binary prototype. When this 18-
bit string is input to the organism's neural network, the 
mushroom should be classified into one of the six 
categories.  
 
Each time an organism collects an edible mushroom, its 
fitness is increased by one point if the correct category of 
mushroom is identified. Identification is based upon the 
level of activation of one output unit. When a toadstool is 
collected, the fitness decreases by one point. At the end of 
their lifetime, the fittest 20 organisms are selected and 
reproduce 4 offspring each. The organism’s genotype is 
made up of the neural network's connection weights. Ten 
percent of each offspring's connection weights are mutated 
randomly.  
 
A 3-layer feedforward neural network controls the 
behaviour of the organism (Figure 5). In the input layer, 3 
units encode the location of the closest mushroom and 18 
units encode their binary features. Eight input units are used 
for the 8 communication symbols. The network has 5 
hidden units. In the output layer, 3 units control the 
organism’s behaviour (movement and identification of 
mushroom category), and 8 units are used to encode the 
mushroom names. These symbolic output units are 
organised in two clusters of competitive winner-takes-all 
units (one cluster of 2 units, the other of 6 units). Since only 
one unit per cluster can be active, each mushroom will be 
named using two symbols.  
 
During the first 300 generations, organisms evolve the 
ability to differentiate between the 6 types of mushrooms. 
Organisms do not communicate and do not use the 8 
symbolic input and output units. Only the closest 
mushroom's location and the 18-bit feature string are 
available as input. From generation 301 to 400, organisms 
can communicate by using the 8 linguistic input/output 
units. During these generations, the new 80 organisms live 
together with their 20 parent organisms. Only the 80 
offspring will forage and reproduce. The parents serve as 
speakers and teachers for naming the mushroom categories. 
This interaction constitutes the process of cultural 
transmission between the children’s and the parents’  
generations. During each action, the parent network 
receives the 18-bit feature as input and produces two output 
symbols describing the mushroom. These symbols are used 
as input to the child's neural network. Ten percent of the 
time the child also receives the 18-bit string as input. This 
facilitates the evolution of good languages as the 
availability of the mushroom features is rare. Therefore, the 
parent's linguistic description becomes an important source 
for discriminating between mushroom categories. The 
child's network first uses the parent's symbols to decide 
what action to perform. Then it uses the parent’s symbols 
for a naming task and an imitation task. The error 
backpropagation algorithm is used in both learning tasks, 
and the parent's two-symbol string is used as teaching input. 
Some noise (a random number between ± .5) is added to the 
error between the child's output symbols and the parent's 
output symbols to introduce variability in the process of 



cultural transmission. It is important to notice that in the 
next generation, the new offspring will only inherit their 
parents’ pre-learning connection weights. Any weight 
changes resulting from the backpropagation algorithm will 
not be transmitted to the next generation.  

B. Evolution of Symbols: Model Results 

The simulation from generation 1 to 300 was repeated 10 
times, using different initial random populations (i.e., neural 
networks with different random weights). At generation 
300, the foraging task fitness in 9 out of 10 populations 
reached an optimal level. Indeed, analysis of the behaviour 
of the best organisms shows that all toadstools were 
avoided and all edible mushrooms were approached and 
correctly identified. 
 
The 9 successful populations were used in the second stage 
of simulation from generation 301 to 400. In this stage, 
communication was permitted and organisms could learn 
how to name mushrooms from their parents. Eighteen 
different simulations were performed (9 populations * 2 
initial random lexicons). The percentages of the different 
types of evolved languages are shown in Table 1. Single-
signal languages are characterised by the use of only one 
linguistic output cluster  that differentiates between the 
semantic categories of mushrooms. In the first cluster, one 
unit is used for each category, whilst in the other cluster the 
same unit is active for all categories. Signal-combination 
languages are those characterised by the use of both clusters 
to communicate differences between semantic categories. 
However, in these languages there is no compositionality, 
i.e. no parallelism exists between the topology of the 
semantics (i.e. hierarchical structure of the mushroom 
categories) and that of the units in the two clusters. The 
verb-noun languages are a special case of signal-

combination. These languages are also compositional 
because there is a clear parallelism between the semantic 
structure and the linguistic clusters. In the first cluster two 
different units are used. One unit is constantly associated 
with all mushroom categories to be avoided, the other with 
all mushrooms to be approached. The units in the second 
cluster are associated with the subcategories referring to 
mushroom size (big, medium, small.)  
 
In 11 of the 18 runs, populations evolved good languages, 
i.e. the use of at least four signal/signal-combinations to 
distinguish the four emerged behavioural categories (the 
whole group of toadstools, and the three categories of 
edible mushrooms). These emergent semantic categories 
did not distinguish between the subcategories of toadstools. 
These shared languages emerged through a process of auto-
organisation of the lexicon, due to the interaction between 
organisms and the process of cultural transmission. In the 
remaining 7 populations the emerged language was poor. 
That is, some mushroom types were labelled incorrectly due 
to the lack of some signal/signal-combination. Therefore 
the fitness remained very low since some mushrooms were 
incorrectly described and collected. 
 

 Single-signal Signal-comb. Verb-noun 
Good lang. 9% 27% 64% 
Imperfect lang. 14% 29% 57% 

Table 1: Percentages of the different types of 
languages in 18 replications (generation 400).  

 
We are interested in identifying the different types of 
languages that have emerged. In particular, we want to 
focus on signal-combination rules that resemble known 
syntactical structures, such as the verb-noun rule. 

 
Figure 5 - Neural network architecture and learning tasks during the parent-child communicative interaction. 



Considering the populations in which good communication 
evolved, 10 of the 11 languages use combinations of 
signals. Out of these 10 populations, 3 populations use 
various combinations of two signals, and the remaining 7 
use a verb-noun rule. In fact, in the two-unit cluster, each 
linguistic unit is systematically associated to only one of the 
high-order categories edible/poisonous. One “verb”  symbol 
is always used for all toadstools (“avoid” ) and the other for 
all edible mushrooms (“approach”). The units in the 6-word 
cluster are used for distinguishing single “nouns”  
(mushroom size subcategories) with which the two verbs 
systematically couple. This is used to identify the verb-noun 
rule. An example of such a language at the generation 400 
of a sample simulation is shown in Figure 6. 
 

 

Figure 6: Final language in a sample 
population. Note that the language has a 
perfect "verb-noun" structure since all 
toadstools (ST, MT, BT, respectively for 
Small, Medium and Big Toadstool) use the 
output linguistic unit "Y" (= "avoid"), and all 
edible mushrooms (SE, ME, BE, respectively 
for Small Edible, Medium Edible, and Big 
Edible mushrooms) use the linguistic unit "Z" 
(= "approach"). The name of each mushroom 
category is indicated by the output linguistic 
units A-F (for differentiating mushroom 
subcategories by their size). 

 
The language evolution model under discussion is supposed 
to be based on symbolic referencing, rather than simple 
object-signal associations. It is necessary to test the 
symbolic value of such evolved languages. Tests for symbol 
acquisition have been developed in animal language 
studies. For example, in the study by Savage-Rumbaugh & 
Rumbaugh [24] the test consisted of experiments where 
chimpanzees learned initially to associate “pour”  with the 
name of two drinks (coke and juice) and "give" with the 
name of two solid foods (banana and orange). 
Subsequently, animals were taught new names of drinks 

and foods and then the researchers checked if apes where 
able to generalise the correct type of verb. The results 
showed that under certain language training conditions 
animals are able to learn real symbolic associations and 
make correct rule generalisations. Chimpanzees correctly 
associated the new drinks' name with the verb "pour," and 
the new foods' name with "give." 
 
A similar symbol acquisition test was developed for the 
foraging task of the model presented in this section. 
Organisms are first taught to associate the verb "avoid" with 
the names of two toadstool categories and "approach" with 
the names of two edible mushroom categories. 
Subsequently, they are taught the name of a new toadstool 
and the name of a new edible mushroom. No direct 
feedback for the verb association is given during the 
learning of these new names. Finally, neural networks are 
tested to establish whether they learned to use the "verb-
noun" rule to associate the correct verb with the new names. 
Ten replications of this test were executed. The results 
show that in 70% of populations (7 out of 10) the learned 
language is actually based on symbolic associations 
between the mushrooms’  names and the two verbs [2]. It 
indicates that in this model most of the organisms' neural 
networks use a symbolic strategy when learning linguistic 
symbols and the syntactic rules for combining them. 
However, further and more systematic analysis of the 
acquisition of predicate-argument rules in this type of 
neural networks will be needed to fully assess the syntactic 
structures handled by these networks.  

IV. COMPUTATIONAL APPROACHES TO THE EVOLUTION OF 

WORDS AND SYNTAX 

The previous type of model simulates the emergence of 
simple forms of syntax, such as two-signal symbol 
combination and verb-noun compositionality. The evolved 
communication system is based on the use of symbols, 
since organisms are able to generalise the use of the verb-
noun rule to each new entry in the lexicon. It uses symbols 
that are also directly grounded in the organisms' 
environment. However, the complexity of the evolved 
syntax is too simple and quite distant from the level of 
complexity of human languages. 
 
Language and syntax have often been modelled using 
different computational techniques. Among these, neural 
networks have been used extensively for language 
simulation [6]. For example, recurrent neural network 
architectures have been often used for word prediction 
tasks. Networks were trained using complex grammatical 
sentences, with many levels of recursion. The study showed 
that neural networks were able to abstract the grammatical 
structure hidden in the sentences. They were also able to 
represent, in the layer of hidden units, the different classes 
of words, such as nouns and verbs.  
 
Some recent computational studies have used evolutionary 
techniques to study the emergence of syntax and words. 
They simulate complex languages in which it is possible to 



identify "words", i.e. symbols that belong to specific 
grammatical classes, such as verbs, nouns, prepositions, 
etc... For example, Kirby [17] studied the emergence of 
compositionality and recursive grammars. It showed how 
compositionality can emerge without natural selection, 
using a simple mechanism of cultural transmission of 
language. In [1], populations of recurrent neural networks 
learn context-free grammars. They are used to understand 
the role of critical periods in language acquisition.  
 
Both neural network and evolutionary computation 
approaches have produced interesting results. For example, 
neural network models have been useful in understanding 
the mechanisms of neural processing of language and 
syntax and the processes of language acquisition. 
Evolutionary models have supported the integration of the 
process of language acquisition with that of evolution in the 
study of the role of cultural transmission and phylogenesis 
in language origin.  
 
Current models of syntax acquisition and evolution have 
some limitations. Among these, one particular shortcoming 
is the fact that these models solely focus on syntax, rather 
than on the evolution and acquisition of both syntax and 
lexicon. In fact, most of them are based on the referential 
system described in Figure 1c. They only simulate the top 
level of a language system, that of words and word-word 
relationships. The links between words and their semantic 
referents in the external environment are not simulated 
directly. Sometimes, an abstract system of semantic 
grounding is used, with the use of other "symbols" to 
represent semantics (e.g. when a modeller uses a list of 
words to denote semantic categories). Using this approach, 
the associations that organisms learn are mainly self-
referential symbol-symbol relationships. The importance of 
providing a model with a mechanism for grounding 
symbols, and the way it can affect the type of results that 
the model produces, can be shown by analysis of the 
simulation presented in section III. The initial setup of the 
model provided a two-level hierarchy of six low-level 
mushroom categories and two high-level categories. These 
categories were not explicitly given in input to the 
organisms, i.e. the organisms did not have the list of 
mushroom names from which to select a specific meaning 
during communication. The making and selection of 
meanings to communicate depended on the organisms’ 
evolving behavioural skills. In fact, the final results showed 
that the emerged lexicon was organised around four 
grounded semantic categories (the whole category of 
poisonous mushrooms, and the three subcategories of edible 
mushrooms). This shows that when the system is allowed to 
ground its own semantics, unexpected sets of semantic 
categories can emerge. If organisms had bee provided with 
a non-grounded, ready-made symbolic representation of 
meanings, results could have been different because of the 
bias provided by the modeller’s fixed semantics. Moreover, 
a non-grounded approach would have significant limitations 
in models that wanted to study the possible existence (or 
not) of sequential stages of syntax complexity in the 
evolution of language. A researcher using a non grounded 

approach would have to define an a priori series of stages 
of semantic complexity upon which syntax would be biased 
to gradually develop. In a symbol grounded approach other 
autonomous factors (such as the emergence of different 
stages of behavioural complexity during organism’s 
adaptation), would be free to affect (or not) the evolution of 
different stages of syntax complexity. 
 
Future models of the evolution of syntax should include the 
essential grounding of words into the organisms’  
environment. This will release the researcher from the task 
of deciding which meanings to input to the system. The 
simulation approach proposed here, and other approaches 
such as the robotic modelling of the evolution of language 
[26, 27], are clear examples of how symbols can directly 
and autonomously ground their meaning in the organisms' 
environment. However, all words in a lexicon need to be 
directly grounded. In fact, once a basic set of grounded 
words has emerged, additional words can acquire grounded 
meanings by mechanisms of grounding transfer [3].  

V. CONCLUSION 

Computational modelling, and in particular evolutionary 
computation, helped to renew the interest for a scientific 
approach to the studies on language origin and evolution. In 
the last decade, many models have been developed for the 
simulation of the emergence of language and 
communication in evolving population of interacting 
organisms. Some models studied the emergence of lexicons 
and signal-object associations, others have simulated the 
evolution of symbols and syntax directly. 
 
The recent language evolution theories of Harnad [13] and 
Deacon [9] have focused on the role of symbols and symbol 
acquisition for the understanding of the origins of language. 
The ability of cognitive systems, in particular in humans, to 
build symbolic representations from simple indexical 
associations constitutes the main basis for the further 
development of linguistic abilities, and in particular for the 
evolution of syntax. Simple indexical associations are the 
basis for animal communication systems through the use of 
signals. Symbolic representations are the basis for 
communication using symbols, and in particular for the use 
of words and syntax in human languages. 
 
This paper has proposed the use of the distinction between 
signals, symbols, and words for the analysis of language 
evolution models. Moreover, it has stressed the need for 
simulating the grounding of symbols and words. 
Evolutionary computation permits the design of such type 
of language evolution models. The simulation and analysis 
of these models will help to understand the role of symbols 
and symbol acquisition in language origin.  

VI. ACKNOWLEDGEMENT 

This research was partially supported by an Award for 
Newly Appointed Lecturers of The Nuffield Foundation 
(NUF-NAL # SCI/180/97/116) and a PhD studentship of 
the University of Genoa. 



VII. REFERENCES 
[1]  Batali J. (1994). Innate biases and critical periods: Combining 

evolution and learning in the acquisition of syntax. In R. Brooks & P. 
Maes (eds), Artificial Life IV, Cambridge, MA: MIT Press, 160-171. 

[2] Cangelosi A. (1999). Modeling the evolution of communication: 
From stimulus associations to grounded symbolic associations. In D. 
Floreano et al. (Eds.), Proceedings of ECAL99 European Conference 
on Artificial Life, Berlin: Springer-Verlag, 654-663 

[3] Cangelosi A., Greco A., & Harnad S. (2000). From robotic toil to 
symbolic theft: Grounding transfer from entry-level to higher-level 
categories. Connection Science, 12(2), 143-162 

[4] Cangelosi A., & Parisi D. (1998). The emergence of a "language" 
in an evolving population of neural networks. Connection Science, 
10(2), 83-97  

[5] Cheney D.L. & Seyfarth R.M. (1990). How monkeys see the 
world: Inside the mind of another specie. Chicago, IL: Chicago 
University Press. 

[6] Christiansen M.H. & Chater N. (in press). Connectionist natural 
language processing: The state of the art. Cognitive Science 

[7] Clark E. (1993).  The lexicon in acquisition. Cambridge, MA: 
Cambridge University Press. 

[8] Deacon T.W. (1996). Prefrontal cortex and symbol learning: Why 
a brain capable of language evolved only once. In B.M. 
Velichkovsky & D.M. Rumbaugh (eds), Communicating meaning: 
The evolution and development of language, Mahwah NJ: LEA 
Publishers, 103-138. 

[9] Deacon T.W. (1997). The Symbolic Species: The coevolution of 
language and human brain, London: Penguin. 

[10] Greenfield P.M. & Savage-Rumbaugh S. (1990). Grammatical 
combination in Pan paniscus: Process of learning and invention in 
the evolution and development of language. In S.T. Parker & K.R. 
Gibson (eds), Language and intelligence in monkeys and apes, 
Cambridge University Press, 540-579. 

[11] Harnad  S. (Ed.) (1987). Categorical Perception: The 
groundwork of cognition. New York: Cambridge University Press. 

[12] Harnad S. (1990). The Symbol Grounding Problem. Physica D 
42: 335-346 

[13] Harnad S. (1996) The origin of words: A psychophysical 
hypothesis. In B.M. Velichkovsky & D.M. Rumbaugh (eds), 
Communicating meaning: The evolution and development of 
language, Mahwah NJ: LEA Publishers 

[14] Hauser M.D. (1996). The evolution of communication. 
Cambridge, MA: MIT Press. 

[15] Hurford J. (1998). Review of Terrence Deacon, 1997 The 
Symbolic Species: The co-evolution of language and the human 
brain. The Times Literary Supplement, October 23rd, 1998, 34 

[16] Hutchins E. & Hazelhurst B. (1995). How to invent a lexicon. 
The development of shared symbols in interaction, In N. Gilbert e R. 
Conte (Eds.) Artificial societies: The computer simulation of social 
life, London: UCL Press. 

[17] Kirby S. (in press). Syntax without Natural Selection: How 
compositionality emerges from vocabulary in a population of 
learners. In C. Knight, M. Studdert-Kennedy & J. Hurford (Eds.) 
Approaches to the Evolution of Language, Cambridge University 
Press.  

[18] Kirby S. (1999). Syntax out of learning: The cultural evolution of 
structured communication in a population of induction algorithms. In 
D. Floreano et al. (Eds.), Proceedings of ECAL99 European 
Conference on Artificial Life, Berlin: Springer-Verlag, 694-703. 

[19] Oliphant M. & Batali J. (1997). Learning and the emergence of 
coordinated communication. Centre for Research in Language 
Newsletter, 11(1). 

[20] Parisi D. (1997). An Artificial Life approach to language. Mind 
and Language, 59, 121-146. 

[21] Parisi D., Cecconi F. & Nolfi S. (1990). ECONETS: Neural 
networks that learn in an environment. Network, 1: 149-168. 

[22] Peirce C.S. (1978). Collected papers. Vol. II: Element of logic, 
C. Hartshorne & P. Weiss (Eds.), Cambridge, MA: Belknap. 

[23] Saunders, G.M., & Pollack, J.B. (1996). The evolution of 
communication schemes over continuous channels. Proceedings of 
the SAB’96 Conference on the Simulation of Adaptive Behavior. 
Cambridge, MA: MIT Press. 

[24] Savage-Rumbaugh S. & Rumbaugh D.M. (1978). Symbolization, 
language, and chimpanzees: A theoretical reevaluation on initial 

language acquisition processes in four young Pan Troglodytes. Brain 
and Language, 6: 265-300. 

[25] Steels L. (1997) The synthetic modeling of language origins. 
Evolution of Communication, 1(1): 1-37.  

[26] Steels L. & Kaplan F. (1999). Collective learning and semiotic 
dynamics. In D. Floreano et al. (Eds.), Proceedings of ECAL99 
European Conference on Artificial Life, Berlin: Springer-Verlag, 
679-688. 

[27] Steels L. & Vogt P. (1997). Grounding adaptive language games 
in robotic agents. In P. Husband & I. Harvey (eds). Proceedings of 
the Fourth European Conference on Artificial Life, London: MIT 
Press, 474-482 


